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Abstract

Amount of mRNA depends on the both the rates of mRNA transcription in the nucleus 
and mRNA degradation in the cytoplasm. Although each of the processes was studied 
independently, recent studies demonstrated the interplay between transcription and 
mRNA degradation in various cellular processes, such as cell-cycle, cellular differentia-
tion, and stress responses. In this review, we discuss the benefit of the interplay in the gene 
expressions and the mechanisms how these two processes are coupled. We also review 
recent genome-wide methods to measure the rates of transcription and degradation.

Keywords: RNA degradation, transcription factor, RNA binding proteins, 
synthegradase, RNA buffering, mRNA imprinting, NGS

1. Introduction

Gene expression involves multiple processes such as the transcription, translation, and deg-

radation of messenger RNAs (mRNAs). Each of these processes was studied independently. 

In the nucleus, RNA polymerase II (RNAPII) and various transcription factors are recruited 

to the promoter of protein-coding genes to initiate transcription [1, 2]. Nascent mRNA is co-

transcriptionally capped at 5′-end [3, 4], spliced [5], and matured at the 3′-end [6] (Figure 1). 

During these post-transcriptional modifications, every transcript is associated with various 
RNA-binding proteins (RBPs), forming large ribonucleoprotein complexes (mRNPs). This 

mRNP assembly process is subject to quality control by nuclear surveillance mechanisms [7, 8].  

After the quality control, mRNPs are transported to cytoplasm.

In the cytoplasm, the translationally inactive mRNPs would accumulate in P bodies or stress 

granules where mRNPs are degraded [9, 10] (Figure 2). Degradation of the cytoplasmic 
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Figure 1. Scheme of co-transcriptional mRNA processing. An m7G cap (a circle) is added co-transcriptionally to the 5′end 
of the nascent RNA. During the elongation, introns are removed by splicing machinery. Cleavage and polyadenylation 

are mediated after the transcription to form mature transcripts.

Figure 2. The 5′ → 3′ degradation pathway exonuclease-mediated decay begins with shortening of Pan2/Pan3 or CCR4-
not complexes. After the decapping of 5′cap structure (a circle), the body of mRNA is degraded with 5′-to-3′polarity 
by XRN1.
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mRNA is initiated by shortening of the poly(A) tail, which is called deadenylation. In yeast, 

this deadenylation is catalyzed either by Ccr4p/Pop2p/Not complex or by the Pan2p/Pan3p 
complex [11, 12]. After the deadenylation, the 5′-cap structure was removed by the concerted 
action of the decapping complex, Dcp1p/Dcp2p, which is stimulated by Pat1p, the Lsm1-7p, 
and Dhh1p [13, 14]. The decapping reaction exposes the 5′-monophosphate of the terminal 
residue, promoting the 5′ → 3′ degradation pathway by the major cytoplasmic exoribonucle-

ase Xrn1p [15] (Table 1).

The life of mRNA seems to be straightforward. However, recent studies have shown evidence 

of the interplay between transcription and degradation: transcription rate is regulated by 

decay factor; degradation rate is regulated by transcription factor and even by some promot-

ers. This complex network enables cells to shape appropriate gene expression profiles during 
cell cycle processes, cellular differentiation, stress and immune responses [16–18].

2. Biological processes coupling transcription and decay

The functional connection between the transcription and degradation of mRNA shapes the 

characteristic patterns of gene expression. In this section, we introduce several examples of 
the coordination between transcription and degradation in various biological processes.

To respond to environmental cues, cells must switch their steady level of gene expression 

in a rapid and transient mode. This sharp rise of mRNAs can be efficiently achieved if the 

Names in yeast Human homologs Function

Ccr4p hCCR4 Carbon catabolite repressor 4. Catalytic subunits of the complex

Pop2p CNOT7/CNOT8 Also known as Caf1 (Ccr4 associated factor 1). Related to RNase D 

family

Not CNOT1 Negative on TATA. A large scaffolding protein

Pan2p PAN2 PolyA nuclease2. Contains a nuclease domain of the RNase D

Pan3p PAN3 PolyA nuclease3. Co-factor of Pan2

Dcp1p DCP1A/DCP1B Decapping protein1, Co-activator

Dcp2p DCP2 Decapping protein2. Catalytically active decapping enzyme

Pat1p PAT1A/PAT1B Recruit Lsm1-7 to P-bodies to trigger decapping

Lsm1-7p LSM 1-7 Seven Sm-like proteins. Deadenylation-dependent mRNA decapping 
factors

Dhh1p RCX/p54 DEAD box helicase. ATP-dependent RNA helicase in mRNA 

decapping

Xrn1p XRN1/XRN2 Major 5′-3′ Exoribonuclease1, requiring 5′ monophosphate

Table 1. Yeast RNA degradation factors and its human homologs.
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stabilization of transcripts enhances their transcription rates. An example for such functional 

coupling is observed in osmotic stress in S. cerevisiae. With mild osmotic stress (0.4 M NaCl), 
121 mRNAs belonging to the functional groups “stress response” and “trehalose produc-

tion” increase both transcription rates and stability [19]. The study of oxidative stress (0.5 mM 
H

2
O

2
) in fission yeast revealed a major role of transcriptional up-regulation in the stress, but 

also showed the first minutes after stress induction as a critical time for mRNA degradation to 
support the control rapid gene regulation by transcription [20]. In contrast to oxidative stress, 

a moderate heat shock induced a global trend for mRNA stabilization, whereas transcrip-

tion rate contributed only a transient increase immediately upon stress [21]. The difference 
observed in these studies suggested the interplay between transcription and degradation is 

carefully regulated in the cells. Indeed, Shalem et al. demonstrated that alternative modes of 

such interplay determine the kinetics of the transcriptome in response to stress. They subjected 

yeast to two stresses; oxidative stress and DNA damage. In oxidative stress, many genes show 

fast response followed by relaxation, resulting in a quick and transient response, whereas in 

the DNA damage experiment, the response is slow and long enduring. Measurement of the 
genome-wide decay profile showed condition-specific changes in decay rates. In the transient 
response, most induced genes were destabilized, exhibiting counteraction between transcrip-

tion and degradation. This interplay profile can reconcile a high steady-state level with short 
response time among induced genes. In contrast, slow repression response was achieved by 

destabilization of the transcripts [22].

As abnormal gene expression is deleterious to living cells, it is critical to maintain steady 

levels of mRNA; hence, mRNA levels are said to be “buffered”. When genome-wide tran-

scription was attenuated by mutating RNAPII of S. cerevisiae, the cells maintain a steady 

level of the transcripts by decreasing their decay rates [23]. This study also revealed that 

buffering of mRNA levels required the RNA exonuclease Xrn1. Conversely, impairing 
mRNA degradation by deleting deadenylase subunits of the Ccr4-Not complex caused the 

decrease in both degradation and synthesis rates [24]. This mutual feedback maintains the 

steady levels of mRNAs and establishes a cellular mRNA surveillance network. It is mys-

terious that the synthesis-decay feedback exists despite the separation of mRNA synthe-

sis and degradation into nuclear and cytoplasmic compartments. One possible model was 

proposed by Haimovich et al. [25]. They showed that the components related to mRNA 

degradations shuttle between cytoplasm and the nucleus, in a manner dependent on proper 
mRNA degradation. In the nucleus, they associated with chromatin and regulated tran-

scription rate.

Cross talk between mRNA synthesis and decay can also be gene specific. In budding yeast, 
stability of core histone mRNAs is temporally co-regulated with their transcription during 

the cell cycle. Entry into S phase showed rapid increase in their transcription, followed by 
a prompt decrease in their abundance right after exiting the S phase [26–28]. Similar to his-

tone mRNAs, there should be numerous genes of which expression levels are regulated in a 

cell-cycle-dependent manner. By using DNA microarrays, Spellman et al. found that about 

800 genes are cell cycle regulated, which correspond to 10% of all protein-coding genes in 

yeast genome [29]. The mechanism for how cells coordinate the characteristic and integrated 

expression pattern during cell-cycle is not fully understood.

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects100



Interestingly, a functional coupling between the transcription and degradation was exploited 

by herpes virus [30]. Gamma-herpesviruses encode a cytoplasmic endonuclease, SOX, which 
cleaves cellular mRNAs. These cleaved fragments are subsequently degraded by the cellular 

exonuclease Xrn1. This accelerated decay triggered the repression of RNAPII transcription 

rate. The findings suggest that mammalian cells can sense broad alternation in RNA degra-

dation. It is not the initial cleavages by SOX that are detected, but rather the increased activ-

ity of cellular Xrn1 that generates a transcriptional response. Furthermore, the viral mRNAs 

escaped the degradation induced transcriptional repression, and this escape requires Xrn1. 

The opposing roles for Xrn1 in the host and viral transcriptional response may indicate that 

herpesviruses have evolved to benefit from this intrinsic feedback mechanism.

3. Mechanism underlying coupling transcription and decay

The mechanism underlying transcription in the nucleus affects mRNA decay in the cytoplasm 
and vice versa is intensively studied in S. cerevisiae. The regulation of mRNA decay medi-

ated by the transcription is categorized into cis-acting elements and trans-activating factors. 

Cis-acting elements directly regulate the mRNA decay by interacting with RNA binding pro-

teins and/or decay factors [31, 32]. trans-activating factors are recruited onto the mRNA dur-

ing its transcription. This interaction is maintained in cytoplasm, regulating the stability of 

the mRNA. In contrast, there are only a few examples for regulation of the transcription by 

mRNA decay, and this is still under intense investigation.

3.1. cis-acting elements

mRNA contains 5′ untranslated region (UTR) and 3′UTR outside the coding region. These two 
UTR regulate the fate of mRNAs. Here we discuss how the transcription of 3′UTR regulates 
its length, and thus causes the modification of mRNA stability.

3.1.1. 3′UTR

The turnover of an mRNA is mostly regulated by cis-acting elements located in the 3′UTR 
[33], such as AU-rich elements (AREs) [34, 35], GU-rich elements [36], PUF response ele-

ments [37], miRNA binding sites [38, 39], and the poly(A) tail [40]. In principle, the length 

of 3′UTR affect the stability of mRNA because longer 3′UTR would contain more cis-act-

ing elements compared with short 3′UTR (Figure 3). Eukaryotic cells control the length 

of 3′UTR with alternative polyadenylation [41, 42]. Genome-wide polyadenylation maps 
were established by several RNA-seq studies. Direct RNA sequencing (DRS) technology 
provided a comprehensive view of global polyadenylation events in human and yeast, 

and estimated that 72% of yeast genes and more than half of human genes show alterna-

tive polyadenylation patterns [43]. Moreover, 3′ region extraction and deep sequencing 
(3′READS) was used to comprehensively map polyadenylation sites in the mouse genome 
[44]. 3′READS revealed that about 80% of mRNA and 66% of long noncoding RNA undergo 
alternative polyadenylation. Importantly, 3′READS found a global trend of up-regulation 
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of isoforms using  promoter-distal  polyadenylation sites in development and differentia-

tion, suggesting that the RNA degradation pathway will be reconstructed globally through 

the development. These two studies, however, lack quantitative analysis of mRNA stability 

and 3′UTR length modification by alternative polyadenylation. Geisberg et al. developed 

a method to measure mRNA half-lives of mRNA isoform in yeast [45]. Based on clusters 

of isoforms with different half-lives, they identified hundreds of sequences responsible 
for mRNA stabilization. Specifically, the poly(U) sequence was found to be the stabilizing 
element.

3.1.2. Promoter regulates mRNA stability

Surprisingly, several reports showed that promoter regions also affect mRNA degradation 
after the mRNA leaves the nucleus. The first report of promoter-regulated mRNA stabil-
ity was published in 1993. This study showed that swapping of the β-globin promoter in 
HeLa cells to that of the Herpes simplex virus 1 thymidine kinase (HSV1-TK) stabilizes a 
nonsense mutation in the mRNA, while this effect was not observed with the replacement 
for the CMV promoter [46]. A problem in this study was that the authors cannot rule out 

the possibility that different amounts of mature β-globin mRNAs may be caused by the dif-
ferent efficiencies of the splicing. This problem can be avoided by targeting genes without 
introns.

Figure 3. Alternative polyadenylation affects 3′UTR lengths. Longer UTRs allow more RBPs to associate with the mRNA 
(indicated by arrowhead and ellipse, respectively). The RBPs regulate the mRNA stability by recruiting decay factor.

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects102



In 2011, two studies in the S. cerevisiae demonstrated clearly that promoters and associated 

cis-acting elements coordinate their transcription and decay (Figure 4). A conventional yeast 

promoter consists of a core element and an upstream activating sequence (UAS). Promoter 
swapping of native UAS of the RPL30 gene with that of the ACT1 gene increased the sta-

bility of RPL30 mRNA significantly [47]. A cis-element, comprising two Rap1p-binding 

sites, and Rap1p itself are necessary and sufficient to induce stabilization of the transcript. 
Moreover, Rap1p stimulates both synthesis and decay of endogenous transcripts. Thus, this 
study proposed that interaction of Rap1p with the target promoter affects the composition 
of mRNP, resulting in modification of the mRNA degradation rate. Considering that Rap1p 
has an effect in coupling transcription with mRNA decay, this study also introduced a con-

cept called “synthegradase”. They also estimated at least 150 yeast genes would be regulated 

by synthegradases during optimal proliferation conditions. Notably, this number is likely to 

increase with different environmental conditions.

A second example is the study about cell cycle-regulated decay in yeast cells using single 

molecule fluorescence in situ hybridization (FISH) [48]. Promoter swapping of SWI5 and CLB2 

genes with ACT1 made their stability close to ACT1. This study also showed that the mitotic 

exit network protein Dbf2p accounts for the coordinated decay of the transcripts. Chromatin 

immunoprecipitation and RNA immunoprecipitation of Dbf2p showed that Dbf2p interacts 

with both the transcript promoter and mRNA, suggesting that this protein is recruited to 

the promoter and then subsequently stalled on the mRNA. As Dbf2 can interact with the 

Ccr4-Not complex [49], this promoter-regulated decay may manifest through the regulation 

of deadenylation.

Figure 4. Promoter-regulating degradation. Transcription factor such as Rpb1 or Dbf2 (a circle on the promoter) binds 

to transcripts. After the export into the cytoplasm, the transcription factors in cytoplasm recruit decay factor to promote 

RNA degradation.
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Although these two works are focused on specific genes, Dori-Bachash et al. extended to 

the genome-wide scale [50]. They demonstrated that swapping UAS between two yeast spe-

cies affected both transcription and degradation. Adjacent yeast genes sharing a common 
promoter displayed similar mRNA decay rates, which also indicated that promoters couple 

transcription and degradation. Notably, similar coordination between transcription and deg-

radation were found in mouse and human models. Because the diverse genes and regulatory 

elements were associated with promoter-regulated coordination, this phenomenon could be 

generated by genome-wide mechanisms of gene regulation.

3.2. trans-acting proteins

trans-acting proteins are recruited onto the mRNA during transcription, and affect post-
transcriptional regulation after mRNA is exported to nucleoplasm. This process is termed 

“mRNA imprinting”, which confers classical genetic information flexibility [51]. This mRNA 

imprinting lasts throughout the mRNA lifetime and is required for proper post-transcrip-

tional regulation. Here, we focus how mRNA imprinting regulates the degradation rate.

3.2.1. Rpb4 and Rpb7

To date, the best characterized trans-acting proteins are two subunits of the core RNAPII, 

Rpb4p and Rpb7p. Rpb4p and Rpb7p associate with the core polymerase as a heterodimer. 

Two studies provided evidence that the nascent pre-mRNA emerging from the active site 

of RNAPII interacts with Rpb7p [52, 53]. Moreover, Rpb4/7p shuttle between the nucleus 
and the cytoplasm [54], suggesting that this heterodimer influences mRNA physiology in 
the cytoplasm. These facts suggest that Rpb4/7p would be imprinted on the mRNA. Several 
pieces of experimental results revealed that Rpb4/7p promotes the mRNA decay [55, 56]: 

both Rpb4p and Rpb7p affected the deadenylation step; both Rpb4p and Rpb7p interact with 
the mRNA decapping components of the Pat1p-Lsm1-7p complex; and Rpb4p and Rpb7p 
localized to cytoplasmic P-bodies where mRNA is degraded. In this manner, Rpb4/7p would 
link the activity of the basal transcription apparatus with that of the mRNA degradation 

machinery [57].

3.2.2. Snf1

Snf1p is the yeast ortholog of human AMP-activated protein kinase (AMPK) involved in 
diverse stress environments [58–60]. Recent studies also revealed that Snf1p is related to post-
transcriptional regulation. Culturing yeast in glucose-containing growth medium represses 

Snf1-dependent transcription of target genes and promotes mRNA degradation of the cor-

responding mRNAs, which is called glucose-induced decay of mRNA [61, 62]. In low glucose 

concentrations, Snf1 activates the transcription of glucose-induced genes required for energy 
metabolism. In contrast, when glucose concentration is high, termination of transcription 

and activation of the degradation of the glucose-induced transcripts occur, resulting in rapid 

reduction of mRNA levels. Braun et al. fused nonglucose-responsive genes MAP2 and IDP2 

to the ADH2 promoter. This promoter swapping caused a significant destabilization of these 
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mRNAs, indicating that the ADH2 promoter alone is responsible for glucose-induced mRNA 

decay [63]. To understand the molecular mechanism of Snf1-dependent decay, quantitative 
mass spectrometry was used to identify proteins phosphorylated in a Snf1-dependent man-

ner [64]. This phosphoproteomic analysis identified 210 Snf1-dependent phosphopeptides 
in 145 proteins. Notably, mRNA decay factors, such as Eap1p, Ccr4p, Dhh1p, and Xrn1p 

were the targets of Snf1p-dependent phosphorylation. As expected, mutation of three Snf1-
dependent phosphorylation sites in Xrn1 reduced glucose-induced mRNA decay. Therefore, 

Snf1p-dependent transcription and decay of glucose-specific mRNAs could be activated by 
triggering the cytoplasmic decay factors.

3.3. mRNA decay factors modulating transcription

Currently, two mRNA decay factors are proposed to regulate the transcription: Ccr4p/Pop2p/
Not complex (deadenylase) and Xrn1p (exoribonuclease). Ccr4p/Pop2p/Not complex is dead-

enylase, catalyzing the initial deadenylation step of polyadenylated mRNAs prior to their 

decapping. Historically, Ccr4p, the major catalytic subunit, was initially discovered as an 

activator of transcription [65, 66], rather than deadenylase [67]. Other studies showed that 

Not proteins repress the transcription of TATA-less promoter [68, 69]. Furthermore, the Ccr4/
Not complex was involved in transcription elongation by interacting with RNAPII [25, 70]. 

Although numerous studies indicate the bifunctional aspect of Ccr4p/Pop2p/Not complex 
in posttranscriptional regulation, no study, to our knowledge, has focused on the cross-talk 
between mRNA synthesis and degradation. To reveal the whole picture of the complex, fur-

ther investigations are necessary.

Xrn1 targets cytoplasmic RNA substrates marked by a decapped 5′ monophosphate for fur-

ther 5′-to’3′ degradation [71–73]. In 2013, two studies revealed the functional role of Xrn1p in 

the crosstalk between transcription and degradation. Haimovich et al. performed serial exper-

iments that suggest the direct role of Xrn1 in transcription [25]. First, Xrn1p shuttled between 
the cytoplasm and the nucleus in a manner dependent on mRNA degradation. Second, GRO-
seq data demonstrated that the densities of active Pol II are affected by deleting Xrn1p or by 
mutating its active site. A similar result was also confirmed by single-cell FISH. Third, the 
whole-genome-binding feature of Xrn1p showed that Xrn1p binds to promoters of genes of 

which transcription is highly affected by Xrn1p disruption, suggesting that promoter bind-

ing is a transcriptional function. Fourth, inhibition of Xrn1p accumulated transcriptionally 

incompetent Pol II at the nascent mRNAs. This result suggested that Xrn1p functions in tran-

scription elongation. Therefore, the researchers concluded that Xrn1 is an essential factor for 

mRNA synthesis-degradation coupling, and referred to Xrn1p as “synthegradosome.” The 

report published by Sun et al. showed that depletion of Xrn1p caused a global activation 

of mRNA transcription monitored by comparative dynamic transcriptome analysis (cDTA) 

[23]. They also searched for nuclear factors, which repress mRNA transcription by Xrn1, and 

identified transcription repressor Nrg1 as the downstream of Xrn1. Increase in mRNA degra-

dation rates are compensated by an increase in mRNA transcription, suggesting that overall 

mRNA levels are “buffered”. This study showed that Xrn1p was required for the RNA buff-

ering. As summarized above, the two studies reached different conclusions regarding the 
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consequences of deleting or inactivating Xrn1p. From these results, we may conclude that 

Xrn1p is related to coupling mRNA synthesis and degradation; however, the mechanism of 

this interplay is still unresolved.

4. Direct measurements for transcription and degradation rates at the 

genome-wide level

The difficulty in studying the interplay between transcription and degradation is in measur-

ing the kinetics of the processes, especially at the genome-wide level. Recent advances in 

RNA-seq technologies enable us to determine the rate of transcription and/or degradation.

4.1. BRIC-seq

RNA stabilities are measured by the decrease in RNA after inhibiting transcription [74–76]. 

However, transcription affects degradation rates, as discussed previously, which obscure 
the native half-lives of transcripts. Tani et al. developed an inhibitor-free method termed 5′ 
Bromo-uridine (BrU) Immunoprecipitation Chase-deep sequencing analysis (BRIC-seq) [77, 

78]. BRIC-seq applies BrU for metabolic labeling of endogenous transcripts. After removing 
BrU from the medium, total RNAs are then isolated from the cells at sequential time points. 
BrUs-labeled RNAs are purified through immunopurification by using BrU antibody. The 
half-life of each transcript is calculated from the decreasing amount of BrU-RNA measured 
by RNA-seq (Figure 5).

4.2. GRO-seq, PRO-seq, NET-seq

Global Run-On sequencing (GRO-seq) was developed to measure transcription rate. GRO-
seq maps the genome-wide positions, amounts and orientation of transcriptionally engaged 

RNAP [79, 80]. In GRO-seq, transcription is inhibited in living cells, and then reinitiated in 
isolated nuclei under conditions that allow labeling of nascent transcripts (nuclear run-on) 

with BrU. Capturing nascent transcripts from active RNAP provides a direct synthesis rate of 
the transcription. Similar to GRO-seq, precision nuclear run-on sequencing (PRO-seq) maps 
the location of active RNAP at base pair resolution [81]. PRO-seq uses biotin-labeled NTP 

(biotin-NTP) during the nuclear run-on procedure. Addition of only one of the four biotin 

NTPs restricts RNAP to incorporating a single or a few identical bases, resulting in sequence 

reads that have the same 3′ end base within each library. Native elongating transcript sequenc-

ing (NET-seq) can also obtain a nascent transcription profile with single-nucleotide resolution 
[82–84]. In NET-seq, nascent RNA was detected in the active site of RNAP by immunoprecipi-

tation of FLAG-tagged RNAP.

4.3. 4sU-seq and TT-seq

Here we would like to introduce two methods that can determine the kinetics of both 

transcription and degradation. These two technologies will advance the study of the 
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interplay between transcription and degradation. Rabani et al. combined pulse labeling 

of mRNA with 4sU and computational modeling to estimate RNA transcription and deg-

radation rates [85]. Newly transcribed RNA (4sU-labeled RNA) contains nascent RNA 
transcribed during the labeling pulse. When the labeling time is sufficiently short, the 

4sU-labeled RNA is still in the nucleus, reflecting the average transcription rate. A com-

putational model separates the RNA levels into transcription and degradation, and thus 

estimates the degradation rates from the experimental results of total RNA level and 

transcription rate.

The disadvantage of 4sU-seq is that it fails to map transcripts uniformly, because only a short 
3′ region of nascent transcripts is labeled with 4sU, and long pre-existing 5′ regions dominate 
the RNA-seq data. To overcome this 5′ bias, transient transcriptome sequencing (TT-seq) frag-

ments the 4sU-RNA before isolation. This fragmentation permits the immunoprecipitation 
of only newly transcribed 4sU-RNA fragments. Notably, TT-seq monitors RNA synthesis, 
whereas GRO-seq, PRO-seq, and NET-seq detect RNAs attached to RNAPs. Furthermore, 
TT-seq can determine transcription termination sites because TT-seq detected transient RNA 

downstream of the polyadenylation site.

Figure 5. Overview of the BRIC-seq protocol.
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5. Conclusion

The balance between mRNA transcription and decay determines the mRNA levels, which is 

a key aspect in the gene regulation. The study of interplay between transcription and decay is 

only the beginning. Our knowledge is still limited to the specific signaling pathway in yeast. 
As described in chapter 4, genome-wide analysis of transcription and decay will provide a 

comprehensive view of the interplay. Moreover, it will be critically important to verify the 
coupling of transcription and decay in mammalian system because mammalian cells contain 

numerous RBPs with defined roles in mRNA decay. It would be interesting to determine 
whether any of these RBPs also regulate transcription. It is a well-known fact that aberrant 

regulation of gene expression causes serious diseases. Therefore, studying the interplay 

between transcription and decay in mammalian cells will be beneficial for understanding 
diseases with defects in RNA expression levels.
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