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A Stereo Vision Framework for 3-D  
Underwater Mosaicking 

A. Leone, G. Diraco and C. Distante 
Institute for Microelectronics and Microsystems, National Research Council 

Lecce (Italy) 

1. Introduction 

Research on automatic mosaic creation for underwater applications has been investigated in 
the last fifteen years. The reconstruction of complex 3-D structures is useful in several 
underwater applications; in particular, 3-D mosaicking constitutes an important tool for 
seabed exploration, improving visualization and navigation in the underwater medium. 
Moreover, underwater measurement systems have been used extensively in marine research 
to estimate the size of interesting objects such as organisms and structures. In addition, 
visual sensing can be an enabling technology for Autonomous Underwater Vehicles 
(AUVs), which have the critical requirement to maintain an ongoing representation of its 
relative position with respect to an environmental representation. In these contexts, a better 
perception of the underwater environment can be achieved by using image processing 
algorithms for a suitable representation of the seabed. In optic sensing field and underwater 
environment, shape acquisition concerns with sensing activity including Shape from 
Stereopsis, Shape from Photometric Stereo, Shape from Motion and Active Stereo. Main 
aspects about Shape from Stereopsis will be presented focusing the attention on 
synchronism in the acquisition at hardware/software levels. The usage of triggered 
expensive equipments in synchronized stereo sequence acquisitions could present some 
technical limitations, such as low frame rate and poor images resolution, demoting the 
quality of the 3-D mosaic. For the previous reasons, an ad-hoc algorithmic solution will be 
detailed to limit asynchronism problems due to time gap (delay) in stereo frames 
acquisition, when low-cost non-professional (non-triggered) hardware is used. To achieve a 
metric reconstruction, the presented framework requires a calibration phase whereas a new 
stereo frame-selection scheme based on the Epipolar Gap Evaluation (EGE) will be 
discussed to overcome asynchronisms. Normally, dense depth maps obtained by evaluating 
dense disparity maps allow the construction of high quality 3-D mosaics. A detailed 
discussion about methodologies for dense stereo matching will be addressed to handle the 
ill-posed stereo correspondence problem. A joined use of local (respectively global) 
matching methods and imaging enhancement algorithms will be considered to identify an 
appropriate amount of right correspondences in severe underwater conditions 
(backscattering, brightness constancy violation condition). The chapter treats an important 
aspect of the 3-D mosaic reconstruction as the registration by ego-motion and camera pose 
estimation. Classical solutions (i.e. Iterative Closest Point algorithm) and new trend in the 
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registration activity (Zhang’s Epiflow algorithm) will be discussed emphasizing application 
limits and how the computational cost grows in size with the amount of considered features. 
A new registration approach will be presented conjugating Epiflow and ICP, under a 
simplified motion model.  

2. Related works for underwater 3-D reconstruction 

In the field of 3-D reconstruction, terrestrial applications have encouraged extensive work 
over the last three decades; on the other hand a limited amount of underwater applications 
have been explored primarily for mapping and positioning. The first step of the structure 
reconstruction is the shape acquisition that can be addressed in different ways, as 
taxonomically shown in Fig.1. In underwater research the shape acquisition is mainly 
performed with expensive optical sensing methods (Negahdaripour et al., 2002; Khamene et 
al., 2001) and non-optical sensing methods, working often in conjunction (these methods are 
underlined in Fig.1). Shape from X is a generic name for techniques that extract shape from 
images. Normally, in underwater environment the optical sensing techniques include Shape 
from Stereopsis (Zhang, 2005), Shape from Photometric Stereo (Negahdaripour et al., 2002), 
Shape from Motion (Khamene et al., 2001) and Active Stereo (Narasimhan et al., 2005). In 
the field of non-optic underwater sensing, acoustic cameras are employed for 3-D mosaic 
reconstruction (Castellani et al., 2004), whereas both acoustic and optic cameras are often 
used providing scene information that cannot be recovered from each sensor alone. Three-
dimensional scene structures captured by a camera may be detected and acquired observing 
the apparent motion of brightness patterns from images. The primary visual motion cue 
useful for shape acquisition is the perceived movement of brightness patterns, known as 
optical flow (Horn, 1986) which is an approximation of the 3-D world motion field. The 3-D 
reconstruction from differential motion cues requires accurate optical flow computation. In 
 

 

Fig. 1. Short taxonomy of shape acquisition methods. 
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the last fifteen years, theoretical developments in visual motion studies have established a 
unified framework for the treatment of the Structure from Motion (SFM) and Structure form 
Stereo  (SFS)  problems  (Faugeras,  1992),  also  known  as  3-D  Reconstruction  from  Multiple 
Views.  3-D reconstruction from multiple views involves extracting target features from one 
image, matching and tracking these features across two or more images, and using 
triangulation to determine the position of the 3-D target points relative to the camera. Visual 
motion methods have been well-studied, requiring densely-sampled image sequences. 
Instead, the trade-off in stereo vision is between the stereo correspondence problem and a 
more accurate and robust 3-D reconstruction (Scharstein & Szeliski, 2002). A large amount of 
works has addressed the correspondence problem, attempting to overcome the various 
difficulties of the large-displacement correspondence problem: occlusions, large rotations 
and disparities, photometric and projective distortions (Lucas & Kanade, 1981; Tomasi & 
Kanade, 1991). The problem of outliers has been solved by the deployment of robust 
estimation methods (Zhang et al., 1995). The motion and structure may be estimate by using 
several recursive schemes. Extended Kalman Filter is the most popular approach for jointly 
estimation of motion and structure with satisfactory results. However, the computation cost 
of this approach grows cubically with the amount of features, causing a great bottleneck for 
real-time performance. Stereo matching is one of the most active research areas in computer 
vision. Stereo matching is a hard problem due to ambiguity in un-textured and occluded 
areas. Only dominant features, such as points of interest, can be matched reliably. This 
motivates the development of progressive approaches (Szeliski & Scharstein, 2002). The 
reduced local disparity in search range makes progressive approaches very efficient in 
computation and robust. However, the seed initialization remains a computational 
bottleneck, although, robustness can be improved by enforcing the left-right symmetry 
constraint. Recently, Graph Cuts and Belief Propagation furnish combinatorial optimization 
frameworks in which the performance for global stereo algorithms are considerably 
improved according to an evaluation framework applied to a standard reference stereo data 
set (Scharstein & Szeliski, 2002). However, the underlying brightness constancy assumption 
of combinatorial optimization methods severely limits the range of their applications. The 
earliest attempts for 3-D reconstruction use methods based on volume intersection, as Shape 
from Silhouette (Laurentini, 1994). Traditional methods, such as stereo, handle large 
visibility changes between images by solving the correspondence problem between images. 
The most prominent approaches in 3-D reconstruction are the Voxel Coloring (Slabaugh et 
al., 2001) and the Space Carving (Kutulakos & Seitz, 1998). These approaches use the color 
consistency to distinguish surface points from other points in a scene. Cameras with an un-
occluded view of a non-surface point see surfaces beyond the point, and hence inconsistent 
colors, in the direction of the point. Initially, the environment is represented as a discretized 
set of voxels, and then the algorithm is applied to color the voxels that are part of a surface 
in the scene. Another promising approach in 3-D reconstruction is the Marching Cubes 
algorithm for rendering iso-surfaces from volumetric scan data (Lorenson, 1987). The 
algorithm produces a triangle mesh surface representation by connecting the patches from 
all cubes on the iso-surface boundary. In underwater scenario, research is directed at 
exploring the use of vision, potentially in conjunction of other sensors, to automatically 
control unmanned submersibles, including positioning and navigation by utilizing a photo-
mosaic as a two-dimensional visual map. Recent activities combine video imagery taken 
from multiple views of a scene to derive size and depth measurements and 3-D 
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reconstructions. These activities support (semi-) autonomous or operator-supervised 
missions pertaining to automatic vision guided station keeping, location finding and 
navigation, survey and mapping, trajectory following and online reconstruction of a 
composite image, search and inspection of subsea structures. These tasks require an accurate 
estimation of camera position, together with fast, accurate correspondence determination, 
particularly for real-time registration. Common sources of error include non-planar seafloor, 
moving objects, illumination variations, transect superposition, positioning drift. A number 
of studies over the last several years have also addressed the 3-D reconstruction for various 
applications. Khamene and Negahdaripour incorporate cues from stereo, motion and 
shading flow for 3-D reconstruction in underwater (Khamene & Negahdaripour, 2003); 
Majidi and Negahdaripour suggest the use of 3-D reconstruction for global alignment of 3-D 
sensor positions (Madjidi & Negahdaripour, 2005); Nicosevici et al introduce 3-D 
reconstruction from motion video and representation of the surface topography by 
piecewise planar surfaces for the construction of orthomosaics (Nicosevici et al., 2005). 
Hogue et al have developed a stereo vision-inertial sensing device deployed to reconstruct 
complex 3-D structures in both the aquatic and terrestrial domains (Hogue et al., 2007). The 
sensor temporally combines 3D information, obtained using stereo vision algorithms with a 
3 DOF inertial sensor. The resulting point cloud model is then converted to a volumetric 
representation and a textured polygonal mesh is extracted using the Marching Cubes 
algorithm (Lorenson, 1987). 

3. Algorithmic framework 

3.1 Overview 
This section discusses about the framework for 3-D mosaic reconstruction of a seabed based 
on the optic sensing technique known as Shape from Stereopsis. In Shape from Stereopsis two 
stereo frames are acquired at the same time, so that normally triggered frame grabber (or 
other techniques that guarantee synchronism in stereo sequence) is required. However, 
synchronized stereo sequences use expensive equipments and present some technical 
limitations, such as low frame rate and poor time resolution. For the previous reasons the 
attention is focused in stereo reconstruction and 3-D structures estimation by using 
unsynchronized cameras. Svedman proposes to acquire three images sequentially from the 
left, right, and again from the left camera. A virtual image from the left camera 
synchronized with the right image is created by interpolating matching interesting points in 
the two left images (Svedman et al., 2005). Others approaches estimate the time difference 
between views, synthesizing synchronous image pairs for dense depth information 
estimation. The depth estimation is based on stereo correspondence evaluation. Depth and 
ego-motion estimation leads to the ill-posed stereo correspondence problem. Although for 
egomotion estimation a sparse set of correspondence points is sufficient, depth estimation 
requires dense correspondences. In underwater environment normalized cross-correlation is 
generally employed for the robustness to brightness gain. In dense stereo matching, the best 
performing algorithms use either the Belief Propagation (Sun et al., 2002) or Graph Cuts 
(Boykov et al., 2001). However, these algorithms are tested on standard data sets under 
restricted conditions and/or controlled environments (small disparity range, image 
sequences that satisfy the brightness constancy assumption). The brightness constancy 
model is often violated, e.g. for most images in the JISCT collection (Bolles, 1993). Zhang 
proposes a revised data cost to improve global stereo matching algorithms (Graph Cuts, 
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Belief Propagation) in underwater environment (Zhang, 2005). 3-D mosaic construction 
requires two-frames registration and then ego-motion estimation. Iterative Closest Point 
(ICP) algorithm is used for 3-D registration (Besl & McKay, 1992). The epiflow framework 
proposed by Zhang is based on the integration of motion and stereo epipolar geometries for 
ego-motion tracking (Zhang, 2005). Summarizing, an inexpensive asynchronous stereo 
framework for 3-D seabed reconstruction and orthomosaic is presented. In order to achieve 
a metric reconstruction, a calibration phase is necessary, so that the asynchronism in stereo 
sequence can be an issue for proper calibration. To overcome this problem a new stereo 
frame selection scheme based on the Epipolar Gap Evaluation (EGE) is used (Section 5). In 
order to handle the stereo correspondence problem, local and global matching methods are 
evaluated in Section 6, with adoption of a suitable similarity measure (ZNCC) and image 
enhancement technique (CLAHE). Finally, in Section 7 the registration approach is 
presented conjugating Epiflow and ICP schemes under a simplified motion model. 

3.2 Framework architecture 
The main building blocks of 3-D seabed mosaic reconstruction system are the following: (a) 
shape acquisition, (b) depth estimation and (c) mosaic registration and rendering. In Fig. 2 
the overall system architecture is shown. The block 1 deals with shape acquisition, 
asynchronous stereo sequence calibration by using the Epipolar Gap Evaluation (EGE) 
 

 

Fig. 2. Overall framework architecture. 
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scheme, lens distortion correction and histogram equalization. Depth estimation is 
accomplished in blocks 2 and 3: the former regards the disparity map estimation and the 
latter computes the subsequent depth map by using geometric triangulation. As described 
in the following, local and global methods are used in stereo disparity calculation. The block 
4 involves fusion and registration of 3-D reconstructions, through system ego-motion 
estimation, pre-alignment and ICP registration refinement. Finally, triangular Delaunay 
interpolation and rendering take place in block 5. 

4. Structure from stereopsis in underwater environment  

4.1 Overview 

Starting from two different views of the same scene, it is possible to obtain a 3-D structure 

reconstruction. For simplicity, the discussion is restricted to scenes consisting of points only; 

further information about multi-view reconstruction methods can be found in (Hartley & 

Zisserman, 2003). The input for 3-D reconstruction phase is a set of correspondences in left 

and right camera images. Let the camera matrices L
P  and R

P , that describe the 

correspondences R
i

L
i xx ↔  in terms of L

ii
L

xX =P  and R
ii

R
xX =P , where the point iX  projects 

to the two given data points L
ix  and R

ix  (see Fig. 3). Unfortunately, neither the projection 

matrices L
P  and R

P , nor the points iX  and R
i

L
i xx ↔  are known a priori. The camera 

matrices estimation is part of the calibration activity (Subsection 5.2), whereas the 

correspondences estimation R
i

L
i xx ↔  deals with the stereo correspondence problem 

(Subsection 6.2 and 6.3), and the estimation of point iX  is the first step for 3-D 

reconstruction by using geometric triangulation (Subsection 6.4). 
 

 

Fig. 3. Epipolar geometry: the optic rays passing through the Xi point and CL , CR optical 

centers intersect the left and right image planes in ( L
ix , R

ix ) image points, respectively.  

The main tool in 3-D reconstruction from two views is the Fundamental Matrix (Faugeras, 

1992), which represents geometrically the constraint for the projected image points ( L
ix , R

ix ) 

of the same 3-D point iX . This constraint, also called Epipolar Constraint, arises from the 

coplanarity of the camera centers, the images points ( L
ix , R

ix ) and the space point iX . Given 

the Fundamental Matrix F, each pair of matching points ( L
ix , R

ix ) must satisfy the following 

relation: 
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 ( ) 0=L
i

TR
i xx F  (1) 

with F a 3×3 matrix of rank 2. Furthermore, Eq.1 can be rewritten as: 

 ( ) 0=R
i

TR
i lx  (2) 

where 

 L
i

R
i xl F=  (3) 

is the Epipolar Line associated with the left point L
ix . In other words, the Eq.2 states that the 

point R
ix  belongs to the epipolar line R

il . The discussed concepts are summarized in Fig. 3. 

Points eL and eR are the epipoles, i.e. the points of intersection of the baseline (the line joining 

the camera centers) with the image planes. A 3-D projective reconstruction can be obtained 

from the knowledge of the Fundamental Matrix alone, so that the pair of camera matrices 

can be determined up to a 3-D projective ambiguity and the Fundamental Matrix can be 

estimated directly from a set of point correspondences. Instead, if the camera matrices are 

known, by means of calibration activity, a metric reconstruction is possible. Therefore, a 

reliable calibration activity is needed since a 3-D metric reconstruction of the seabed surface 

is desired. The calibration activity can be affected by three kind of error: synchronization 

error, algorithm error and matching error. Algorithm error and marker matching error deal 

with the specific calibration procedure, whereas synchronization error relates the 

synchronism in stereo frames. The synchronization error can be minimized by computing 

calibration matrices for each stereo pair in which calibration pattern is viewed and, then, by 

evaluating the Epipolar Gap (EG). Let a pair of matching points L
ix  and R

ix , the Epipolar Gap 

is defined as the Euclidean distance between one of these points (i.e. R
ix ) and the epipolar 

line associated with the other one, as follow: 

 ( )R
i

R
i lx ,distEG i =  (4) 

If L
ix  and R

ix  matches exactly, Eq.2 is satisfied and then EGi=0; otherwise EGi provides a 

measure (the Euclidean distance) for the epipolar gap between L
ix  and R

ix . The calibration 

activity is realized by a careful selection of a stereo pair from the video sequence in which 

the calibration pattern is acquired. Since there are many stereo pairs in which the calibration 

pattern is acquired, the Epipolar Gap Evaluation (EGE) is used as selection criterion. The 

selection of calibration stereo pairs is motivated by the asynchronism of the acquisition 

system based on a non-triggered frame grabber. Aim of this step is to minimize the 

acquisition time distance between the left and the right frame in the stereo pair, selecting a 

stereo pair affected by minimum time difference. The calibration frame selection requires a 

large amount of calibration parameters (camera matrices), therefore a calibration pattern (an 

object with known metric measures) must be employed and detected in the acquired video 

sequence. In the next section, a calibration object (its marker points imprinted on pattern) 

detection from video sequence is discussed. 
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4.2 Metric calibration 
4.2.1 Pattern detection 
A calibration object can be acquired to provide metric correspondences between points in 
the image coordinates and points in real world coordinates. Generally, an accurate camera 
coordinate system-based positioning of the calibration object is hard, especially in 
underwater environment. Hence, the relationship between target and camera coordinate 
systems needs to be recovered from reliable correspondence estimation. Several camera 
calibration methods employing 2-D and 3-D calibration targets were proposed in (Tsai, 1987; 
Heikkia & Solven, 1996). Calibration algorithms use an object on which a square checker 
pattern with a known size is printed. In this work a pair of still images of 3-D checkerboard 
is required, according to the method proposed in (Tsai, 1987). Normally, in underwater 
applications the checkerboard is arranged on the sea floor and the stereo acquisition system 
moves around during calibration activity (see Fig. 4.b), in contrast with the ideal calibration 
conditions in which both checkerboard and stereo acquisition system are more likely to be 
fixed (see Fig. 4.a). The corners of the checker pattern are used as control points for the  
camera calibration algorithm (see Fig. 5.a). Bakstein examines several pattern  geometries  to 
 

 
(a)                                                             (b) 

 
(c) 

Fig. 4. a) Ideal acquisition conditions for proper calibration; b) Real calibration conditions: the 
system moves with velocity v; c) Stereo acquisition timing at 25 fps. Dashed lines denote ideal 
acquisition time instants, while dots denote effective left/right acquisition time instants. 
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derive the control points for camera calibration by using an automated thresholding 
strategy, so that the checker pattern is chosen for the very low sensitivity by thresholding 
errors (Bakstein, 1999). Furthermore, a black-and-white checker pattern provides very good 
contrast and size of the squares could be customized to the object distance for better 
perception. Asynchronism in stereo acquisition is a problem in the calibration activity, since 
the epipolar geometry constraint isn’t satisfied. This aspect is further explained in Fig.4.c. A 
25 fps acquisition system acquires two calibration checkerboard images, but due to 
asynchronism the effective acquisition time instants (represented by dots in figure) lay 
around the ideal ones (represented by dashed lines). Unlike others techniques based on 
view synthesis or time estimation between views, the presented approach tries to solve this 
problem making only use of calibration parameters encoded in camera matrices. For a 
generic acquisition system, the calibration error is defined as: 

 ε  = synε + calε + matchε , (5) 

 
(a)                                      (b)                                    (c)                                    (d) 

Fig. 5. Calibration object: a) Original image; b) Segmented image; c) Pattern’s rectangles; d) 
Centroids. 

where synε  is the synchronization error, calε  is the calibration algorithm error and matchε  is 

the error affected by calibration pattern points selection. The calibration error minimization 
takes place by evaluating the epipolar gap for each stereo pairs in which calibration pattern 
is acquired. The epipolar gap estimation is more accurate as greater amount of calibration 
pattern images is available. This calibration method detects the calibration object in a 
rotation independent way  and  it  localizes checkerboard  square  corners  corresponding  to 
calibration target ones by using line-fitting and label-sorting strategies. In order to estimate 
intrinsic and extrinsic cameras parameters, checkerboard square vertexes must be detected 
in acquired images and matched with corresponding checkerboard square vertexes in real 
calibration target. Standard corner detection approaches (Harris & Stephens, 1988) does not 
give satisfactory results by detecting checkerboard square vertexes, since underwater 
images present poor quality. To overcome the problem, a projective-geometric approach is 
investigated, according to the following discussion. Preliminarily, the calibration target is 
segmented-out (see Fig.5) from undistorted image (Fig.5.a) by using well-known 
morphological operations (such as connected components for small object removing and 
thresholding binaryzation). Once  the  pattern  is  detected  in  the  image,  the  checkerboard 
square vertexes are identified through a line-fitting approach as explained in the following. 
As well-known, image plane projection preserves the intersection property. Hence in each 
image the pattern target appears to have squares aligned with the eight non-intersecting 
lines Lq (see Fig.6.a) and with four non-intersecting lines Lt for each pattern side (see Fig.6.b) 
due to prospective projection. The previous observation provides a scheme for labeling and 
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(a) 

 
(b) 

Fig. 6. a) projection of 8 non intersecting lines on image plane; b) projection of 4 non 
intersecting lines for each side on image plane. 

sorting the centroids as shown in Fig. 7.a. At each iteration the line passing through 

centroids P1 and Pi is considered as the reference line r, where the P1 is the outer centroid 

with the lowest abscissa. Let L be a list containing ( )O
j

r
j ddj ,,  triples where j is the centroid 

label, r
jd  is the Euclidean distance of Pj from line r, and O

jd is the Euclidean distance of Pj 

from axes origin O. Firstly, centroids are sorted by distance r
jd  producing a new list L’ in 

which collinear centroids are grouped. Each group of centroids in L’ is newly sorted by 

distance from the axes origin. The loop exit test is based on the evaluation of errors Eθ and 

Ed. As shown in Fig.7.c, Eθ measures the collinearity along Lq as a maximum shifting from 

average angular coefficient: 

 
minmax32,...,1

max
θθ
θθ

θ −
−

=
=

i

i
E , (6) 

Experimentally, Eθ <0.7 guarantees a satisfactory collinarity along Lq lines. Instead, Ed 
measures the maximum distance of middle centroids from line passing through outers 
centroids. A maximum value of 2 pixel for Ed guarantees a good collinearity along Lt lines. 
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Fig. 7. a) Centroid labels mapping and sorting criterion; b) Test to evaluate centroid 
collinearity with LT and LQ lines. 

Centroid labels are sorted out by evaluating collinearity and distance from the reference 

line, according to the pseudocode provided in Tab. 1. The goal of the next step is to locate 

the four vertexes for each labelled and sorted checker square of the calibration pattern. 

Therefore, for each checkerboard square Northern, Southern, Eastern and Western points 

are located as intersection of square borders with the two estimated sets of lines Lq and Lt 

estimated in the previous step (Fig.8.a,b). 
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(a)                                                                                 (b) 

      

LW

LN

LS

LELW

LN

LS

LE

 
(c)                                                                               (d) 

Fig. 8. a) Overall viewing of intersections; b) Single checker square intersections; c) LN, LS, LE, 
LW lines are estimated by fitting of N, S, E, W points respectively in each pattern side; d) 
Square vertexes obtained by LN, LS, LE, LW lines intersection. 

Fig. 9. The result of the calibration object detection algorithm: all square vertexes are labelled 
and ordered coherently with calibration object marker points. 
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For i = 1 to 32 (amount of checkerboard squares) 
r is the line passing through points P1 and Pi 

( ) ( )OPdistdrPdistdj j
O
jj

r
j ,,,:32,...,1 ===∀  

( ){ }O
j

r
j ddjjL ,,|32,...,1==  

L’ = Sort (L) with respect r

jd  

L’’ = Sort (L’) with respect O

jd  

if (Eθ < 0.7 and Ed < 2) exit loop 

next i 

Table 1. Pseudocode for centroids labeling algorithm. 

Once N, E, S, W points are located, the lines LN, LE, LS, LW can be estimated through line 
fitting as represented in Fig.8.c. LN, LS, LE, LW lines are estimated by fitting of N, S, E, W 
points respectively in each pattern side. Finally, for each checker square the four vertexes 
are obtained by lines intersection as LN∩LW, LN∩ LE, LS∩ LW, LS∩LE (see Fig.8.d). The result of 
the calibration object detection algorithm is shown in Fig.9, where all square vertexes are 
labelled and ordered in image coherently with the object marker points of the calibration 
pattern in real world coordinates. 

4.2.2 Epipolar gap evaluation 
The calibration activity receives a careful selection of a stereo pair from the video sequence 
in which the calibration pattern is acquired. The selection of calibration stereo pairs is 
motivated by the asynchronism of the acquisition system based on a non-triggered frame 
grabber. Since there are many stereo pairs showing the calibration pattern, the Epipolar Gap 
Evaluation (EGE) is used as a selection criterion. Aim of this step is to minimize the 
acquisition time distance between the left and the right frame in the stereo pair; the purpose 
is to select a stereo pair affected by minimum time difference (Fig. 4.c). The selection 
criterion can be schematized with two sequential activities such as: the Calibration Matrices 
Estimation and the Epipolar Gap Evaluation. The scheme is depicted in Fig.10.a. The first step 
receives as input the h-th stereo frame pair, in which the calibration pattern is acquired, 
providing the corresponding calibration matrices as output, according to Tsai’s calibration 
method. The second block receives as input the calibration matrices from the previous block 
and the stereo frame pair in which the seabed surface under reconstruction is acquired. The 
EGE provides the calibration matrices that minimize the Epipolar Gap on the overall 
reconstructing frames set. In EGE, a sparse set of stereo matches 

 { } { }R
,

R
1,

L
,

L
1,

RL ,,,,
kk nkknkkkk xxxx …… ×=×MM ,     RL

kkkn MM ==  (7) 

is computed for the k-th stereo pair ( )R
k

L
k II , . Hence, each set RL

kk MM ×  is compared with the 

Fundamental Matrix Fh for frame rejection purpose. The frame rejection is based on the 
Maximum Epipolar Gap (MEG) evaluated as: 

 { }h
jk

nj
hk

k

,
,,1

, EGmaxMEG
…=

=  (8) 

where h
jk ,EG  is the epipolar gap defined in Eq.4 and here generalized as follow: 
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( )R
hjk

R
k

h
k,j lx ,,,distEG =  

L
jkh

R
hjk xl ,,, F= , rk ,,1…=∀ , knj ,,1…=∀ , sh ,,1…=∀ . 

(9) 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. a) Block scheme for the calibration frames selection criterion based on the Epipolar 
Gap Evaluation. b) Epipolar gap evaluated in 4 points ; c) Experimental result. The MEG is 
evaluated within calibration sequence. The optimal value u in Eq.11 is achieved for frame h 
= 1504 with θ ≈ 1 pixel. 
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Thus, MEG is used as a filtering rejection stereo pairs for which the corresponding value 
exceeds a prefixed threshold. If the amount of rejected couples is given by: 

 { }θ>== khh rkN ,MEG|,,1…  (10) 

then, the chosen calibration pairs will be ( )RL , uu PP  with 

 { }h
sh
Nu

,,1
minarg
…=

= . (11) 

5. Seabed reconstruction 

5.1 Overview 

Stereo reconstruction is based on the epipolar geometry as discussed in Section 5.1 and 

illustrated in Fig. 3. Let the camera matrices PL and PR (two 4×4 projection matrices in 

homogeneous coordinates) and ( L
ix , R

ix ) two corresponding points in the left-right images, 

the epipolar constraint in Eq.1 must be satisfied. The constraint may be interpreted 

geometrically in terms of the rays in space corresponding to the two image points L
ix  and 

R
ix ; in particular each point lies on the epipolar line of the other point according to Eq.2 and 

Eq.3. Referring to Fig. 3 this means that the two rays 
LiCX  and 

RiCX  back-projected from 

image points L
ix  and R

ix  lie in a common epipolar plane passing through the two camera 

centres LC  and RC . Since the two rays lie in a plane, they will intersect in the 3-D point iX  

related to the points L
ix  and R

ix  through cameras projections. iX  can be determined as 

intersection of the two rays back-projected from corresponding points L
ix  and R

ix  by using a 

stable triangulation method (Hartley & Zisserman, 2003). Unfortunately, these 

corresponding points are not known a-priori leading to the Stereo Correspondence Problem, so 

that, given the point L
ix , the problem is to determine another point R

ix  such as these two 

points are the projections of the same 3-D point onto the left and the right image plane, 

respectively. Epipolar constraint allows to simplify the matching algorithmic complexity by 

reducing the searching area close to the epipolar lines. Further algorithmic simplifications 

are possible by means of Epipolar Rectification process, that is, the calculation of an 

appropriate projective transformation producing as output a stereo image pair in which the 

epipolar lines are transformed to lines parallel with the x-axis in the image plane. 

Rectification allows to perform stereo matching along horizontal scan lines. In this situation, 

the horizontal offset between corresponding image points R
i

L
ii xxd −=  is referred as 

disparity. Stereo correspondences are estimated by using matching algorithms that received 

rectified stereo image pairs in input and provide a dense disparity map as output. The 

disparity map is a range image in which each pixel describes the disparity value estimated 

respect to a reference image. Given a left disparity map represented with a 256 grey levels, 

each right matching point is: 

 min
256

d
p

xx iL
i

R
i −Δ−=  (12) 

where Δ is the disparity range, mind is the minimum disparity value, and ip  is the disparity 

map value corresponding to the R
ix  point (in 256 gray levels). In this framework, for stereo 
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disparity maps calculation local and global methods are explored. In both cases, the major 

difficulties are related to the underlying assumption of brightness constancy in the stereo 

algorithms, systematically violated in underwater environment (Bolles et al., 1993). 

5.2 Stereo correspondences: local methods 
Local approaches are based on a search windows horizontally displaced in one view with 
respect to the other view for each allowed disparity. Matching measures generally used in 
local methods are Sum of Absolute Differences (SAD), Sum of Squared Differenced (SSD), 
Normalized Cross Correlation (NNC) and Sampling Insensitive Measurement. In this context the 
best choice is the Normalized Zero-Mean Cross-Correlation (ZNCC), that is quite insensitive at 
brightness variations typical of underwater environment. ZNCC measure is defined as: 

 ( )
( )( ) ( )( )
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from which the disparity is calculated as 

 Disparity(x, y) = ( )dyx
ddd

,,ZNCCmax
MAXMIN ≤≤

. (14) 

In Fig.11 is reported en example of ZNCC stereo matching applied on a rectified seabed 
image. 

             
(a)                                                              (b) 

Fig. 11. a) original rectified left image; b) disparity map with ZNCC obtained from (a). 

5.3 Stereo correspondences: global methods 
Unlike local approaches, in global approaches the correspondence problem is stated in term of a 
cost function subject to minimization. The most critical choice is the optimization technique, that 
essentially falls into two main categories: continuous or discrete optimization. In discrete 
minimization, the best stereo matching estimation use combinatorial optimization via Belief 
Propagation (Sun et al., 2002) or Graph Cuts (Boykov et al., 2001). Two Graph Cuts formulation 
based on the expansion moves scheme are now investigated: Voxel Coloring (Kolmogorov & 
Zabih, 2002) and Pixel Labeling (Boykov et al., 1998). Graph Cuts based methods address cost 
function optimization by an energy function that can be represented, in general, as: 
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 E(L) = D(L) + V(L), (15) 

where L is a disparity labeling (i.e. a label set in which each label represents a disparity value), 

D(⋅)penalizes the variation from observed intensities (data penalties term), and V(⋅) is the 
smoothness term that encourages spatial coherence by penalizing discontinuities between 
neighboring pixels. When cost functions involve convex smoothness term a global minimum is 
indeed reachable via Graph Cut in polynomial time. Unfortunately, convex smoothness terms 
do not represent an optimal choice for the stereo problem, in which it is preferable to use a 
non-convex smoothness function to avoid the over-penalizing of large jumps in disparity. 
One simple non-convex function commonly used in stereo vision is the Potts model (Potts, 
1952). Despite the simplicity of the Potts model, the resulting problem formulation is proven 
to be NP-hard (Kolmogorov & Zabih, 2004). However, a strong local optimum can be 
estimated for non-convex smoothness terms by application of expansion move methods 
(Boykov et al., 2001). Image enhancement with Contrast Limited Adaptive Histogram 
Equalization (CLAHE) (Pizer et al., 1987) is often employed in underwater imaging 
application to mitigate brightness variations effects. Both voxel coloring and pixel labeling 
methods suffer for underwater violation of brightness constancy assumption. However, 
CLAHE enhancement permits to mitigate brightness variation effects, as explained in Fig.12. 
 

      
(a)                                                  (c)                                               (e) 

    
(b)                                                  (d)                                               (f) 

Fig. 12. a) original rectified left image; b) CLAHE enhanced rectified left image; c) disparity 
map with voxel obtained from (a), d) voxel based disparity map obtained from enhanced 
image (b); e) pixel labeling without enhancement; f) pixel labeling with CLAHE. 

5.4 3-D Reconstruction from stereo correspondences 

As prefaced in Section 6.1, given a set of stereo correspondences it is possible to recover the 

location of the 3-D points by using geometric triangulation. Tsai’s calibration method 

furnishes the camera matrices PL and PR that relate the image correspondences ( L
ix , R

ix ) 

with the 3-D point Xi through the relations L
ii

L
xX =P , R

ii
R

xX =P , and the epipolar constraint 

in Eq.1. It follows that R
ix  lies on the epipolar line L

i
R
i xl F=  and the two rays back-
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projected from image points L
ix  and R

ix  lie in a common epipolar plane. Since they lie in the 

same plane, they will intersect at some point. This point is the reconstructed 3-D scene point 

iX . While it is possible to recover the 3-D scene point given only the two imaged points 

( L
ix , R

ix ), the accuracy is highly dependent upon the exact matching R
i

L
i xx ↔ . Generally 

errors are involved, hence a set of points is usually used leading to an over-determined 

linear system. In particular, camera parameters and image locations are known only 

approximately. The back-projected rays therefore do not actually intersect in space. It can be 

shown that intersection equations can be solved in a least squares sense (Kanatani, 1993). 

Triangulation is addressed in more details in (Hartley & Zisserman, 2003). Fig. 13 shows the 

3-D points calculated by triangulation starting from disparity maps obtained by using 

methods explained in above sections 6.2 and 6.3. The following sections treat how can be 

obtained a whole mosaic reconstruction starting from single reconstructions like as shown 

in Fig. 13. 
 

 

Fig. 13. A reconstruction obtained from a single stereo scan. 

6. Seabed mosaic 

6.1 Overview 
To construct a 3-D mosaic multiple scans must be registered. The registration activity is 
referred to the alignment of each two-frames reconstruction with the others. A pre-
alignment phase can simplify the registration activity, since pitch and roll are not present in 
motion model (Castellani et al., 2004). For this purpose a pre-alignment activity based on 
ego-motion estimation through four-frames feature matching (i.e. two following stereo 
pairs) is used, by evaluating the displacement of left and right matches in two 
corresponding images. Dimensional effects are normalized by scaling factor according to 
(Kim & Chung, 2006). Once right correspondences are defined in the four-frame, ego-motion 
tracking is performed considering displacements through consecutive 3-D point sets. 
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6.2 Alignment 

The correspondences between adjacent frames are estimated with a reliable feature-based 

matching as explained in the next subsection, while the correspondences between stereo 

pairs are constrained by the epipolar geometry. Given four frames composed by two 

following stereo pairs ( L
I1 , R

I1 ) and ( L
I2 , R

I2 ), four-frame correspondences are determined 

according with the scheme shown in Fig. 14.a. Firstly, the correspondences q1 and q2  

 

          
(a)                                                                  (b) 

 
(c) 

Fig. 14. a) Four-frame correspondences estimation scheme; b) Estimated ego-motion 
trajectory; c) The schematic diagram of a moving stereo camera. 
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between consecutive frames L
I1  and L

I2  are estimated by using the SIFT feature-based 

matching (see the next subsection). Afterwards, the nearest neighbors p1 and p2 to q1 and q2 

respectively, are selected inside the epipolar constraint. As final result, four matching points 

p1, p’1 and p2, p’2 are defined. The scale factor can be determined by using only motion 

correspondence and the epipolar constrain as explained in the following discussion. Let i
xR , 

j
LR , j

RR  be rotation matrices and let i
xt , j

Lt , j
Rt  be translational not zero vectors (for i = 0, 

…, N and j = 1, …, N). Let be defined the following matrices: 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

10

i
x

i
xi tR

X ,        i = 0, …, N (16) 
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j
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R

tR
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Let j
L

j
L

j
L ttt /=  and j

R
j
R

j
R ttt /=  for j = 1, …, N. Under these assumptions j

LR , j
Lt  and j

RR , 

j
Rt  can be considered as the motion parameters obtained up to scale using motion 

correspondence for the left and right cameras respectively. Let the left/right coordinate 
systems of a moving stereo camera (Fig.14.c). The following relations are satisfied: 

 i
R

ii
L MXXM

0=  ,      i = 1, …, N (18) 

Let 1
LLs t=  and 1

RRs t= , the Eq.18 can be rewritten as: 
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The Eq.19 can be rewritten in matricial form as in the following Eq.20: 
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The system in Eq.20 gives a unique solution except in a degenerate motion set as proven in 
(Kim & Chung, 2006). Given the 4-frame matching points and the scale factors estimated as 
mentioned above, two corresponding 3-D point sets, X1 and X2, are calculated between the 
two following stereo correspondences. Hence, ego-motion is estimated by evaluating 3-D 
point displacements from X1 to X2. Fig.14.b shows the estimated navigation trajectory. 

6.3 Correspondences between adjacent frames 
Scale Invariant Feature Transform (SIFT) feature (Lowe, 1999) is used as feature matching 
method, reducing the effect of outlier by using the Least Median of Square (LMedS) method 
(Zhang et al., 1995). Generally, feature detection methods, such as the Harris detector 
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(Harris & Stephens, 1988), are sensitive to the affine distortion of image. Therefore, they are 
not suitable to build feature sets in image acquired in uncontrolled environments. SIFT 
feature matching (Lowe, 1999) is widely used because it is invariant to affine transforms. 
These characteristics are suitable to be employed with imagery obtained at different camera 
angles by using ROV/AUV. SIFT feature algorithm is based upon finding locations within 
the scale space of an image. Features are identified by detecting maxima and minima in the 
Difference of Gaussian (DOG) pyramidal space. A subpixel location, scale and orientation are 
associated with each SIFT feature. In order to achieve high specificity, a local feature is 
formed by measuring the local image gradients at many orientations in coordinates relative 
to the location, scale and orientation of the feature. Although the SIFT feature matching 
algorithm has low bad matching error rate, if the outliers are presented in estimation of 
transformation matrix, the recovered camera motion is incorrect and it is impossible to 
register the model correctly. Therefore, the LMedS approach is employed and the amount of 
sample is estimated by using the following relation: 

 P = 1 - (1 - (1 - ε)p )m , (21) 

where P is the probability of a good sample for LMedS, and ε, p, m denote the ratio of false 
matched, the sample size and the number of sample required. Choosing m = 108 with ε = 0.5 
and p=4 in Eq.21, the probability of a good sample is 99.9%. 

6.4 Registration refinement 
After a pre-alignment phase based on ego-motion estimation, Iterated Closest Point (ICP) 
algorithm (Besl & McKay, 1992) is employed for 3-D registration refinement. The 
registration activity maps each single scan reconstruction into the same coordinate system, 
solving the absolute orientation problem when correspondences between each single scan 
reconstruction and the others are unknown. For each iteration ICP algorithm alternates the 
following two step: 1) calculation of the closest points between reconstructions and 
assuming this points as correspondent, 2) overlap of the reconstructions by determining the 
right transformation using absolute orientation. Given two reconstructed points set X1 and 
X2 subject to registration, the above absolute orientation referred in step (2) is resolved 
through the following minimization using the Kanatani’s method (Kanatani, 1993): 

 ( )∑
=

+−
N

i

ix

1

2

,2i1,
t,R

t Rxmin , (22) 

where (R, t) is the sought transformation (rotation and translation), and (x1i, x2i) is the closest 
point pair determined in step (1). ICP iterations proceed until the overlapping error doesn’t 
go down a given threshold. The final 3-D mosaic is obtained processing thousands of single 
scan reconstruction. The final mosaic reported in Fig.15 concerns the reconstruction of a 
wide underwater area that contains seven columns (only five are visible) in cipolin marble 
dating to the Roman age. 

8. Conclusion and future work 

A framework for seabed 3-D mosaic reconstruction has been presented. The three mainly 
troublesome aspects discussed are asynchronous stereo acquisition, depth estimation and the 
3-D mosaic registration. The use of an inexpensive asynchronous stereo sequence is explained, 
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suggesting a new scheme for accurate calibration frames selection. Moreover, disparity map 
calculation in both points of view, local and global, is considered. Brightness constancy 
violation is treated adopting cross-correlation and histogram equalization. Results are 
evaluated by using ground truth data. Moreover, a four-frame features tracking scheme for 
ego-motion estimation has been suggested, combining epiflow advantages and ICP 
registration refinements. Current ongoing and future work involve improvements on ICP 
module, more accurate ground truth results evaluation and the implementation of the 
Extended Kalman Filter-based ego-motion and structure recovery for off-line 3-D mosaicking. 

 

Fig. 15. The final 3-D mosaic reconstruction. Units are expressed in millimetres. 
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