
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 3

Stem Cell Aging

Primož Rožman, Katerina Jazbec and Mojca Jež

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71764

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Primož Rožman, Katerina Jazbec and Mojca Jež

Additional information is available at the end of the chapter

Abstract

Stem cells persist throughout life, replacing cells lost to homeostatic turnover, injury, 
and disease. However, their functions decline with age, which contributes to degenera-
tion and dysfunction. The molecular mechanisms involved in the aging of stem cells are 
the same as the ones involved in the aging of somatic cells, including telomere shorten-
ing, oxidative stress, epigenetic dysregulation, miRNAs changes, alterations of DNA, 
RNA, proteome, and various cellular organelles. Aging impacts various pathways, such 
as insulin/insulin-like growth factor 1 (IGF-1), mTOR, FoxO, AMP-activated protein 
kinase (AMPK), sirtuin, and many others, resulting in senescent stem cells that exhibit 
functional and numerical impairment. Stem cells have developed special mechanisms 
to prevent age related damage accumulation and to sustain their stemness properties, 
however, these mechanisms lose their effectiveness over time. The most fatal conse-
quence of this is found in the immune system, where both innate and adaptive immu-
nity are affected, exhibiting a plethora of defects, including increased autoimmune 
disease occurrence, elevated tolerance to cancer and chronic inflammatory status. Stem 
cell therapies call for the best quality of stem cells grafts. Stem cell products should be 
devoid of cells containing a senescent phenotype, thus a comprehensive knowledge of 
the biology behind the senescence of stem cells should be taken into account in every 
cell based therapy.

Keywords: molecular mechanisms of aging, senescence, stem cell niche, epigenetic 
changes, telomere attrition, stem cell pool, mitochondrial changes, proteostasis, immune 
deterioration, shortened life span

1. Introduction – Stem cells aid regeneration and longevity

An 70 kg adult human body consists of approximately 3.72 × 1013 cells [1]. These trillions of 

cells are not permanent and a majority of them are constantly renewed throughout our life-

time, although some of them – such as cells in the lenses of our eyes and some of the neurons 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of our central nervous system – are thought to be an exception. The frequency of renewal 

depends on the function of the cells and may vary from several hours to several years. A col-

lection of the replacement rates of different cells in our body is given in Table 1.

The renewal of adult tissues is enabled by specialized cells that function over the lifetime of 

an organism, i.e., the stem cells (SCs). They persist throughout life in numerous mammalian 

Cell type Turnover time

Small intestine epithelium 2–4 days

Stomach 2–9 days

Blood neutrophils 1-5 days

White blood cells eosinophils 2-5 days

Gastrointestinal colon crypt cells 3–4 days

Cervix 6 days

Lungs alveoli 8 days

Tongue taste buds (rat) 10 days

Platelets 10 days

Bone osteoclasts 2 weeks

Intestine Paneth cells 20 days

Skin epidermis cells 10–30 days

Pancreas beta cells (rat) 20–50 days

Blood B cells 4–7 weeks

Trachea 1–2 months

Hematopoietic stem cells 2 months

Sperm (male gametes) 2 months

Bone osteoblasts 3 months

Red blood cells 4 months

Liver hepatocyte cells 0.5–1 year

Fat cells 8 years

Cardiomyocytes 0.5–10% per year

Central nervous system life time

Skeleton 10% per year

Lens cells life time

Oocytes (female gametes) life time

Adapted from: http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=107875

Table 1. Cell renewal rates in different tissues of the human body.
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tissues, replacing cells lost to homeostatic turnover, injury, and disease. Stem cells reside in 

specific anatomic reservoirs, such as bone marrow, and circulate in the organism when needed. 
SCs represent a very small proportion in adult tissues. It is estimated that the bone marrow 

of a 70 kg adult human contains around 1.5–1.7 × 1012 cells, among them only 45–120 × 106 

are true hematopoietic stem cells (HSCs) that give rise to more frequent progenitors (Jazbec 

et al. 2017, submitted). The frequencies of stem cells in other tissues are even lower and still 
a matter of debate.

Adult SCs can typically self-renew and differentiate into multiple cell types within a devel-
oping and adult body. Due to their self-renewal capacity they were regarded as immortal 

reservoirs of youth, however, they are nonetheless susceptible to the age related damages. 

To prevent or reverse the accumulation of age related damage and epigenetic changes, SCs 

developed special mechanisms to maintain long telomeres, enhance proteostasis, avoid ROS 

production and defend against toxic substances. In spite of that, their functions decline with 

age in a number of tissues, including blood, forebrain, skeletal muscle, skin and all the other 

tissues as reviewed by Schultz et al. [2].

Declines in stem cell functions not only contribute to degeneration and dysfunction of aging 

tissues, but also negatively affect the life span of the organism [3, 4]. Some strong evidence for 

SCs as regulators of longevity comes from animal studies. For instance, if in C. elegans germ-

line stem cells (GSCs) are eliminated, this almost doubles its lifespan [5] and such a phenom-

enon is highly conserved [6]. Similarly, if the fruit flies are modified with overexpression of 
a PGC-1α homolog or a heat-shock response transcription factor and moderate repression of 
insulin/IGF or JNK signaling, this directly extends their life span [7], implying that improved 

stem cell function leads to better tissue function, and that stem cell aging underlies the aging 
of tissues and organs.

In humans, there is considerable evidence supporting the fact that young stem cells perform 

better than old ones. Proof of this concept is best documented is the recent multicenter study 
on the success of hematopoietic stem cell transplantation, which is currently the most popular 

and efficient cell therapy for malignant diseases. In more than 6000 cases of allogeneic bone 
marrow transplantation between 2007 and 2011, it was clearly shown that patient survival 

was significantly better after grafts from young donors (aged 18–32 years) were used. For 
every 10-year increment in donor age, there was a 5.5% increase in the hazard ratio for overall 

mortality [8]. This is probably one of the most important findings in this field, suggesting that 
for regenerative purposes, and other stem cell therapies, grafted stem cells should be young 

and devoid of senescent defects.

2. The biology of stem cell aging

Adult stem cells express several characteristic features that are specific to stem cells, as 
well as certain features that are found in any other somatic cell in the body. They express 

telomerase – an enzyme required for telomere extension that is essential for repeated self-

renewal, they cycle between phases of quiescence and activation needed for the production 
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of progeny, their chromatin exists in a bivalent state primed for self-renewal or differentia-

tion, they have unique metabolic requirements, they distribute their macromolecules asym-

metrically during asymmetric cell divisions, and they reside in niches that regulate their 

behavior [9].

The molecular mechanisms that are involved in the aging of adult stem cells are the same 

as the ones involved in the aging of the somatic cells. Traits and mechanisms that are 

affected by aging are present in various populations of stem cells. The age-related decline 
of stem cells is mainly functional, but in some cases, a decline in stem cell numbers can 

also be observed. Since many of these mechanisms appear simultaneously, it is practically 

impossible to trace or determine a single initial damaging agent that causes the cascade 

of other detrimental sequences. Therefore authors agree that aging is probably the result 

of multifactorial derangements caused by several causative factors that act in parallel, 

including the formation of damaging reactive oxygen species (ROS), telomere attrition, 
DNA damage and mutations, epigenetic changes (alterations of histones, DNA and the 

consequent dysregulation of gene expression), mitochondrial DNA mutations with mito-

chondrial decline, changes of microRNAs, ribosomal changes and defects of RNA splic-

ing, changes of proteostasis, changes in cellular polarity, changes in nutrient sensing and 

metabolism, niche deterioration, improper accumulation of various circulating factors, 

stem cell pool exhaustion, cellular senescence with cell cycle arrest, and altered intercel-

lular communication (Table 2).

1. Formation of damaging reactive oxygen species (ROS)

2. Mitochondrial DNA mutations, decline of mitochondrial integrity and biogenesis

3. Nuclear damage and nuclear DNA mutations

4. Telomere shortening /attrition

5. Epigenetic changes/alterations of histones and DNA and consequent dysregulation of gene expression

6. Changes of microRNAs

7. Changes of RNA splicing and ribosomal machinery

8. Changes of proteostasis

9. Changes of cell polarity

10. Metabolism and nutrient sensing

11. Niche deterioration

12. Accumulation of various circulating factors

13. Stem cell pool exhaustion

14. Cellular senescence – arrest of the cell cycle

15. Altered intercellular communication

Table 2. Multifactorial causes of stem cell aging.
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2.1. Formation of damaging reactive oxygen species (ROS) and oxidative stress

The free radical theory of aging has been long accepted as the most plausible explanation 

for the aging process. It was first formulated in the 1950s by Harman who hypothesized that 
an accumulation of endogenous oxygen radicals (reactive oxygen species, or ROS) occurs, 

which in turn causes further mitochondrial deterioration and the global cellular damage 

responsible for the aging and death of all living beings [10]. This theory was then revised in 

1972 when mitochondria were identified as being responsible for the initiation of most of the 
free radical reactions [11]. It was also postulated that life span was determined by the rate of 

free radical damage to the mitochondria. Mitochondrial respiration, the basis of energy pro-

duction in all eukaryotes, generates ROS by leaking intermediates from the electron trans-

port chain [12]. In all aerobic organisms, age-related oxidative stress is generated either by 

exposure to endogenous metabolites or exogenous sources such as radiation (UV, X-ray), and 

ROS accumulation is the result of an imbalance between free radical production and antioxi-

dant defenses, such as superoxide dismutase that is responsible for scavenging superoxide 

anions [12, 13]. In fact, oxidative modifications have been shown to occur in DNA, protein, 
and lipid molecules [14].

Whereas young stem cells contain a spectrum of antioxidant mechanisms, aged stem cells 

display an inadequate anti-oxidant defense that is associated with functional impairment, 

including decreased responsiveness to physical environmental cues and decreased resistance 

to oxidative stress [15]. In several studies, aging stem cells from bone marrow and adipose tis-

sue showed a significantly reduced capacity for coping with oxidative stress with increasing 
donor age [16, 17]. Therefore, oxidative stress is still recognized as the fundamental underly-

ing component of the aging process, leading to dysregulation of various cellular pathways 

and the subsequent accumulation of toxic aggregates and cellular debris, and ultimately to 

the activation of cell death/survival pathways leading to apoptosis, necrosis, or autophagy, as 

reviewed by Haines, et al. [18].

However, recent developments have forced an intense re-evaluation of the mitochondrial free 

radical theory of aging after the unexpected observation that increased ROS may paradoxi-

cally prolong the lifespan of yeast and Caenorhabditis elegans [19–21]. In mice, genetic manipu-

lations, which increased mitochondrial ROS and oxidative damage, did not accelerate aging 

as one would expect [22, 23]. Furthermore, manipulations that increased antioxidant defenses 

did not extend longevity [24], and lastly, genetic manipulations that impaired mitochondrial 

function but did not increase ROS, accelerated aging [25, 26]. There has also been other solid 

evidence that in response to physiological signals and stress conditions, ROS triggered prolif-

erative and survival signals [27].

The mitochondrial theory of aging has also been challenged as it has become clear that 

there exists a rather complicated interplay between various other cellular compartments 

[28]. Dysfunctional mitochondria can contribute to aging independently of ROS, as dem-

onstrated by studies with mice deficient in DNA polymerase γ [29, 30]. This could happen 

through a number of mechanisms, for example, mitochondrial deficiencies may affect apop-

totic signaling by increasing the propensity of cell’s death through mitochondrial membrane 
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permeabilization in response to stress [31], and trigger inflammatory reactions by favoring 
ROS-mediated and/or permeabilization- facilitated activation of inflammasomes [32]. Also, 

mitochondrial dysfunction may directly impact cellular signaling and interorganellar cross-

talk, by affecting mitochondrion-associated membranes that constitute an interface between 
the outer mitochondrial membrane and the endoplasmic reticulum [33].

The mitochondrial ROS that were considered the main cause of age related defects actually 

contribute positively to various signaling pathways and normal cellular responses, such 

as adaptation to hypoxia, cellular differentiation, autophagy, inflammation, and immune 
responses, as reviewed recently [28, 34], meaning that ROS are also beneficial for cellular 
biology.

2.2. Mitochondrial DNA mutations, the decline of mitochondrial integrity  

and biogenesis

Mitochondrial function has a profound impact on the aging process. Mitochondrial dysfunc-

tion can accelerate aging in mammals. It was generally believed that age-related pathology 

was caused by defects of mitochondria related to oxidative stress, leading to the accumulation 

of irreparable changes of nucleic acids, proteins, and lipid molecules [14, 35]. But there are 

also other defects of mitochondria that develop during normal aging. Similar to the nuclear 

DNA, mitochondrial DNA (mtDNA) is exposed to mutations and deletions in aged cells, 

which are not found in nuclear DNA, and which also contribute to aging [36]. This is aggra-

vated by the oxidative microenvironment of the mitochondria and the limited efficiency of the 
mtDNA repair mechanisms [37].

The mutations that can lead to mitochondrial dysfunction and death are now detectable in 

generated induced pluripotent stem cell (iPSC) lines, i.e., expanded clones from each indi-

vidual skin or blood cell. As a result, every cell in the iPSC line contains the same mitochon-

drial DNA (mtDNA) mutations as the original adult cell, and can for this reason be easily 

sequenced. We now know that to ensure healthy mitochondrial genes, we must screen stem 

cells for mutations or collect them at a younger age. This may help illuminate the role of 

mutated mitochondria in degenerative diseases and to assess the patient-derived regenerative 

products destined for clinical applications [38].

Interestingly, most mtDNA mutations in adult or aged cells appear to be caused by replica-

tion errors early in life, rather than by oxidative damage. These mutations may undergo poly-

clonal expansion and cause respiratory chain dysfunction in different tissues [39]. Studies of 

accelerated aging in HIV-infected patients treated with anti-retroviral drugs, which interfere 

with mtDNA replication, have supported the concept of clonal expansion of mtDNA muta-

tions that originated early in life [40].

Aging also affects the biogenesis of mitochondria. Mitochondrial biogenesis is the process by 
which cells increase their individual mitochondrial mass and copy their number to increase 

the production of ATP, as a response to greater energy needs. With aging, the reduced effi-

ciency of mitochondrial bioenergetics may be a result of multiple converging mechanisms, 
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including reduced biogenesis of mitochondria. For instance, in telomerase-deficient mice, 
it can be a consequence of telomere attrition with subsequent p53-mediated repression of 
PGC-1α and PGC-1β (peroxisome proliferator-activated receptor gamma coactivator 1 – alpha 
and –beta, which are the master regulators of mitochondrial biogenesis) [41]. This mitochon-

drial decline also occurs during physiological aging in wild-type mice and can be partially 

reversed by telomerase activation [42]. Sirtuin 1 (SIRT1) modulates mitochondrial biogenesis 

through a process involving the transcriptional co-activator PGC-1α [43] and the removal of 

damaged mitochondria by autophagy [44]. SIRT3, which is the main mitochondrial deacety-

lase [45], targets many enzymes involved in energy metabolism, including components of the 

respiratory chain, tricarboxylic acid cycle, ketogenesis and fatty acid β-oxidation pathways 
[46]. SIRT3 may also directly control the rate of ROS production by deacetylating manganese 

superoxide dismutase, a major mitochondrial antioxidant enzyme [47]. Collectively, these 

results support the idea that sirtuins may act as metabolic sensors to control mitochondrial 

function and play a protective role against age-associated diseases [48, 49].

Interestingly, endurance training and alternate-day-fasting may improve healthspan through 

the capacity to avoid mitochondrial degeneration [50, 51]. It is tempting to speculate that 

these beneficial effects are mediated, at least in part, through the induction of autophagy, for 
which both endurance training and fasting constitute potent triggers [52]. However, autoph-

agy induction is probably not the sole mechanism through which a healthy lifestyle can retard 

aging, since, depending on the precise diet reduction regime, additional longevity pathways 

can be activated [53].

The combination of increased damage and reduced turnover in mitochondria, due to lower 

biogenesis and reduced clearance, may contribute to the aging process [48]. Some other 

mechanisms can also affect the mitochondrial bioenergetics and contribute to the aging 
mitochondrial phenotype, among them the mutations and deletions in mtDNA, oxidation 

of mitochondrial proteins, destabilization of the macromolecular organization of respira-

tory chain, defects of the lipid membranes, and defective autophagy that targets deficient 
mitochondria [54].

In conclusion we could say that the importance of mitochondria in the basic biology of aging 

and the pathogenesis of age-associated diseases is stronger than ever, although the emphasis 

has moved from ROS to other causative aspects. Obviously, besides the mitochondrial dys-

function due to ROS, there exists a complex interplay of several other factors of aging, such as 

mDNA mutations, changes of lysosome processing, endoplasmic reticulum stress, genomic 

instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutri-
ent sensing, altered intercellular communication, mitochondrial biogenesis and turnover, 

energy sensing, apoptosis, senescence, and calcium dynamics. Mitochondria do play one of 

the key roles in the pathophysiology of aging and events that lead to the aged phenotype, 

therefore they will increasingly be targeted to prevent and treat chronic diseases and to pro-

mote healthy aging [48, 55, 56]. We expect that future studies will determine whether genetic 

manipulations that decrease the load of mtDNA mutations and other damaging factors, are 

able to extend lifespan.
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2.3. Nuclear damage and nuclear DNA mutations

It is clear that in aged humans and model organisms, somatic mutations accumulate over 

time within all cells [57]. Other forms of DNA damage, such as chromosomal aneuploidies, 

copy-number variations and increased clonal mosaicism for large chromosomal anomalies 

have also been found to be associated with aging [58, 59]. Each time a stem cell replicates its 

DNA and divides, the likelihood of DNA defects and oncogenic transformations increases. 

Therefore the lifetime risk of cancer development in a tissue correlates with the number of 

divisions the stem cells of this particular tissue have undergone [60]. A variety of these DNA 

alterations can finally affect the essential genes that control the key transcriptional pathways. 
Such defect cells should be normally eliminated by apoptosis or senescence, however, if this 

does not happen it may jeopardize tissue and organismal homeostasis. This is especially 

important in stem cells because the DNA damage has a detrimental impact on their functional 

competence, i.e., on their role in tissue renewal [61, 62].

An accumulation in DNA damage and mutations leading to stem cell aging has been one of 

the earliest theories of aging [63]. DNA damage can be caused by external factors (ionizing 

radiation, ultraviolet radiation or environmental toxins), or by internal factors (ROS and 

errors in DNA replication). These factors can lead to various DNA lesions such as modifica-

tions of bases or sugar residues, the formation of DNA adducts, cross-linking of the DNA 

strands or the appearance of single and double-strand breaks. Among these lesions, DNA 

double-strand breaks (DSBs) are particularly lethal because they result in physical cleavage 

of the DNA backbone. DSBs can occur through replication fork collapse, during the process-

ing of interstrand crosslinks, or following exposure to ionizing radiation [64, 65]. In spite of 

the fact that cells have evolved at least six different DNA repair pathways to deal with these 
distinct types of DNA damage [66], there is convincing evidence that with aging, stem cell 

DNA is also subject to damage. In HSCs, histone H2AX phosphorylation and comet tails, 

both of which are measures of DNA damage, increase with age [67, 68]. Phosphorylation of 

H2AX, one of several genes coding for histone H2A (one of the five main histone proteins 
involved in the structure of chromatin in eukaryotic cells), accumulates with age in satellite 

cells, i.e., stem cells of the muscles [69]. Moreover, aged HSCs display a history of replica-

tion stress and decreased expression of DNA helicases, further sensitizing them to future 

replication challenges [70].

Since mutations are a common daily occurrence, our cells could not survive without DNA 

repair mechanisms. There are two groups of repairing mechanisms, the first acting to repair 
DNA single-strand breaks (mismatch repair mechanism, base excision repair mechanism, 

nucleotide excision mechanism), and the second acting to synchronously repair DNA double-

strand breaks, i.e. homologous recombination and non-homologous end joining (NHEJ). In 

spite of the repair mechanisms our DNA accumulates mutations, since the genes of repair 

mechanisms are themselves subject to mutations [71].

Evidence that DNA damage plays a causal role in the aging process includes the observation 

that mice with defects in DNA damage repair display some aspects of premature aging [72], 

whereas enhancing DNA repair through increased expression of SIRT6 increases lifespan 

[73]. In some situations, DNA damage may also reduce stem cell numbers by causing them 
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to undergo apoptosis, senescence or differentiation, although it is not yet confirmed whether 
these effects are due to an increase in stem cell longevity [2].

It is also known that deficiencies in DNA repair mechanisms cause accelerated aging in mice 
and underlie several human progeroid syndromes such as Werner syndrome, Bloom syndrome, 

xeroderma pigmentosum, trichothiodystrophy, Cockayne syndrome, or Seckel syndrome 

[74–76]. Moreover, transgenic mice overexpressing multidomain protein kinase BUBR1 (bud-

ding uninhibited by benzimidazole-related 1), a mitotic checkpoint component that ensures 

the accurate segregation of chromosomes, exhibit an increased protection against aneuploidy 

and cancer, and display an extended healthy lifespan [77]. These experimental data prove that 

artificial reinforcement of nuclear DNA repair mechanisms could delay aging [48].

In addition to genomic damage affecting nuclear or mitochondrial DNA, there is evidence 
that certain defects in the nuclear lamina can also change nuclear architecture and thereby 

cause genomic instability [78]. Nuclear lamins participate in genome maintenance by provid-

ing a scaffold for tethering chromatin and protein complexes that regulate genomic stability 
[79, 80]. Mutations in genes encoding protein components of this structure, or factors affecting 
their maturation and dynamics, cause accelerated aging syndromes such as the Hutchinson-

Gilford and the Néstor-Guillermo progeria syndromes [81–83]. Alterations of the nuclear lam-

ina and production of an aberrant prelamin A isoform called progerin have also been detected 

during normal human aging [84]. Since telomere dysfunction also promotes progerin produc-

tion in normal human fibroblasts upon prolonged in vitro culture, this suggests that there exist 

intimate links between telomere maintenance and progerin expression during normal aging 

[85]. In addition to these age-associated changes in A-type lamins, lamin B1 levels decline 

during cell senescence, pointing to its utility as a biomarker of this process [86].

2.4. Telomere shortening

Although accumulation of DNA damage affects the genome near-to-randomly, there are some 
chromosomal regions that are particularly susceptible to age-related deterioration [87]. Telomeres 

are repetitive TTAGGG sequences and associated nucleoproteins at the ends of a chromosome 

that play a critical role in protecting chromosomes from degradation, undesirable recombina-

tion, and chromosome fusion [88, 89]. With each somatic cell division, telomeres shorten and this 

exposes cells to the aging phenotype. Due to inability of the normal DNA replication machinery 

to completely replicate the telomeric sequences, telomeres in somatic cells shorten with each cell 

division, and are thus markers for cellular aging and replicative capacity [90].

Mice with shortened or lengthened telomeres exhibit decreased or increased lifespans, respec-

tively [91–93]. Telomere shortening is observed during normal aging both in humans and 

mice [94]. In humans, recent meta-analyses have indicated a strong relation between short 

telomeres and mortality risk, particularly at younger ages [95].

In contrast to somatic cells, embryonic and adult stem cells express telomerase, a reverse 

transcriptase enzyme, which catalyzes the extension of telomeric sequences, thereby avoid-

ing telomere attrition and prolonging cellular proliferative life span. While the telomerases 
are normally absent from most somatic cells, they are active in the stem cells and most cancer 
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cells [88, 96]. Mammalian telomerase consists of a telomerase RNA component (TERC) and a 

telomerase reverse transcriptase (TERT) component. The latter catalyzes the synthesis of new 
telomeric repeats. Nevertheless, consistent decline in telomere length with age does occur in 

adult stem cells, suggesting that telomerase activity is insufficient to maintain the replication 
of these cells indefinitely [90]. So the telomeres of various stem cells, i.e., hematopoietic, neu-

ral, germinal and other, do shorten with age [97, 98].

Telomere exhaustion also explains the limited proliferative capacity of some types of in vitro 

cultured cells, the so-called replicative senescence or Hayflick limit [99, 100]. Indeed, as shown 

already in the 1990s, ectopic expression of telomerase confers immortality to otherwise mor-

tal cells, without causing oncogenic transformation [101]. Similarly, telomerase deficiency in 
humans is associated with the premature development of diseases, such as pulmonary fibro-

sis, dyskeratosis congenita and aplastic anemia, which involve the loss of the regenerative 

capacity of different tissues [102].

Recent evidence also indicates that aging can be reverted by telomerase activation. In par-

ticular, the premature aging of telomerase-deficient mice can be reverted when telomerase is 
genetically reactivated in these aged mice [103]. Moreover, normal physiological aging can be 

delayed without increasing the incidence of cancer in adult wild-type mice by pharmacologi-

cal activation or systemic viral transduction of telomerase [104].

This correlation between telomere length, telomerase activity and age is not completely 

clear. For example, while telomere length is negatively correlated with age in humans up to 

75 years, it is positively correlated with age in the elderly, suggesting that long telomeres con-

tribute to survival in old age [105]. Furthermore, telomere length predicted survival in elderly 

twins, suggesting that telomeres contribute to longevity in humans even when controlling for 

the influence of genetic background [106].

There is a good correlation between the expression of human TERT mRNA and the pres-

ence of telomerase activity in extracts from tissue culture cells, and normal and cancer 

tissues, suggesting that human TERT expression is the primary and rate-limiting deter-

minant of telomerase activity [107]. This is important in stem cell therapies, so we have 

already investigated the importance of longer telomere length of the CD34+ cell grafts used 

for cell therapy and found that longer telomere length and higher telomerase expression 

agree with CD34+ cell’s increased functional capacity, however the patients with longer 

CD34+ telomere length did not favorably respond to autologous CD34+ cell transplantation 

therapy [108].

2.5. Epigenetic changes and consequent dysregulation of gene expression

The regulation of the chromatin state is important for stem cell function. In Waddington’s epi-

genetic landscape theory, stem cells stand at an undifferentiated epigenetic summit above mul-
tiple cell fates [109]. During the differentiation and aging of cells, numerous chromatin and gene 
expression changes appear progressively in response to cell stress, most notably in response to 

DNA damage signals. The changes in epigenetic modification of chromatin and histones lead 
to dysregulation of gene expression. The epigenetic modifications that are observed to change 
during aging are histone acetylation, histone methylation, and DNA methylation.
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As already mentioned, of all other different types of DNA damage, the one that has the great-
est lasting effect on chromatin is the double-strand breaks, which cause a dramatic redistribu-

tion of chromatin factors. This is a part of the response to damage that is not fully restored 

after the repair [110]. Thus, changes in chromatin caused by DNA damage might underlie the 

skewed lineage phenotypes exhibited by aged stem cells [111].

The epigenetic changes have now been cataloged. In mice, it has been observed that the level 

of histone deacetylase SIRT1 decreases with age and that decrease of SIRT1 expression cor-

relates with premature aging in mice with increased p53 activity [112].

The expression levels of chromatin modifiers, including components of the SWI-SNF (switch/
sucrose non-fermentable) and PRC (polycomb repressive complex) complexes, histone deacety-

lases (HDACs) including sirtuins, and DNA methyltransferases, also change with age in stem cells 

[113, 114]. These changes may underpin declining stem cell function. Indeed, the overexpression 

of enhancer of zeste homolog 2 (EZH2), a component of PRC2, improves long-term repopulating 

potential in HSCs [115]. Additionally, in aged HSCs, clusters of genes increase in expression levels 

based on chromosomal location, suggesting that epigenetic dysregulation engenders regional loss 

of transcriptional silencing [113]. Taken together, these findings suggest that changes in epigenetic 
modifications are a general trait of stem cell aging, which impacts their function.

It is interesting that with aging appear changes that reinforce self-renewal. Sun et al. conducted 

a comprehensive integrated genomic analysis of young (4 mo) and old (24 mo) murine HSCs 

by profiling the transcriptome, DNA methylome, and histone modifications. Transcriptome 
analysis indicated reduced transforming growth factor beta (TGF-β) signaling and perturba-

tion of genes involved in HSC proliferation and differentiation. Aged HSCs showed increased 
DNA methylation at transcription factor binding sites associated with differentiation-promot-
ing genes, combined with a reduction at genes associated with HSC maintenance. When they 

profiled the principal regulatory chromatin marks with the use of chromatin immunopre-

cipitation sequencing (ChIP-seq) they found that the H3K4me3 mark, an activating histone 

modification, increases with age at loci that regulate HSC self-renewal, potentially underlying 
the increase in HSC number observed with aging [116].

In satellite cells of muscles, H3K4me3 levels modestly decrease with age, whereas levels of the 

repressive modification H3K27me3 significantly increase with age. It has also been shown that 
the expression levels of histones themselves decrease with age [117]. The levels of H4K16Ac, 

another activating modification, decrease with age in HSCs; inhibition of cell division control 
protein 42 homolog (CDC42) restores H4K16Ac levels to that of young HSCs and reverses 

phenotypes of HSC aging in transplantation assays [118].

It is not known whether the epigenetic changes in stem cell products affect their clinical effi-

ciency. In our recent study we intended to gain insight into the methylation status of CD34+ 

enriched cell products intended for autologous CD34+ cell transplantation in patients with 

cardiomyopathy. We found that the global DNA methylation and hydroxymethylation sta-

tus as well as the target methylation profile of 94 stem cell transcription factor genes in 
CD34+ enriched cell products did not differ significantly as compared to initial leukapher-

esis products. The epigenetic landscape of different cell products can tell us little about the 
functional capacity and regenerative properties of CD34+ cells (Rozman et al. [108]).
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2.6. Changes of microRNA

Impairments in stem cell function that occur during aging are globally mirrored in the epig-

enome and transcriptome of HSCs, including the microRNAs. MicroRNAs (miRNAs) are 

small noncoding evolutionarily conserved RNAs that regulate gene expression primarily at 

the posttranscriptional level. They act by binding to specific sequences in the 3′ untranslated 
region of their target genes and causing the transcripts to be degraded by the RNA-induced 

silencing complex (RISC). The human genome encodes over 1000 miRNAs that appear to 

target about 60% of other genes. MiRNAs are important posttranscriptional regulators of 
gene expression and play important and diverse roles in almost all biological and metabolic 

processes, including early development, cell proliferation, cell cycle regulation, apoptosis, 

fat metabolism, signal transduction, aging and diseases, as reviewed recently [119].

In stem cells, miRNAs influence properties such as potency, differentiation, self-renewal, and 
senescence. Different kinds of stem cells possess distinct miRNA expression profiles. Among 
other things, miRNAs regulate a number of cell functions such as defense mechanisms against 

ROS, DNA repair, and apoptosis. These properties, and the assumption that miRNAs act as 

some kind of general switch, make them highly relevant in research on aging [120], especially 

since specific miRNA expression profiles could be used to terminally differentiate cells from 
stem cells in order to treat various diseases, including myocardial infarction, neurodegenera-

tive diseases, blood diseases, and muscle diseases [121].

miRNAs regulate the state of stem cells by directly targeting three prime untranslated region 

(3′-UTR) of pluripotency factors in the section of messenger RNA. For instance, miR-145 
miRNA represses the pluripotency of human embryonic stem cells (ESCs) through targeting 

octamer-binding transcription factor 4 (Oct4; also known as Pou5f1), sex determining region 

Y-box 2 (Sox2), and kruppel-like factor 4 (Klf4) [122]. In addition, miRNAs target the coding 

regions of transcription factors to modulate stem cell differentiation. miR-296, miR-470, and 
miR-134 regulate mouse ESC differentiation by targeting the coding regions of Nanog, Oct4, 
and Sox2 [123]. Other classified miRNAs also regulate pluripotency, self-renewal, reprogram-

ming, and differentiation of stem cells [124–128].

miRNAs act as key regulators of hematopoiesis during the proliferation and differen-

tiation of HSCs in mammals. Ectopic expression of AAAGUGC seed-containing miRNAs 

enhance the primary hematopoietic progenitors [129]. miR-181, miR-223, and miR-142 

are preferentially expressed in hematopoietic tissues, with miR-181 significantly promot-
ing B-lymphocyte differentiation [130]. miR-125a is conservatively expressed in long-term 

HSCs and can increase the number of HSCs by targeting the apoptosis factor Bax1 [131]. 

Furthermore, overexpression of miR- 125b leads to lethal myeloid leukemia in mice [132]. 

See the recent review of Li et al. [119].

Besides regulating the ESCs, miRNAs exert several other actions that indirectly impact stem 

cells and regeneration. For instance, let-7 family and miR-15a/16-1 cluster function as regula-

tors of the cell cycle and tumor suppressors. While miR-29a and miR-29b regulate progres-

sion through the cell cycle [133], miR-9 and miR-124a play a critical role in specification of the 
neural progenitors from ESCs [134, 135].
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On the other hand, miRNAs also modulate development of other tissues, such as cardio-

vascular differentiation of cardiomyocyte progenitor cells and stem cells, including the dif-
ferentiation of cardiomyocytes, vascular smooth muscle cells, and endothelial cells. They are 

involved in the regulation of cardiovascular differentiation of human-derived cardiomyocyte 
progenitor cells, the cardiovascular differentiation of ESCs and iPSCs, in cardiac differentia-

tion of ESCs after myocardial infarction, vascular endothelial growth factor (VEGF) signaling 

and angiogenesis, which has great therapeutic value for the future regenerative medicine, 

as reviewed recently by Li et al. [119]. Some other observations comment on the important 

role miRNAs play in brain development, as well as in later stages of mammalian neuronal 

maturation and synapse development. Conversely, dysregulation of miRNAs expression has 

been implicated in developmental defects, cancers and nervous system diseases, as recently 

reviewed by Murashov [121].

Lee et al. have measured the expression levels of 521 small regulatory miRNAs in young and 

old animals of six mouse strains and found that expression levels of three miRNAs (miR-

203-3p, miR-664-3p, and miR-708-5p) were associated with lifespan. Pathway analysis of 

binding sites for these three miRNAs revealed enrichment of key target genes involved in 

aging and longevity pathways including mechanistic target of rapamycin (mTOR), forkhead 

box protein O (FOXO) and mitogen-activated protein kinase (MAPK), most of which also 

demonstrated associations with longevity [136].

In conclusion, one could infer that miRNAs have critical roles in stem cell reprogramming, 

pluripotency maintenance and differentiation, as well as some other important cellular func-

tions. In the future, miRNAs may greatly contribute to stem cell clinical therapy and have 

potential applications in regenerative medicine.

2.7. Changes in RNA splicing and ribosomal machinery

RNA splicing is the editing of the nascent precursor messenger RNA (pre-mRNA) transcript into 

a mature messenger RNA (mRNA). After splicing, introns are removed and exones are joined 

together. Splicing usually takes place immediately after transcription, and is carried out in a 

series of reactions catalyzed by the spliceosome, a complex of small nuclear ribonucleoproteins 

(snRNPs). This results in an mRNA molecule, which can be translated into protein. Splicing 

enables one gene to generate multiple proteins allowing organisms to generate complexity from 

a relatively limited number of genes.

In healthy aging, splicing homeostasis takes place, while deregulation of the splicing 

machinery is linked to several age-related chronic illnesses. Certain studies point out that 

defective splicing machinery and de-regulation of RNA splicing acts as a driver of the aging 

process itself. Studies on the roundworm C. elegans show that with age they lose muscle 

mass, their cutickle thickens, they wrinkle, and they experience declines in fertility and 

immune functions. The pre-mRNA splicing homeostasis is a biomarker and predictor of 

life expectancy in this worm. Recently, Heintz and her colleagues found that splicing could 
also play a major role in the aging process of humans. Using transcriptomics and in-depth 

splicing analysis in young and old animals they found defects in global pre-mRNA  splicing 
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with age that are reduced by caloric restriction via one particular component of the splic-

ing apparatus, called splicing factor 1 (SFA-1)—a factor also present in humans. They also 

showed that SFA-1 is specifically required for lifespan extension by caloric restriction and 
by modulation of the target of rapamycin complex 1 (TORC1) pathway components 5′ AMP-
activated protein kinase (AMPK), RAGA-1, and ribosomal protein S6 kinase (RSKS-1/S6 

kinase), and demonstrated that overexpression of splicing factor 1 (SFA-1) extends lifespan. 

Together, these data demonstrate a role for RNA splicing homeostasis in caloric restriction 

longevity and suggest that modulation of specific spliceosome components may prolong 
healthy aging [137].

The ribosomal machinery that is responsible for protein synthesis (translation), i.e., linking 

amino acids in the order specified by mRNA molecules, consists of two major components: 
the small ribosomal subunit, which reads the RNA, and the large subunit, which joins amino 

acids to form a polypeptide chain. Ribosomes contain ribosomal RNA (rRNA) molecules and 

a variety of highly conserved ribosomal proteins, and similar to other cellular compartments, 

these are particular targets of aging. After a comprehensive integrated genomic analysis of 

young and aged cells, consisting of the profiling of transcriptome, DNA methylome, and his-

tone modifications of young and old murine HSCs, Sun et al. found an increased transcription 
of ribosomal protein and RNA genes, and hypomethylation of rRNA genes [116]. Indeed, 

inhibition of ribosomal proteins or their regulators has been shown to extend life span in yeast 

and worms [138, 139]. Although the  research has not been focused on the plicing in stem cells 

we can expect that the splicing homeostasis in stem cells is similarly affected by aging.

2.8. Proteostasis

The proteostasis or homeostasis of the proteome is a complex system that takes care of the 

proper folding, functioning, and degradation of cellular proteins. Mechanisms, by which 

proteostasis is ensured, include regulated protein translation, chaperone assisted protein 

folding, and protein degradation pathways. Adjusting each of these mechanisms to the 

requirements of proteins, which need to be correctly folded, is essential for maintaining all 

cellular functions.

In previous paragraphs it has been already explained that in aged subjects, stem cells dis-

play a thoroughly altered proteome. Many studies have demonstrated that proteostasis is 

altered with aging and that accumulation of misfolded or damaged proteins is an important 

determinant of the aging process [140]. Indeed, many different proteins involved in cytoskel-
etal organization, anti-oxidant defense, and other functions are age-dependent and associ-

ated with functional impairment of the cell functions, including decreased responsiveness to 

physical environmental cues and decreased resistance to oxidative stress [15]. Chronic expres-

sion of unfolded, misfolded or aggregated proteins contributes to the development of some 

age-related pathologies, such as Alzheimer’s disease, Parkinson’s disease and cataracts [141]. 

Since the passage of altered proteins to progenitor cells during asymmetric division could 

compromise development and cause aging, proteostasis maintenance in stem cells has an 

important role in organismal aging [142].
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During the evolution the cells developed a variety of mechanisms that maintain and promote 

proteostasis and slow down the aging. This is performed by an array of quality control mech-

anisms that preserve the stability and functionality of the proteome. Various mechanisms for 

the correction of folded proteins have developed, such as the heat-shock family of proteins, as 

well as the corrective mechanisms for the degradation of misfolded proteins in proteasome or 

the lysosome [140, 143]. Moreover, there are regulators of age-related proteotoxicity, such as 

modifier of protein aggregation (MOAG-4), that act through an alternative pathway distinct 
from molecular chaperones and proteases [144]. The stress-induced synthesis of cytosolic and 

organelle-specific chaperones is significantly impaired in aging [145]. All these systems func-

tion in a coordinated fashion to restore the structure of misfolded polypeptides or to remove 

and degrade them completely, thus preventing the accumulation of damaged components 

and assuring the continuous renewal of intracellular proteins.

As previously mentioned, there are several approaches for maintaining or enhancing proteosta-

sis aimed at activating protein folding and stability mediated by chaperones. A number of animal 

models support a causative impact of chaperone decline on longevity. In particular, transgenic 

worms and flies overexpressing chaperones are long-lived [146, 147]. Also, mutant mice deficient 
in a co-chaperone of the heat-shock family exhibit accelerated aging phenotypes, whereas long-

lived mouse strains show a marked up-regulation of some heat-shock proteins [148].

Moreover, activation of the master regulator of the heat-shock response, the transcription 

factor heat shock factor 1 (HSF-1), increases longevity and thermotolerance in nematodes 

[149], while amyloid-binding components can maintain proteostasis during aging and extend 

lifespan [150]. Pharmacological induction of the heat-shock protein Hsp72 preserves muscle 

function and delays progression of dystrophic pathology in mouse models of muscular dys-

trophy [151].

Small molecules may be also employed as pharmacological chaperones to assure the refold-

ing of damaged proteins and to improve age-related phenotypes in model organisms [152].

For the degradation of unneeded and misfolded proteins there are special protein complexes, 

named proteasomes, which degrade them with proteolysis, a chemical reaction that breaks 

peptide bonds. The degradation process yields peptides of about seven to eight amino acids 

long, which can then be further degraded into shorter amino acid sequences and used in syn-

thesis of new proteins.

Stem cells can also maintain high levels of autophagy and proteasome activity to clear dam-

aged proteins. For example, autophagy is greater in HSCs and skin stem cells than in sur-

rounding differentiated cells [153]. Although proteasome activity has yet to be characterized 

in adult stem cells, it has been shown that human ESCs exhibit high proteasome activity [142]. 

Fly oocytes, which require similar long-term proteome-protection mechanisms as stem cells, 

maintain high activity of large multi-protein complex 26S proteasome with age, despite the 

decline of its activity in the somatic cells [154].

The activities of the two principal proteolytic systems implicated in protein quality control, 

namely, the autophagy-lysosomal system and the ubiquitin-proteasome system, decline with 
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aging [155, 156], supporting the idea that collapsing proteostasis constitutes a common fea-

ture of old age. In relation to the proteasome, activation of epidermal growth factor (EGF) sig-

naling extends longevity in nematodes by increasing the expression of various components 

of the ubiquitin-proteasome system activators accelerates the clearance of toxic proteins in 

human cultured cells [157]. Moreover, increased expression of the 26S proteasome subunit 

RPN-6 by the FOXO transcription factor DAF-16 confers proteotoxic stress resistance and 

extends lifespan in C. elegans [158].

Regarding autophagy, transgenic mice with an extra copy of the chaperone-mediated autoph-

agy receptor lysosome-associated membrane protein 2a (LAMP2a) do not experience aging-

associated decline in autophagic activity and preserve improved hepatic function with aging 

[159]. This is a promising example of genetic manipulations that improve proteostasis and 

delay aging in mammals [159]. Functional decline in the cellular proteolytic machinery leads to 

the formation of an autofluorescent protein called lipofuscin, which can be used as a biomarker 
of aging [160]. Based on the given data it is obvious that SCs are a subject of age related changes 

of proteostasis and further studies will probably focus on proteostasis maintanance in SCs.

2.9. Changes of cell polarity

In order to prevent the accumulation of damaged components, stem cells developed diverse 

mechanisms such as the asymmetric segregation of damaged proteins and enhanced pro-

teostasis. After a symmetric division, stem cells produce two daughter cells with the same 

fate, whereas after asymmetric division they produce one daughter stem cell and one dif-

ferentiating daughter cell. During the asymmetric division, damaged components such as 

damaged DNA, replicating circular DNA, carbonylated proteins and damaged organelles 

are distributed into the differentiating cell, whereas the daughter stem cell remains youthful 
[161, 162]. In a similar way, stem cells have been shown to asymmetrically segregate dam-

aged proteins and mitochondria into the progeny, which retains the stemness of the mother 

cell [163, 164]. A similar evolutionary principle enables that the parental strand of DNA 

is always sequestered in the daughter stem cell, whereas the strand synthesized during S 

phase, which might contain errors from replication, is directed to the differentiating daugh-

ter cell [165]. In this way the non-random strand segregation serves to avoid mutations and 

to control the inheritance of epigenetic state [166]. It was shown that the distribution of 

epigenetic modifications on mitotic chromosomes differs, which means that the bias is gen-

erated non-randomly during chromatid segregation. In Drosophila male GSCs, the histone 

modifications present in the stem cells are distinct from those in the differentiating daughter 
cells, which helps to retain pre-existing histones in the mother stem cell while imparting 

newly synthesized histones to the daughter cell. This retention of pre-existing histones in 

the stem cells is a prerequisite for maintaining their ability to self-renew. Different epigen-

etic modifications potentially lead to variations in the otherwise equivalent chromatids that 
segregate during asymmetric cell divisions [167].

There is accumulating evidence that other organelles are also non-randomly distributed 

between daughter cells. Numerous organelles have been widely studied for their asymmetric 

segregation in non-mammals and mammals, such as mitochondria, centrioles of the centro-

some, and midbody, as well as different protein complexes [168].
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The asymmetric division of stem cells first requires that a cell be polarized and several stud-

ies demonstrate that aged germinal stem cells (GSCs) and HSCs are less able to perform such 

polarized divisions, suggesting that loss of polarity contributes to stem cell aging [169]. Other 

data on HSCs suggest that changes in age-related Wnt signaling are a cause of this loss of polar-

ity [170]. This process also appears to occur in satellite cells [171]. There is certain disagreement 

as to whether polarized division occurs in other stem cell populations, such as intestinal, hair 

follicle, neural or germline stem cells, as reviewed by Yennek and Tajbakhsh in 2013 [172].

2.10. Changes in metabolism and nutrient sensing

Metabolic status plays an important role in stem cell aging [2]. Similar to other cells, stem cells 

generate energy via glycolysis or oxidative phosphorylation. Quiescent stem cells generally rely 

upon glycolysis, perhaps because this reduces the abundance of ROS [142]. Many adult stem cells 

also reside in hypoxic niches, perhaps as a part of a mechanism to limit ROS production [173].

For the provision of necessary energy, proliferating stem cells rely on the oxidative phosphor-

ylation, which predisposes them to oxidative damage and cellular dysfunction. Therefore the 

molecules that scavenge ROS or enable the overexpression of the transcription factor NRF2, 

which regulates the response to oxidative stress, reduce the aged phenotype of old cell.

2.10.1. Caloric restriction

The most robust longevity-extending intervention across species is caloric restriction (CR). 

For example, CR increases the abundance of satellite cells in muscles [174] and improves the 

function of many stem cell populations, including HSCs in mice [175] and GSCs in flies [176].

CR also promotes ISC self-renewal in mice by induction of the enzyme BST1 in Paneth cells, 

which form the niche. BST1 then converts NAD+ to the paracrine signal cyclic ADP ribose 

(cADPR), which is sensed by the ISCs [177]. Pathways and factors implicated in mediating the 

response of stem cells to CR that extend lifespan, include insulin and IGF-1 signaling (IIS) path-

way, target of rapamycin (TOR) signaling, AMPK, sirtuins and FOXO transcription factors [178].

2.10.2. Glucose metabolism

Recent studies also show that HSCs and satellite cells increase glucose and glutamine metabo-

lism during activation [179] — an alteration that mimics the Warburg effect in cancer cells. 
Similarly, in skeletal muscle, aging is associated with pseudohypoxia and Warburg-like metab-

olism, which compromise cellular function [180] and promote oncogenic transformation [181].

Glucose is the main nutrient in the cell, whereas insulin informs cells about the presence of 

glucose. The intracellular signaling pathway that governs insulin is the same as that elicited 

by IGF-1, which is, together with the growth hormone (GH), produced by the anterior pitu-

itary, and is the secondary mediator of the somatotrophic axis in mammals. For this reason, 

IGF-1 and insulin signaling are known as the “insulin and IGF-1 signaling” (IIS) pathway. 

GH and IGF-1 levels decline during normal aging, as well as in mouse models of premature 

aging [182]. Remarkably, the IIS pathway is the most conserved aging- controlling pathway 
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in evolution and among its multiple targets are the FOXO family of transcription factors and 

the mTOR complexes, which are also involved in aging and conserved through evolution. 

Similarly, genetic polymorphisms or mutations that reduce the functions of GH, IGF-1 recep-

tor, insulin receptor or downstream intracellular effectors such as protein kinase B (PKB), 
also known as AKT, mTOR and FOXO, influence longevity both in humans and in model 
organisms, further illustrating the major impact these pathways have on longevity [53].

Multiple genetic manipulations of the IIS pathway, which attenuate signaling intensity at 
different levels, consistently extend the lifespan of worms, flies and mice. Genetic analyses 
indicate that this pathway mediates part of the beneficial effects of CR on longevity [183].

Mice with an increased dosage of the tumor suppressor protein phosphatase and tensin 

homolog (PTEN) exhibit a general down-modulation of the IIS pathway and an increased 

energy expenditure that is associated with improved mitochondrial oxidative metabolism, as 

well as with an enhanced activity of the brown adipose tissue [184]. In line with other mouse 

models with decreased IIS activity, PTEN-overexpressing mice, as well as hypomorphic phos-

phatidylinositol-3-kinase (PI3K) mice show an increased longevity [185].

Organisms with a constitutively decreased IIS pathway can live longer because they have lower 

rates of cell growth and metabolism, and a lower rates of cellular damage. Similarly, the aged 

organisms decrease their IIS pathway in an attempt to extend their lifespan. However, defen-

sive responses against aging eventually exhaust and later on they even aggravate aging [186].

2.10.3. Other nutrient-sensing systems: mammalian target of rapamycin (mTOR), AMP-activated 

protein kinase (AMPK) and sirtuins

Besides the IIS pathway, three additional related and interconnected nutrient-sensing systems 

that participate in glucose –sensing: mammalian TOR (mTOR), for the sensing of high amino 

acid concentrations; AMPK that senses low energy states by detecting high AMP levels; and 
sirtuins, which sense the low energy states by detecting high NAD+ levels [187].

The mTOR kinase is part of two multiprotein complexes, mTORC1 and mTORC2, that reg-

ulate essentially all aspects of anabolic metabolism. Genetic down-regulation of mTORC1 

activity in yeast, worms and flies extends longevity and attenuates further longevity benefits 
from CR, suggesting that mTOR inhibition phenocopies CR [188]. In mice, treatment with 

rapamycin also extends longevity in what is considered the most robust chemical interven-

tion to increase lifespan in mammals [189].

Genetically-modified mice with low levels of mTORC1 activity, but normal levels of mTORC2 
activity, have an increased lifespan [190], and mice deficient in ribosomal protein S6 kinase beta-1 
(S6 K1), which is a main mTORC1 substrate, are also long-lived [191]. This means that the down-

regulation of mTORC1/S6 K1 acts as the critical mediator of longevity in relation to mTOR.

It seems that the intense trophic and anabolic activity, signaled through the IIS or the mTORC1 

pathways, is a major accelerator of aging. Although inhibition of TOR activity clearly has ben-

eficial effects during aging, it also has some undesirable side-effects, such as impaired wound 
healing, insulin resistance, cataract formation and testicular degeneration in mice [192]. In order 
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to determine the extent to which beneficial and damaging effects of TOR inhibition can be sepa-

rated from each other, it will be crucial to understand the mechanisms involved.

There are two another nutrient sensors, AMPK and sirtuins, which act in the completely 

opposite direction of the IIS and mTOR. Instead of signaling nutrient abundance and anabo-

lism, they signal nutrient scarcity and catabolism. Accordingly, their up-regulation promotes 

a healthy aging. AMPK activation has multiple effects on metabolism and, remarkably, shuts 
off mTORC1 [193]. There is evidence indicating that AMPK activation may mediate lifespan-

extension following metformin administration to worms and mice [194, 195].

The role of sirtuins in lifespan regulation has been discussed above (see section 2.2 on 

DNA mutations). In addition, SIRT1 can deacetylate and activate the PPARγ co-activator 
1α (PGC-1α) [43]. PGC-1α orchestrates a complex metabolic response that includes mito-

chondriogenesis, enhanced anti-oxidant defenses, and improved fatty acid oxidation [196]. 

Moreover, SIRT1 and AMPK can engage in a positive feedback loop, thus connecting both 

sensors of low-energy states into a unified response [197].

Collectively, currently available evidence strongly supports the idea that anabolic signaling 

accelerates aging, and decreased nutrient signaling extends longevity [183]. Consistent with 

the relevance of deregulated nutrient-sensing as a hallmark of aging, CR increases lifespan or 

healthspan in all investigated eukaryote species, which are unicellular and multicellular organ-

isms of several distinct phyla, including non-human primates [198]. What is more, a pharma-

cological manipulation that mimics a state of limited nutrient availability, such as rapamycin, 

can extend longevity in mice (Harrison et al. [189]). All of these reflects in stem cells, however, 
the exact mechanisms in the metabolism of stem cells awaits further clarification.

2.11. Niche deterioration

In the context of a tissue, adult stem cells reside in a special microenvironment referred to 

as the “niche”. The niche allows interaction between the stem cells and different extrinsic 
signals. In some instances, these signals are mediated via direct cell to cell communication 

or cell to matrix interaction. Another category of signals comprises of diffusible signaling 
ligands which regulate various transcription programs in the stem cells. These interactions 

are crucial, as they are able to regulate whether stem cells are quiescent, self-renew, or commit 

to differentiation [199].

Similarly to the stem cells themselves, the BM niche changes substantially with age. The niche 

consists of mesenchymal stem cells (MSCs), stromal cells, osteoblasts, adipocytes, and other 

cells, as well as extracellular matrix. The proliferative capacity of human MSCs has been 

shown to decline with age [200]. Certain other authors noticed a prominent increase in adipo-

cytes in the aged BM, which is associated with lower HSC potential [201].

Mechanisms of niche aging are probably the same as in other cells. Khatri et al. recently 

showed that accumulation of excessive ROS in BM stromal cells suppress BM cellularity by 

affecting microenvironment in aged mice. Treatment of these mice with a polyphenolic anti-
oxidant curcumin has quenched ROS, rescued stromal cells from oxidative stress-dependent 

cellular injury, and improved hematopoietic reconstitution in old (18 months) mice. This 
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implicates the role of ROS in perturbation of stromal cells function upon aging, which in turn 

affects BM’s reconstitution ability in aged mice. Rejuvenation therapy using curcumin, prior 
to transplantation of HSCs and progenitor cells could be an efficient strategy for successful 
marrow reconstitution in older mice [202].

The question remains as to whether aged BM niche cells induce age-related changes in 

HSCs. Evidence suggests that aging in the microenvironment influences HSC engraftment, 
as aged HSCs demonstrate a lower engraftment after transplantation [203]. Hematopoietic 

cells engrafted in subcutaneous implantation of BM stroma from both aged and young mice 

exhibit lower spleen colony-forming units (CFU-S) capacity [204]. Furthermore, young HSCs 

transplanted to aged niches exhibit impairment in homing and decreased potential for dif-

ferentiation, failing to efficiently repopulate an old niche [205].

Another characteristic of aged HSCs is an altered differentiation potential tending toward higher 
myeloid/platelet output and lower lymphoid output. Skewing toward myeloid differentiation is 
attributed to the niche microenvironment, since the transplantation of young HSCs to aged recip-

ients resulted in a tendency toward higher myeloid output [206]. Transplantation experiments 

on old recipients show that granulocyte-macrophage progenitor (GMP) expansion is comparable 

regardless of donor age. Also, the differentiation of B-cells depends on the BM microenviron-

ment [207] and it was shown that aged HSCs occupy different niches to young HSCs [208].

One of the mechanisms of aging in the hematopoietic system are the changes in adhesion 

between HSCs and niche cells. Expression of various adhesion molecules in HSCs alters with 

age so the aged HSCs express low levels of integrin α4, integrin α5 and VCAM-1, and high lev-

els of P-selectin and integrin α6 compared to young HSCs [209]. In Drosophila, the age-depen-

dent E-cadherin decline in the stem cell-niche junction that regulates the adhesion of GSCs to 

the niche was shown to contribute to the aging of stem cells [210]. Another authors similarly 

showed that the aged HSCs exhibit less adhesion to the stromal cells compared to the young 

ones [211]. Another group has shown that an overexpression of CDC42, a small Rho GTPase 

that is involved in adhesion signaling, causes premature aging phenotypes in these cells [212].

Age-related changes in niche cells may also be attributed to changes in their metabolic state. MSCs 
obtained from old human BM have an elevated level of ROS along with p21 and p53 expression, 

indicating cellular senescence [17]. As already mentioned, high oxygen tension causes senes-

cence in cultured human BM MSCs, whereas the continuous hypoxia make the human MSCs 

to exhibit higher self-renewal divisions without cellular senescence [213]. Compared to MSCs 

cultured in low oxygen, MSCs cultured in higher oxygen levels utilize oxidative phosphoryla-

tion, suggesting that the generation of ROS might influence MSC senescence.

Age-related changes in the stem cell niches can influence HSC mobilization from the BM, 
which is extremely important in the clinical settings. Several authors, including ourselves, 
have noted that the collection of stem cells from aged patients results in low yields of mobi-

lized HSCs intended for therapy [214, 215]. It is interesting that in various animal models an 

opposite effect was demonstrated since the granulocyte colony-stimulating factor (G-CSF)-
induced mobilization resulted in increased numbers of HSCs in aged mice [211]. The authors 

deduce that differences in mobilization potential according to age are influenced mainly by 
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the niche in which the HSCs reside and that the clonality of HSCs may largely be influenced 
by specific niche cells at different anatomical sites [216].

Various studies utilizing heterochronic transplantation and parabiosis experiments showed 

that aging can be also be caused by extrinsic mechanisms, i.e., it is caused by factors external 

to the cell itself. This was shown in satellite cells [217], NSCs [218, 219], and GSCs [220]. In 

flies, the cells that form the niche of the GSCs themselves decline in abundance with age, pos-

sibly because of decreased self-renewal [221, 222].

Aged niche cells can also fail to send proper signals to stem cells, namely through morpho-

gen and growth factor signaling, thereby affecting cell fate decisions. For example, increased 
fibroblast growth factor 2 (FGF2) in the aged satellite cell niche of mouse muscle impairs self-
renewal [223]. Markers of inflammation also increase in the aging niche, for example in hair 
follicle stem cells, and impair stem cell function [224].

Taken together, stem cells require support cells that constitute the niche to maintain proper 

function. Thus, aging of the stem cell niche can also critically modulate stem cell function.

2.12. Influence of various circulating factors

The concentrations of various circulating factors exerts important influences on stem cell 
aging. Many of these factors have been identified by rejuvenating effects of blood or plasma 
derived from either young or calorically restricted animals. Among such factors are insulin 

and IGF-1, which have been already discussed (see paragraph 2.10.). Reduced signaling from 

these molecules is believed to mediate much of the longevity-extending effects of CR in mice. 
An opposite example is the TGF- β molecule, the levels of which increase during aging in 
mouse and human sera, which impairs the function of satellite muscle cells and NSCs [225]. 

By contrast, growth differentiation factor 11 (GDF11) has been suggested to improve the func-

tion of satellite cells and NSCs, and its levels appear to decrease during aging [218]. The valid-

ity of the effects of GDF11 on satellite cells, however, has been questioned by other studies, 
although it is worth noting that the dose of GDF11 and the skeletal muscle injury models used 

in the various studies differed [226]. Whether GDF11 actually declines with age has also been 

questioned, based in part on the argument that GDF11 detection methods cross-react with 

myostatin (ibid.), although a recent study using additional methods and controls also reports 

that GDF11 declines with age in mice [227]. Finally, the latest reports infer that high levels of 

GDF11 cause reductions in body and heart weight in both young and old animals, suggestive 

of a cachexia effect with the conclusion that elevating blood levels of GDF11 in the aged might 
cause more harm than good [228].

An important debate regarding the decline in stem-cell function is the relative role of 

cell-intrinsic pathways compared to cell-extrinsic ones [229]. Recent work has provided 

strong support for the latter. In particular, CR increases intestinal and muscle stem func-

tions through cell-extrinsic mechanisms [174]. Similarly, when muscle-derived stem cells 

from young mice are transplanted to progeroid mice, this extends their lifespan and 

improves degenerative changes even in tissues where donor cells are not detected, sug-

gesting that their therapeutic benefit may derive from systemic effects caused by secreted 
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factors [230]. Furthermore, parabiosis experiments have demonstrated that the decline in 

neural and muscle stem cell function in old mice can be reversed by systemic factors from 

young mice [231, 232].

There is also an ancient system in each cell that relates to the homeostasis of intracellular cal-

cium (Ca2+), which in normal cell sustains a 20,000 fold concentration gradient to the exterior 

of the cell, resulting in the extracellular Ca2+ acting as cellular regulator when it enters the 

cell via the Ca2+ channels. This gradient is sustained by specific pumping and transporting 
mechanisms consisting of protein molecules [233]. Anomalies of these proteins results in an 

increase of intracellular calcium which can cause various diseases. With age, the hampered 

calcium homeostasis can lead to different muscle, immune and neural related defects [234].

2.13. Stem cell exhaustion

Although stem cells are regarded as immortal, as they are not subject to replicative senescence, 

they are susceptible to damage accumulation over time. Besides many other changes, a decline 

in their relative numbers and changes in subpopulations were observed. The group of dor-

mant and active stem cells, existing in the niches of an organism that can be considered a pool 

of regenerative reserve, plays an important role in prevention of disease, in regeneration and 

aging. For instance, a decline in CD34+ circulating progenitor cells was reported with advanc-

ing age. When 100 octogenarians were observed for 7 and 10 years it was demonstrated that 

the number of their circulating CD34+ cells better predicted their lifespan and cardiovascular 
(CV) issues related mortality then the classic cardiovascular risk factors (hypertension, smok-

ing, hypercholesterolemia), levels of inflammatory markers, or levels of cholesterol, or some 
other traditional cardiovascular indexes such as FRS and CVFRs The chances of reaching an 

older age depended on higher numbers of CD34+ cells at baseline, thus the number of CD34+ 

cells could be considered as a biomarker of longevity in the elderly over 80 years [235].

On the other hand, there are reports that in certain tissues the numbers of adult stem cells 

even increase with age, however the number of their parent clones decreases, meaning that 

fewer pluripotent stem cells give rise to more frequent progeny, in order to compensate for 

the decrease of numbers [236]. Ruzankina and Brown suggest that mammals in fact do have 

a finite number of stem cell replications per life and that aging of the hematopoietic system, 
which is due to a finite doubling capacity of stem cells, degrades its regenerative potential as 
well as the potential for preventing cancer [237].

Verovskaya used cellular barcoding combined with multiplex high-throughput sequencing to 

demonstrate clonal behavior of young HSCs transplanted to older organisms. In their study, 

the majority of transplanted clones steadily contributed to hematopoiesis in the long-term, 

although the clonal output in granulocytes, T cells, and B cells was substantially different. The 
final pool of old HSCs was composed of multiple small clones, whereas the young HSC pool 
was dominated by fewer, but larger, clones [238].

Holstege et al. have showed that the contents of a stem cell compartment actually deplete 

with old age. In the nonrepetitive genome of a 115-year-old centenarian woman they found 

approximately 450 somatic mutations that accumulated in the last years of her life, and the 

distribution of these mutations suggested that the majority of her peripheral white blood cells 
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were offspring of only two HSC clones that were still active in her old age. The telomeres of 
her white blood cells were significantly shorter than the telomeres from other tissues, suggest-
ing that the HSCs have a finite lifespan, which is the cause of hematopoietic clonal evolution 
at extreme ages [239].

Several recent studies have confirmed that clonal hematopoiesis is almost a “normal” part of 
aging, with recent reports showing 0.8%, 11% and 19.5% of normal individuals aged <60, >80 

and >90 years, respectively, having demonstrable clonal hematopoiesis – so called age-related 

clonal hematopoiesis [240, 241]. Clonal hematopoiesis (CH) arises when a substantial propor-

tion of mature blood cells is derived from a single dominant hematopoietic stem cell lineage. 

It was recently shown, in the study on 11,262 elderly Icelanders which used whole-genome 

sequencing, that somatic mutations in candidate driver genes are thought to be responsible 

for at least some cases of CH [242].

At the same time there is ample evidence that there exist many dormant HSCs, and even 

some other and more “primitive” types of stem cells, such as for instance the VSEL stem 

cells with “primitive” embryonic characteristics, which co-inhabit the BM [243]. These 

VSEL cells exhibit some characteristics of long-term repopulating HSCs (LT-HSCs), they 

may differentiate into organ-specific cells (e.g., cardiomyocytes), and probably have a role 
in aging since the number of these cells positively correlates with longevity in several 

murine models [244]. Along with others, we have found similar cells in the reproductive 

organs [245].

It is now becoming obvious that maintaining robust stem cell pools seems to extend not only 

lifespan but also healthspan [49].

2.14. Cellular senescence – A stable arrest of the cell cycle

Cellular senescence can be defined as a stable arrest of the cell cycle coupled to typical phe-

notypic changes [246]. This phenomenon was originally described by Hayflick in human 
fibroblasts serially passaged in culture [99]. The senescence that was observed by Hayflick 
was caused by telomere shortening [101] and some other aging-associated stimuli that trig-

ger senescence independently of the telomeric process. It is for instance well known that the 

non-telomeric DNA damage and de-repression of the INK4/ARF locus, both of which progres-

sively occur with chronological aging, are also capable of inducing senescence [247].

The accumulation of senescent cells with age is a simple mathematical result of the increase in 

the rate of generation of senescent cells and/or a decrease in their rate of clearance. In normal 

physiology this has detrimental consequences, but in some circumstances it also has useful 

effects. For instance, there is good evidence that the senescent tumor cells are subjected to 
strict immune surveillance and are efficiently removed by phagocytosis [248].

Among other functions, the senescent cells manifest dramatic alterations in their secretome, 

which is particularly enriched in pro-inflammatory cytokines and matrix metalloprotein-

ases, which is referred to as the “senescence-associated secretory phenotype” [249, 250]. 

This pro-inflammatory secretome may contribute to aging (see paragraph 2.15. Intercellular 
Communication).
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Studies on aged mice have revealed an overall decrease in HSC cell cycle activity, with old 

HSCs undergoing fewer cell divisions than young HSCs [251]. This correlates with the accu-

mulation of DNA damage and with the overexpression of cell cycle-inhibitory proteins such 

as p16INK4a [252]. In fact, old p16INK4a−/− HSCs exhibit better engraftment capacity and increased 
cell cycle activity compared with old wild-type HSCs (ibid.). Telomere shortening is also an 

important cause of stem cell decline with aging in multiple tissues [253].

The accumulation of senescent cells in aged tissues has been often inferred using surro-

gate markers such as DNA damage. Some studies have directly used senescence-associated 

β-galactosidase (SABG) to identify senescence in tissues [254]. Of note, a detailed and parallel 

quantification of SABG and DNA damage in liver produced comparable quantitative data, 
yielding a total of ~8% senescent cells in young mice and ~17% in very old mice [255]. Similar 

results were obtained in the skin, lung and spleen, but no changes were observed in heart, 

skeletal muscle and kidney. Based on these data, it is clear that cellular senescence is not a 

generalized property of all tissues in aged organisms.

Some authors think that the amount of senescent cells increases with age and that senescence 

contributes to aging, but this probably undervalues the primary purpose of senescence, which 

is to prevent the propagation of damaged cells and to trigger their removal by the immune 

system. They explain that senescence is a beneficial compensatory response that contributes 
to clearing tissues of damaged and potentially oncogenic cells. This however requires an effi-

cient cell replacement system that involves clearance of senescent cells and mobilization of 

stem cells and their progenitors to re-establish cell numbers. In aged organisms, this turnover 

system may become exhausted, resulting in the accumulation of senescent cells that aggravate 

the damage and contribute to aging [48].

Deficient proliferation of stem and progenitor cells is obviously detrimental for the long-term 
maintenance of the organism, but excessive proliferation of stem and progenitor cells can also 

be deleterious by accelerating the exhaustion of stem cell niches, which can be compensated 

by stem cell quiescence over the long-term. This has been demonstrated in Drosophila ISCs, 

where excessive proliferation leads to exhaustion and premature aging [256] and in p21-null 

mice, which present premature exhaustion of HSCs and NSCs [257].

Recent studies have shown that an increase in FGF2 signaling in the aged muscle stem cell 

niche results in the loss of quiescence, stem cell depletion and diminished regenerative capac-

ity, whereas the suppression of this signaling pathway reverses these defects [223]. This opens 

up the possibility of designing strategies aimed at inhibiting FGF2 signaling to reduce stem 

cell exhaustion during aging.

As a mechanism to protect themselves from acquiring damage, many stem cells are resting for 

a long time in a quiescent state. During this time they are protected from replicative damage, 

but they are more susceptible to mutations [258]. However, although proliferating stem cells 

are more likely to encounter DNA damages [259], they repair that damages more accurately 

than do quiescent stem cells.

In addition to DNA damage, excessive mitogenic signaling is the other stress most robustly asso-

ciated with senescence. A recent account listed more than 50 oncogenic or mitogenic  alterations 
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that are able to induce senescence [260]. The number of mechanisms that implement senescence 

in response to this variety of oncogenic insults has also grown, but still, the originally reported 

p16INK4a/Rb and p19ARF/p53 pathways remain, in general, the most important ones [261]. The 

relevance of these pathways for aging becomes even more striking when considering that the 

levels of p16INK4a (and to a lesser extent also p19ARFARF) correlate with the chronological age of 

essentially all tissues analyzed, both in mice and humans [262, 263]. INK4a/ARF locus was actu-

ally determined as being genetically linked to the highest number of age-associated patholo-

gies, including several types of cardiovascular diseases, diabetes, glaucoma, and Alzheimer’s 

disease [264]. Although the activation of p53 and INK4a/ARF is a beneficial compensatory 
response that prevents the propagation of damaged cells, under the stress conditions the p53 

and INK4a/ARF responses can become deleterious and even accelerate aging [2].

Taken together, cellular senescence is a beneficial compensatory response to damage, but it 
becomes deleterious and accelerates aging when tissues exhaust their regenerative capacity. A 

moderate enhancement of the senescence-inducing tumor suppressor pathways may extend 

longevity [265], whereas at the same time, elimination of senescent cells in an experimental 

progeria model delays age-related pathologies [266]. Therefore, two interventions that are 

conceptually opposite are able to extend healthspan.

2.15. Altered intercellular communication

Beyond intrinsic cellular alterations, aging also involves changes at the level of intercellu-

lar endocrine, neuroendocrine or neuronal communication [267, 268]. As during the aging 

inflammatory reactions increase, immunosurveillance against pathogens and premalignant 
cells declines, and the composition of the peri- and extracellular environment changes, neu-

rohormonal signaling (i.e., renin-angiotensin, adrenergic, insulin/IGF-1 signaling) is con-

sequently deregulated, which affects various mechanical and functional properties of all 
tissues [48].

An important age-associated pathological finding in the intercellular communication in mam-

mals is so called “inflammaging,” i.e., an appearance of pro-inflammatory phenotype that 
accompanies aging. Several authors proposed that aging is accompanied by a chronic up-reg-

ulation of several pro-inflammatory responses. [35, 269, 270]. Inflammaging may result from 
multiple causes such as the accumulation of pro-inflammatory substances, tissue damage, the 
failure of the aged immune system to effectively clear pathogens and remove dysfunctional 
host cells, the secretion of pro-inflammatory cytokines by aged immune cells, the enhanced 
activation of the NF-κB transcription factor, or from a defective autophagy response. These 
defects and alterations result in an enhanced activation of the NLRP3 inflammasome and 
other pro-inflammatory pathways, finally leading to increased production of interleukin 
1ß (IL-1ß), tumor necrosis factor and interferons [271]. Inflammation is also involved in the 
pathogenesis of obesity and type 2 diabetes, two conditions that contribute to, and correlate 

with aging in the human population [272]. Likewise, defective inflammatory responses play 
a critical role in atherosclerosis [273].

Another link between inflammation and aging derives from the finding that inflammatory 
and stress responses activate NF-κB in the hypothalamus and induce a signaling pathway 
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that results in reduced production of gonadotropin-releasing hormone (GnRH) by neurons 

[274]. This GnRH decline can contribute to numerous aging-related changes such as bone fra-

gility, muscle weakness, skin atrophy, and reduced neurogenesis. These findings suggest that 
the hypothalamus may modulate systemic aging by integrating NF-kB-driven inflammatory 
responses with GnRH-mediated neuroendocrine effects.

Besides chronic inflammation, aged immune cells are prone to a multitude of deteriorating fac-

tors. Age related defects of innate immunity are observed not only in the macrophage/mono-

cyte compartment, which is probably the main “culprit” of inflammaging, but also in other 
cells, i.e., NK cells, dendritic cells, and granulocytes, whereas the defects of adaptive immunity 

are observed in both the B-cell and the T-cell compartments. Aging of the immune system or 

“immunosenescence” is characterized by a time-dependent functional alteration of immunity 

leading to immunodeficiency [275, 276] that manifests in chronic inflammation [277], reduced 

resistance to infections [278], poor responses to vaccination [279], and increased incidence of 

autoimmunity and cancers. Similarly, the involvement of immune processes in clinical con-

ditions, such as atherosclerosis, diabetes, and dementia, have been described [280, 281]. The 

impairment of the immune system exerts an influence on the increased morbidity and mortal-
ity observed in human subjects as they age [282].

There is also accumulating evidence indicating that aging-related changes in one tissue can 

lead to aging-specific deterioration of other tissues. Typical case are the inflammatory cyto-

kines that can cause so called “contagious aging”. In certain bystander effects senescent cells 
induce senescence in neighboring cells via gap junction-mediated cell-to-cell contacts and 

processes involving ROS [283]. The microenvironment contributes to the age-related func-

tional defects of CD4 T cells, as assessed by using an adoptive transfer model in mice [284]. 

Likewise, impaired kidney function can increase the risk of heart disease in humans [285]. 

Conversely, lifespan-extending manipulations targeting one single tissue can delay the aging 

process in other tissues [286].

Defective intercellular communication underlying aging processes, including genetic, can 

be restored by nutritional or pharmacological interventions that may improve the cell–cell 

communication properties lost with aging [48]. Of special interest in this regard are the CR 

approaches to extend healthy lifespan [287] and the rejuvenation strategies based on the use 

of blood-borne systemic factors identified in parabiosis experiments [288, 289]. Moreover, the 

long-term administration of anti-inflammatory agents, such as aspirin, may increase longev-

ity in mice and healthy aging in humans [290, 291]. Finally, it also appears possible to extend 

lifespan by manipulating the composition and functionality of the intestinal bacterial ecosys-

tem of the human body [292]. The near future research will undoubtedly bring spectacular 

results in this field of human physiology that will also be translated to the clinical medicine.

3. Conclusion

Although the stem cells are often considered “a fountain of youth” they are subjected to 

various aging and degenerative processes. Contrary to somatic cells, they have developed a 

Stem Cells in Clinical Practice and Tissue Engineering56



plethora of mechanisms that prevent or delay aging and age-related pathology. Over recent 

decades we have witnessed an immense increase in advanced therapies. The cells used in 

therapeutic products must meet stringent standards of quality. The huge increase in stem cell 

based therapies especially demands that we use the most advanced analysis of stem cell grafts 

to ensure optimal performance.

The aging of stem cells is an important biological factor that contributes to the general aging 

of an organism. Therefore, senescence and the age related status of grafted stem cells have to 

be taken into account in every stem cell based therapy, as well as in tissue engineering proce-

dure. Further research on the cellular mechanisms leading to the aging of stem cells will not 

only answer various burning questions related to current cell based therapies, but also pave 

the way to designing future counter-aging procedures.
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