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Arrangement of a Multi Stereo Visual Sensor 
System for a Human Activities Space 

Wlodek Kulesza, Jiandan Chen and Siamak Khatibi 
Blekinge Institute of Technology 

Sweden 

1. Introduction 

The requirements for autonomous physical services supporting people have become more 
important in recent years in activities such as taking care of the elderly people, doing the 
housework, and giving a comfortable living environment. For this reason, our research is 
aimed towards design and implementation of a high-performance autonomous, distributed 
vision information system, which would be able to understand human behaviours and 
living environment, as a temporary substitute for a qualified nurse and housekeeper. 
The human-centred computation is proposed in the MIT Oxygen Project, (MIT, 2008). 
Furthermore, Hashimoto presented the concept of intelligent space: Intelligent Space can be 
defined as space with functions that can provide appropriate services for human beings by capturing 
events in the space and by utilizing the information intelligently with computers and robots, 
(Hashimoto, 2003). The Intelligent Space was treated as a platform, which supported people’s 
information and physical needs. It was the interface for both the humans and robots. 
The proposed Intelligent Vision Agent System, IVAS, is a high-performance, autonomous, 
distributed vision and information processing system. Figure 1 illustrates the idea of the 
IVAS. It consists of multiple sensors and actuators for surveillance of the human activities 
space involving humans and their surrounding environment including robots and 
household appliances etc. The system not only gathers information, but also controls these 
sensors including their deployment and autonomous servo. But first of all it is able to extract 
required information from images for different applications, especially for three 
dimensional (3D) reconstruction. The 3D information from a real scene of target objects can 
be compared with a pattern in order to make decisions. Meanwhile the pattern may also be 
renewed by the inclusion of a learning phase. These features require the system to 
dynamically adjust cameras to get optimised 3D information. The intelligent agent consists 
of a knowledge database, with learning and decision making components that can be used 
to track, recognize and analyze the objects. 
Similar to the human eyes, the stereo vision observes the world from two different points of 
view. At least two images need to be fused to obtain a depth perception of the world. 
However due to the digital camera principle, the depth reconstruction accuracy is limited by 
the sensor pixel resolution. The spatial quantisation is illustrated by iso-disparity maps. The 
iso-disparity surfaces approach, when calculating the reconstruction uncertainty, has been 
discussed by Völpel and Theimer, (Völpel & Theimer, 1995). The shape of iso-disparity  
surfaces for general stereo configurations was studied by Pollefeys & Sinha (Pollefeys & 
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Fig. 1. Overview of an Intelligent Vision Agent System 

Sinha , 2004) and Chen et al. (Chen et al., 2007c). The proposed mathematical model of iso-
disparity map provides an efficient way of describing the shape of iso-disparity surfaces, 
and estimating the depth reconstruction uncertainty which is related to the stereo pair 
baseline length, the target distance to baseline, focal length, convergence angle and the pixel 
resolution. 
The depth spatial quantization uncertainty, caused by a discrete sensor is one of the factors 
which has the most influence on the depth reconstruction accuracy. This type of uncertainty 
cannot be decreased by the reduction of pixel size since the signal to noise ratio is also 
reduced and the sensitivity of the sensor itself is restricted. The selection of an optimal 
sensor pixel is discussed by Chen et al., (Chen et al., 2000). 
The sensor planning by re-annealing software was introduced by Mittal, (Mittal, 2006)  and 
the evaluation of the sensors’ configuration by a quality metric was presented in (Chen, 
2002). A linear programming method to optimize sensor placement based on binary 
optimization techniques has been developed, (Chakrabarty et al., 2002; Hörster & Lienhart, 
2006; Erdem & Sclaroff, 2006). This is a convenient tool for optimising the visual sensors’ 
configurations when observing target space such as human activities space. Chen at al. 
described the optimization program for the 3D reconstruction of a human activity space, 
(Chen et al., 2007a; Chen et al., 2007b). The papers introduce the method of optimizing 
stereo pair configurations under the required constraints of stereo pair baseline length, 
visibility, camera movement and depth reconstruction accuracy. 
The first part of this chapter introduces a mathematical geometry model which is used to 
analyze the iso-disparity surface. This model can be used to dynamically adjust the 
positions, poses and baseline lengths of multiple stereo pairs of cameras in 3D space in order 
to get sufficient visibility and accuracy for surveillance, tracking and 3D reconstruction. The 
depth reconstruction accuracy is quantitatively analyzed by the proposed model. The 
proposed iso-disparity mathematical model presents possibility of reliable control of the iso-
disparity curves’ shapes and intervals by applying the systems configuration and target 
properties.  
In the second part of this chapter, the key factors affecting the accuracy of 3D reconstruction 
are analysed. It shows that the convergence angle and target distance influence the depth 
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reconstruction accuracy most significantly. The depth accuracy constraints are implemented 
in the model to control the stereo pair’s baseline length, position and pose. It guarantees a 
certain accuracy in the 3D reconstruction. The reconstruction accuracy is verified by a cubic 
reconstruction method. The optimization is implemented by applying the camera, object 
and stereo pair constraints into the integer linear programming. 

2. Quantized depth reconstruction uncertainty 

Two images are needed which are fused to obtain a depth perception of the world. Any 
point in the world scene is captured in these two images as corresponding points which lie 
on the corresponding epipolar lines. There are two terms related to the depth reconstruction: 
disparity and quantized depth reconstruction uncertainty. Disparity in our approach refers 
to the displacement of corresponding points along the corresponding epipolar lines for a 
common scene point, (Pollefeys & Sinha, 2004). In the case where epipolar lines are 
horizontal, the disparity is measured directly from the difference between the co-ordinates 
of the corresponding points. The inverse projection of all possible image points with the 
same disparity will allow reconstruction of the iso-disparity surfaces in 3D space. Quantized 
depth reconstruction uncertainty is defined as the interval between discrete iso-disparity 
surfaces due to the discrete sensor. 
The iso-disparity surfaces of a stereo pair may be simulated by the use of synthetic methods. 
However for planning real-time multi sensor systems, such simulation is time consuming 
and a simple mathematical model of the iso-disparity surfaces is needed. 
There are two configurations for a stereo pair in common use. The first simple configuration 
is a parallel stereo pair in which the optical axes of the cameras are parallel. The cameras 
may have the same focal lengths, or their focal lengths may be different, e.g. to get better 
reconstruction accuracy of a target placed at the boundaries of the cameras’ field of view, 
FoV. The second common configuration is the convergence stereo pair, where the optical 
axes cross at a fixation point. The simple mathematical models of the iso-disparity map for 
these configurations are analyzed in the following subchapters. 

2.1 The iso-disparity map of a parallel stereo pair 

From the geometry of a parallel stereo pair, two cameras with parallel optical axes and 
different focal lengths, fL and fR for the left and right camera respectively, the iso-disparity 

plane for disparity nΔD can be defined as: 
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where B is the baseline length, n is an integer and ΔD is the disparity resolution. 
The planes are shown as the thin green lines in Figure 2(a) and Figure 2(c). All the iso-
disparity planes intersect with the xy-plane (the stereo pair baseline is a part of the x-axis), 
and converge on a straight line: 
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It is clear from equation (1) that when the focal lengths are equal fL=fR=f, z becomes independent 
of x and the iso-disparity planes are parallel to the xy-plane, see the green lines in Figure 2(b). 
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(a)   (b)    (c) 

Fig. 2. Iso-disparity planes for parallel stereo pairs from the synthetic simulation (the red 
lines) and a plot of the mathematical model from equation (1) (the green lines). The lines are 
plotted with steps of 10 pixels. (a) Cameras with different focal lengths, fL=3.5 cm, fR=3.0 cm 
for left and right camera respectively. The convergence point is (-195 cm, 0) on the xz-plane. 
(b) Cameras with the same focal length of 3.25 cm. (c) Cameras with different focal lengths 
fL=3.0 cm, and fR=3.5 cm for left and right cameras respectively, the convergence point is 
(195 cm, 0) on the xz-plane. 

From the inverse projection of the image points and by applying the triangulation method, 
using the Epipolar Geometry Toolbox, (Mariottini & Prattichizzo, 2005), we can get the 
synthetic iso-disparity surfaces. Figure 2 shows the synthetic disparity surfaces (the red 
lines) and the plots from (1) (the green lines). Here the baseline length B is 30 cm and the 

disparity resolution ΔD=0.04 cm, or ten sensor pixel lengths where p=0.004 cm. Figure 2(a) 
and Figure 2(c) are plotted for the parallel stereo pair with different focal lengths. The 
parallel iso-disparity planes for parallel stereo pairs with the same focal lengths are shown 
in Figure 2(b). The synthetic simulations and the results calculated from (1) give similar 
results. 

2.2 The iso-disparity surface of a convergent stereo pair 

Let us consider two cameras with a convergence angle αc, where αcL0=αcR0=αc for the left and 
right camera respectively, with the angles rotated inwards to achieve a fixation point FP0, as 

in Figure 3. If the point TP0 lies on the baseline’s axis of symmetry, then the angles, (ψL0, ψR0), 
are the angles between the visual lines and a line perpendicular to the baseline. The zero 
disparity circle is defined by the fixation point and the left and right camera position points 
CL and CR. This circle is known as the Vieth-Müller circle, and is a projection of the horopter, 
(Ogle, 1950). 
The iso-disparity surface is a cylinder whose cross section on the xz-plane is a conic section, 

which passes through the centers of projection CL and CR, and the point M∞. The point M∞  is 
a point imagined at infinity in both images, which can be obtained from the intersection of 
the normals to the optical axes, going through the projection centres, (Pollefeys &  Sinha , 

2004). It is possible to prove that for the case when αcL0=αcR0=αc, the conic is an ellipse. To 
determine the ellipse we need to estimate its five degrees of freedom. Three of these are 

determined by the points CL, CR and M∞. One of the two remaining degrees is related to the 

point TP0 with the disparity nΔD. The relationship between disparity nΔD and focal lengths 
fL and fR for the left and right cameras respectively, is the last required degree of freedom. If 

the disparity nΔD and focal lengths fL and fR are known, the unique ellipse can be 
determined. 
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Fig. 3. An example of the iso-disparity curves for the convergence stereo pair in the plane 
defined by the cameras optical axes. z0 is the distance from the fixation point to the baseline, 
f is the focal length. 

The iso-disparity surface of quantized disparity nΔD for a convergence stereo pair (CL, CR) 
with the same focal length f and same the convergence angles αcL0,=αcR0=αc, describes a 
cylinder, and the ellipses being cross sections of this cylinder on the xz-plane with centres in 
0e(x0e(n), z0e(n)): 
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where B is the baseline length and αc is the stereo convergence angle. 
The ellipse half-axis along the z-axis, b, depends on the discrete disparity nΔD, baseline 
length B, focal length f and convergence angle αc and is described as: 
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The ellipse half-axis along the x-axis, a, can be found from the relationship: 
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where ψc = ψL0 = ψR0. 
Figure 4 shows the iso-disparity surfaces for a stereo pair from the synthetic simulations 
(bold blue and red lines) and from theoretical model (4) (thin green and light blue lines) in 
3D space, in perspective view, Figure 4 (a), and top view, Figure 4 (b). The characteristics of 

cameras are: a baseline length B=50 cm, convergence angle, αc=4°, focal length f=2.5 cm and 

disparity resolution ΔD=0.04 cm. Both results match each other perfectly. 
 

  
                   (a)              (b) 

Fig. 4. The iso-disparity surfaces for a stereo pair from the synthetic model (bold blue and 
red lines) and from the mathematical model (thin green and light blue lines) with 

convergence angle, αc=4°, the baseline length B=40 cm, the focal lengths f=2.5 cm and 

disparity resolution ΔD=0.04 cm (a) perspective view, and (b) top view. 

2.3 Mapping of 2D uncertainty for a stereo pair configuration 

Since the gaps between iso-disparity surfaces represent the quantization uncertainty in 3D 
space, we can generate a 3D depth reconstruction uncertainty map of a particular stereo 
pair’s configuration using the iso-disparity surface geometry, equations (4))-(6). Also, it is 
possible to generate such a map in 2D on the optical axes plane. This map can be used to 
optimise the configuration of the stereo setup. Mapping of the 2D uncertainty for a stereo 
pair configuration can be done in the following three steps: 
- Firstly, the plane has to be covered by the stereo pair’s FoV, (Chen et al., 2007a). The 

area is sampled using small grids covered by the stereo pair. 
- Secondly, an iso-disparity curve on the optical axes plane should be calculated, passing 

through each grid point. Knowing that the curve will have a canonical shape then five 
points are needed. Two of these points can be the grid point and its symmetrical point, 
with respect to the symmetry axis of the baseline. The three others points are CL, CR and 

M∞. For a convergent stereo pair, the ellipse axes a and b can be found using the ellipse 
fitting algorithm, (Halif & Flusser, 1998). Then using equation (5), the two closest 

www.intechopen.com



Arrangement of a Multi Stereo Visual Sensor System for a Human Activities Space 

 

159 

ellipses with discrete disparity values nΔD and (n+1)ΔD respectively, can be found, 

where the disparity resolution ΔD is one sensor pixel length. 
- Finally, the depth reconstruction uncertainty can be calculated as the interval between 

the iso-disparity surfaces, with the disparity values, nΔD and (n+1)ΔD as the distance 
between the intersections of these two iso-disparity surfaces, and the line through the 

grid point and M∞. 

2.3.1 Simulation results 

The presented simulations were performed in MATLAB 7.0, and cover a rectangular area of 

(800 cm × 800 cm). This case study illustrates how depth reconstruction uncertainty in stereo 
coverage varies with the target distance z for a given stereo baseline length B, focal length f, 
and sensor pixel length p. The results are presented in Figure 5, where the cameras optical 
axes are in the xz-plane. The depth reconstruction uncertainty is specified by the positive 
y-axis of the co-ordinate. However, this uncertainty analysis shows only the area covered by 
the stereo pair’s FoV. To scale the uncertainty on the optical axes plane, a colour map is 
used. The lowest uncertainty is indicated by the blue colour and the highest uncertainty by 
the red colour. In order to increase the readability of the iso-disparity curves, the contour is 
plotted with ten pixel lengths disparity resolution. The map of the iso-disparity curves is 
 

 

Fig. 5. The depth reconstruction uncertainty map for a stereo pair’s FoV, where B=40 cm, 
f=3.5 cm and p=0.004 cm. 
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generated with baseline length B=40 cm, focal length f=3.5 cm and pixel length p=0.004 cm, 

stereo convergence angle, αc=4° and the FoV is approximately 54°. This case study proves 
that the quantized depth reconstruction uncertainty increases as the distance to the target 
increases. To show the quantized properties of depth reconstruction uncertainty, the map of 
the iso-disparity curves with suitable pixel length is shown in Figure 6. The figure shows 
only half of the FoV, with a cross section along the ellipses’ axes perpendicular to the 
baseline. The quantization step increases with the target distance. 
 

 

Fig. 6. The depth reconstruction uncertainty map for a stereo pair’s half FoV, where 
B=20 cm, f=3.5 cm and p=0.008 cm. 

Exact illustrations of how the depth reconstruction uncertainty varies with the baseline 
lengths, focal lengths, sensor pixel length and stereo convergence angle, are shown in Figure 
7 and Figure 8. Figure 7(a) shows that the relative depth reconstruction uncertainty, related 
to the target distance, decreases when the baseline length increases. The relative uncertainty 
decreases slowly for a baseline above about 40 cm. Its minimum value tends to be constantly 
between 0.5% and 1.5% for target distances of 200 cm and 800 cm respectively. At the same 
time, for a baseline of about 10 cm, the uncertainty varies between 10% and 2.5% for the 
respective target distances. 
The change of the relative depth reconstruction uncertainty versus the focal length is similar to 
that of the baseline length; see Figure 7(b). For a focal length of longer than 3.5 cm the increase 
of the uncertainty is relatively slow. Its minimum tends to be consistently between 1.5% and 
0.4% for target distances of 200 cm and 800 cm respectively. Meanwhile, for a focal length of 
1 cm, the uncertainty varies between about 9% and 2% for the respective target distances. 
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  (a)     (b) 

Fig. 7. The relative quantized depth uncertainty as function of the baseline length (a), focal 
length (b). The distance from the target to the camera is 800 cm, 600 cm, 400 cm and 200 cm, 
respectively. 

Furthermore, Figure 8(a) illustrates the linear relation of the relative uncertainty and the 

sensor pixel length. Within the range from 0.001 cm to 0.006 cm, the relative uncertainty 

varies from 0.2% to 3.5% and also depends on the target distance. Figure 8(b) shows that the 

stereo convergence angle has a slight influence on the uncertainty but this also depends on 

the target distance. 
 

 
(a)     (b) 

Fig. 8. The relative quantized depth uncertainty as a function of the sensor pixel length (a), 
and stereo convergence angle (b). The distance from the target to the camera is 800 cm, 
600 cm, 400 cm and 200 cm, respectively. 

Figure 9(a) and Figure 9(b) illustrate the variation of the uncertainty when both the focal 

length and the baseline length are changed for two different target distances, 200 cm and 

600 cm, respectively. The uncertainty increases significantly when the baseline length 

decreases below 40 cm, independent of the location of the target within the FoV. Also, a 

significant increase in the uncertainty is visible for a focal length below 3.5 cm. 
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(a)     (b) 

Fig. 9. The relative quantized depth uncertainty varies with both the focal length and the 
baseline length. The focal lengths are 2 cm, 3.5 cm and 5 cm, respectively, marked by 
different type of lines. The target is (a) 200 cm; (b) 600 cm far away from the camera. 

The relative accuracy is similar for a target located in different positions, but its absolute 
value is more significant for a target further from the stereo pair. In order to fulfil the 
reconstruction accuracy requirement for a distant target, the focal length or baseline has to 
be adjusted. A longer focal length can be used to compensate for a shorter baseline. And in 
general, the longer the baseline is, the more difficult the matching becomes. 

3. Arrangement of a multi stereo visual sensor system 

Human activity space, as a target space for 3D and depth reconstruction, provides 
constraints to the design and planning of the active stereo camera system. The sensor 
arrangement can be viewed as an extension to the well-known Art Galley Problem, AGP, 
(O’Rourke, 1987). The AGP describes a simple polygon, often with holes, and the task is to 
calculate the minimum number of guards necessary to cover a defined polygon. In our 
approach, a similar task is required to find the minimum number of stereo pair sensors 
needed to cover the target space. Here the human activities space as a target space is defined 
by a tetrahedron.  
This subchapter gives an overview of the theory for the multi stereo sensors arrangement in 
the intelligent vision system. In the (Chen et al., 2007a; Chen et al., 2007b), we suggested the 
camera constraints, which focused on the visibility to the target. The accuracy constraint is 
based on the estimation of quantized depth reconstruction accuracy, where a target object 
has the same target convergence angle. The iso-disparity geometry model gives a deep 
analysis of depth reconstruction accuracy. It analyzes the whole camera FoV. This can be 
used to dynamically adjust the position, poses and baselines length of multiple stereo pairs 
of cameras in order to get the desired accuracy. 
The planning algorithm proposed in the (Chen et al., 2007a; Chen et al., 2007b) works in 3D 
space. The approach dynamically adjusts the stereo pair baseline length according to the 
accuracy requirement and the target distance as a distance from the target position to stereo 
pair baseline. The minimal amount of stereo pairs to cover human activity space is solved by 
means of Integer Linear Programming, ILP, (Chakrabarty et al., 2002; Hörster & Lienhart, 
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2006; Berkelaar et al., 2005). The 3D reconstruction accuracy, which is ensured by an 
accuracy constraint, can be verified by a cubic reconstruction. 
The constraints of the stereo view optimization model can be defined from the environment, 
camera properties and human behaviour, which affect the process of identification and 
reconstruction of the target. 

3.1 Constraints for the optimization model 
The human activities space is modelled by a tetrahedron as shown in Figure 10. The normal 
of each tetrahedron’s upper triangle gives the orientation of that surface. If the visibility 
angle, θ, between the triangle normal and a line drawn from the centroid of the triangle to 
the camera position, increases then the image resolution decreases. In order to get a good 
image resolution, a visibility angle, θ, of less than the maximum visibility angle, θmax, is 
required which can be expressed as constrain: 

 maxθθ ≤  (7) 

The camera orientation should line up with the centroid of the triangle, thus bringing the 
target object to the centre of camera FoV and causing less lens distortion. The angle between 
the camera orientation and the line drawn from the camera position to the centroid of the 

triangle, ϕ, of less than the maximum angle ϕmax is required: 

 maxϕϕ ≤  (8) 

In order to follow the movement of the target object, a camera movement distance constraint 
can be applied. The next-view position for the camera should not be placed too far away from 
the previous one. This constraint, formulated as the camera maximum movement should be 
less than the maximum distance of camera movement which the system supported.  

 max),( DisStereoPairStereoPairDist currentnext ≤  (9) 

 

Fig. 10. Illustration of the human space modelled as a tetrahedron; θ - the visibility angle 

between the triangle normal c
f

and a line from the centroid of the triangle to the camera 

position; ϕ - the angle between the camera orientation c
f

 and a line from the camera 

position to the centroid of the triangle. 
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A fewer number of potential next-view positions for the cameras restricted by (9)) can 
simplify computation. 
The camera constraints are related to the camera FoV. The camera horizontal and vertical 

viewable angles, φh, φv, and a working distance, r, can be calculated from the camera 
attributes, see the spherical co-ordinate systems shown in Figure 11. In order to cover the 
target object feature points by the camera FoV, the following constraints must be fulfilled: 

rl ≤  and 

2/2/ hcohc φααφα +≤≤−
 

2/2/ vcovc φββφβ +≤≤−  

(10) 

where: l is the distance between the target position and camera’s position; αo, βo are 

respectively the azimuth and elevation of target; αc, βc are respectively the azimuth and 
elevation of the camera’s pose. 
 

 

Fig. 11. The spherical co-ordinates system and FoV of a camera where C is camera position 
and the example target point located at point T. 

Since stereo matching becomes more difficult when the baseline distance increases, the 
baseline length B has to be limited to the maximum stereo baseline length, Bmax: 

 max0 BB ≤<  (11) 

The depth reconstruction is one of major focus in this research project. The depth 
reconstruction accuracy improvement can be adjusted by the baseline length, (Mittal, 2006; 
Samson et al., 2006). This research introduces the concept of a depth accuracy factor, AF, 

which is a function of target convergence angle, ψ, and camera pose, αc. We construct the 
stereo coverage from the overlapping of two cameras’ FoVs. The overlapping FoVs are 
typically used to extract 3D information. The area of stereo coverage must cover all of the 
target objects. In the most common case, the cameras form a converging stereo pair. 
Cameras poses azimuths and baseline are shown in Figure 12. Cameras convergence angles, 

(αcl, αcr), are the angles of each camera rotated inwards from the parallel to achieve 
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convergence. The target convergence angles, (ψl, ψr), are the angles between the visual lines 

of each camera and the baseline perpendicular. From Figure 12, simplifying: ψ = ψl = ψr and 

αc =αcl =αcr, we obtain: 

 
ψtan2

B
Z =  (12) 

where B is a baseline length and Z is a target distance. 

 

Fig. 12. Model of stereo pair geometry; Z0 is the depth of the fixation point, ⏐dl-dr⏐is stereo 
disparity, f is focal length. 

The equation (12) can be written as: 
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In the case of parallel stereo or with the target close to the fixation point, the αc or (αc-ψ) 
varies by a small amount, and the equation (13) can be further simplified. The resolution of 

the target convergence angle, ψ, is related to a single pixel, p, in the image, thus the  relative 
depth error can be written as: 

f

p
AF

f

p

Z

Z

c

c ⋅=⋅
−

≈
Δ

)cos(sin

cos

ψαψ
α

 (14) 

where AF is the depth accuracy factor, f is a focal length, and the depth quantization error is 
assumed to be one pixel,  p.  
The depth error is proportional to the depth accuracy factor. In fact, since the depth 

accuracy factor varies more significantly with respect to the target convergence angle, ψ, 
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than to the camera’s pose, αc, the target convergence angle determines the depth accuracy 
factor. The accuracy constraint for a given p can be defined as: 

 conAFAF ≤  (15) 

where: AFcon is determined from the reconstruction accuracy requirements of the given 
application. 

3.2 Implementation of the camera arrangement 

The stereo pair arrangement consists of three stages: 
- Firstly, we find potential stereo pairs that satisfy stereo constraints by greedy algorithm 

from all potential cameras’ positions and poses.  
- Secondly, the integer linear programming is applied to minimize the total amount of 

stereo pairs subject to the visibility and baseline length constraints, depth accuracy 
constraints and camera movement constraints. The objective function minimizes the 
number of stereo pairs needed to cover all triangles in the target object model, and also 
ensures that the target object is covered by at least one stereo pair. 

- Finally, the 3D reconstruction accuracy can be verified by a cubic reconstruction 
simulated using a pair of rectified scene images. 

3.2.1 Greedy algorithm 

This algorithm gives a flexible way of organising cameras into stereo pairs, each potential 
camera to be included in a stereo pair may be chosen by an algorithm according to the stereo 
pair constraint. The first step of the algorithm is to sample the potential camera positions 

Cn(xcn,ycn,zcn) and poses ψn(αcn,βcn) of the camera state, ,,
k
C nn

Scamera ψ where k is the camera 

state index number. The target object, which must be covered, is modelled as a tetrahedron. 
In the next step, we calculate all of the potential camera positions and poses needed to cover 
each upward triangle of this model. Taking this, we combine every two camera states to be a 
potential stereo pair, Stereopairi, according to the stereo constraint (Chen et al., 2007a; Chen 
et al., 2007b). The algorithm is sufficiently flexible to add other constraints for stereo pair, 
e.g. the angle constraint between the cameras’ optical axes. Finally the algorithm removes 
the redundant potential stereo pairs. 

3.2.2 Integer linear programming 

This model assumes that one type of camera is used throughout, resulting in just one 
camera FoV being considered. The optimization of the amount of cameras with different 
FoVs can also be easily extended, by adding one more term for different FoVs. Since the 
stereo pairs have been found by the greedy algorithm, the integer linear programming can 
be applied to minimize the total stereo pairs subject to the coverage constraint (Hörster 
&Lienhart, 2006; Chakrabarty et al., 2002). 
A binary variable is calculated and stored in advance. The stereo visibility binary variable 
table Stereovisj,i  is defined by: 

 
,

1 if a  covers           

  triangle  of target object  model

0 otherwise                               

i

j i

Stereopair

Stereovis  j

⎧
⎪= ⎨
⎪
⎩

 (16) 
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which indicates each triangle j as the row j to be covered by the stereo pair i in column i, and 

sKi ≤≤1 , where Ks is the total number of stereo pairs. 

This objective function minimizes the number of stereo pairs needed to cover all triangles in 

the target object model, and also ensures that the target object is covered by at least one 

stereo pair: 

 ∑
=

sK

i

iS
1

min  (17) 

subject to 

 1,

1

≥×∑
=

ij

K

i

i StereovisS
s

,   32,1,for =j  (18) 

where the Si is the binary variable where a “1” indicates the stereo pair to be chosen. 

To ensure that only one camera is located at each position and has only one pose, the 

conflict binary variable table cp,i is also calculated in advance and defined by: 

 
,

1  if two pairs   and  share  the same  camera

with different orientations, where   

0 otherwise                                                  

p i

i p

c i p

⎧
⎪= ≠⎨
⎪
⎩

 (19) 

for i=1, 2, …, Ks, and p=1, 2, …, Ks. 
One more constraint is added into the model: 

 1,

1

≤×∑
=

ip

K

i

i cS
s

,   sK,, p ,21 for ⋅⋅⋅=  (20) 

The information on the optimal number of stereo pairs, and which pairs to use, are returned 
as vectors by the ILP model. 

3.2.3 Cubic reconstruction 

The rectification matrix is calculated directly from the perspective projection matrix, PPM, 

(Fusiello et al., 2000), and the rectification algorithm also gives two new PPMs, Pn1 and Pn2. 

The cubic reconstruction in 3D can be performed with a triangulation method directly from 

the rectified images, using Pn1, Pn2. The 3D reconstruction error, Δrec, for a single pixel error 

along a horizontal direction in the rectified image, has same value as the depth error and is 

given by: 

 

28

1

ˆ
8

1∑
=

−=Δ
i

ii MMrec  (21) 

where iM̂ gives the co-ordinates of the reconstruction point i in a cube of the rectified 

images and Mi  gives the real coordinates of the target point i in the cube. 
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3.3 The model validation 

The simulations were performed in MATLAB 7.0. The integer linear programs lpsove 

package, (Berkelaar et al., 2005), and the Epipolar Geometry Toolbox, (Mariottini & 

Prattichizzo, 2005), were used to minimise the number of cameras and transform the object 

position in 3D. The simulation environment consists of a rectangular room of 

8 m × 8 m × 3 m. The modelling of the human activities space as a tetrahedron requires three 

upward triangles; and each triangle must be visible to at least one pair of cameras. Each 

model is 2 m high and 1.2 m at the base edges. The cameras’ positions are restricted to the 

ceiling around the room, their potential positions sampled at 0.2 m intervals in the initial 

phase, and 0.1 m intervals for the next cameras viewing position; Dismax is taken 3 m. The 

camera’s pose is sampled at 12° intervals. The cameras have the same horizontal and vertical 

viewing angles, φh, φv, of 60° and have a working distance, r, of 7 m. The maximum visibility 

angle, θmax, (7)) and the angle, ϕmax, (8) are taken to be 70° and 10° respectively. The pixel size 

of our vision system, p, is 0.02 mm and the focal length, f, is 1.21 cm. The maximum stereo 

baseline length, Bmax,, is 1.5 m. The cubic centre is located at the centroid of the tetrahedron 

and each edge is 10 mm.  

This case study illustrates how the variable stereo baseline length, camera positions and 

poses vary according to the accuracy requirement and the target location. In order to 

illustrate the cameras’ positions and poses, the analysis considers the target model at four 

locations, 1, 2, 3 and 4, see Figure 13. The arrows indicate the optical axes of the cameras. 

 

 

Fig. 13. The stereo pair positions, poses and baselines with the depth accuracy factor AFcon = 
8, for the moving target. 
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The index numbers indicate the model locations and corresponding camera positions and 
poses calculated according to the maximum accuracy factor. The circles are the camera’s 
potential sample positions. The sample positions and intervals are changed according to the 
camera previous position with the constraint (9). In each position every upward triangular 
view is visible to at least one stereo pair. The algorithm proves that a set of two pairs is 
sufficient to cover the three triangle surfaces. The stereo baseline length changes 
dynamically according to the distance to the target. 
Figure 14 illustrates a case of four different values of AFcon applied to a target at the same 
position. The index number indicates the corresponding stereo pair according to AFcon. The 
stereo baseline lengths and reconstruction errors for the different accuracy factors are shown 
in Tabble 1. It proves that the baseline increases as AFcon becomes more restricted, and the 
reconstruction error is smaller. 
 

 

Fig. 14. The stereo pair positions and baseline lengths for the same target location vary 
according to the different accuracy. 
 

IN AFcon Ba Bb Δrec ΔZmax 

1 8 100 80 3.3 4.5 

2 11 70 60 4.5 6.2 

3 14 60 50 4.9 7.9 

4 17 50 40 5.2 9.7 

Table 1. The baseline lengths of two pairs and the reconstruction errors for different 
accuracy factors. IN: the index number; AFcon: the reconstruction accuracy requirement; Ba, 

Bb: baseline lengths for each pair, [cm]; Δrec: the maximum value reconstruction error of 

pairs, [cm]; ΔZmax: the theoretical maximum depth error, [cm]. 
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4. Conclusion 

The chapter focuses on depth reconstruction, the arrangement of multiple stereo sensors for 

human activities space, which are important issues of IVAS. The research work can be 

concluded by means of two terms: the uncertainty analysis and human factor handling for 

vision system. 

The analysis presented shows that the quantized depth reconstruction accuracy varies 

more significantly with respect to the target distance to baseline, baseline length and focal 

length than to the convergence angle. Small changes in stereo convergence angle do not 

overly affect the depth accuracy, especially when the target is placed centrally. On the 

other hand it can have a great impact on the shape of the iso-disparity curves. By using 

the systems configuration and target properties, we can get reliable control over the 

shapes and intervals of the iso-disparity curves from the proposed iso-disparity 

mathematical model. 

Modeling the target object as a tetrahedron gives a convenient way to extract the 

orientation of each surface and guarantee a good observability. Modelling the camera 

FoV using spherical co-ordinates simplifies the model and constraints, which speeds up 

computations. Formulating the stereo pairs with the greedy algorithm using stereo 

constraints is a simple way to get all possible stereo pairs and then minimize the amount 

of stereo pairs by means of the stereo view ILP model. It is possible to extend this 

algorithm to dynamic cameras for tracking humans. In order to follow target objects 

movement, the camera movement distance constraints can be applied (Chen et 

al., 2007a). 

The analysis of key factors which affect the accuracy of 3D reconstruction shows that the 

convergence angle and target distance are the most significant. The depth accuracy 

constraint may be sufficient to control the stereo pair’s baseline length, position and pose. It 

is an effective method for system decision making and is easy to implement. From the 

simulation results, it is readily noticeable that the cubic reconstruction is useful in verifying 

the reconstruction accuracy and the proposed method of baseline length control has been 

proven. The two stages sampling of the cameras position has the flexibility to adjust the 

intervals and position ranges, and speed up computation.  
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