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Abstract

Urinary tract infections (UTIs) rank second among infectious diseases around the world, 
and this makes them significant. There are many microbial agents which may cause UTIs. 
Enterobacteriaceae family members are recognized as important UTI bacterial causative 
agents. Among them, uropathogenic Escherichia coli (UPEC) pathotypes are considered as 
the most important bacterial agents of UTIs. Today, genomics and bioinformatics explain 
us why UPEC strains are so considerable pathogens regarding UTIs. There is a diversity 
of E. coli strains involving commensal and pathogenic strains. Genomics shows that com-
mensal strains of E. coli encompass the minimal amount of genome and genetic elements 
among E. coli populations, whereas the pathotypes of E. coli possess the maximal or a big 
portion of genomic elements. Previous studies confirm the presence of a vast range of viru-
lence genes within the pool of E. coli pathotypes like UPEC. So, the pool of virulence genes 
(virulome) belonging to UPEC enables UPEC pathotypes to have huge genomes with the 
ability of different levels of pathogenesis. The more virulence factors, the more pathoge-
nicity. Due to the presence of a mass of virulence factors within UPEC cellular structures, 
well-known fimbrial adhesins in UPEC pathotypes are discussed in this chapter.

Keywords: uropathogenic Escherichia coli, genomics, fimbriae, adhesins, virulence 
factors, urinary tract infections

1. Introduction

Every year, several million people suffer from urinary tract infections (UTIs), and of course it 
costs expensive for governments and healthcare medicine centres [1, 2].

UTIs with second ranking are one of the most dominant infectious diseases around the world. 
Although UTIs include vast etiological microbial agents, two pathogenic microorganisms 
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such as Escherichia coli (E. coli) (as a predominant pioneer bacterial agent) and Candida albi-
cans (C. albicans) (as a predominant pioneer fungal agent) are the most recognized UTI etio-

logic pathogens [3–6].

The pangenomic and phylogenetic studies have revealed five different categories within the 
species of E. coli. These five categories involve A, B1, B2, D and E, which depending on their 
strains can cause extra- and intra-intestinal infections. The extra-intestinal pathogenic E. coli 

(ExPEC) may lead to a vast range of infectious diseases. So, uropathogenic E. coli (UPEC) rep-

resents one of the most important causative bacterial pathotypes of UTIs. Three phylogroups of 
A, B1 and E encompass intra-intestinal commensal and/or pathotypes of E. coli, whereas the B2 
and D phylogroups involve, respectively, the most and the least numbers of UPEC pathotypes 
[7, 8].

1.1. Biology of urinary tract infections

There are different types of UTIs with a diversity of clinical demonstrations. Today, we know 
that the UTI syndromes are completely in association with hosts’ immune system activities, 
type of causative microbial agent and the contributed microbial virulence factors. UTIs may be 
appeared as acute or chronic lower (typically known as cystitis) and/or upper (typically known 
as pyelonephritis) urinary tract infections, with symptomatic or asymptomatic manifestations 
and complicated or uncomplicated demonstrations. So, asymptomatic bacteriuria and simple 
cystitis with some ignorable irritations may be recognized as light and mild UTIs, respectively; 
while the urosepsis is known as a serious deathful type of UTI. Generally, the uncomplicated 
UTIs are recognized in patients with no previous background for UTIs, whereas the compli-
cated UTIs normally happen in patients with previous problems in their urinary tracts. The 
remarkable point of view is the association between predisposing factors of diabetes, sexual 
intercourse, gender, catheterization, pregnancy, overweight, genetic factors, host’s immune 
system responses and the type of UTIs and their severities [3, 5, 8–12].

In accordance with previous surveys, there are several numbers of microbial pathogens which 
can be identified as UTI pathogenic microorganisms. The microbial pathogens depending 
on the type of UTIs involve a vast number of pathogenic causative agents including Gram-
negative bacteria, e.g. UPEC, Klebsiella spp., Enterobacter spp., Proteus spp., Citrobacter spp., 
Morganella morganii, Acinetobacter spp., Salmonella spp. and Pseudomonas aeruginosa; Gram-
positive bacteria such as Staphylococcus aureus (methicillin-sensitive S. aureus (MSSA) and/
or methicillin-resistant S. aureus (MRSA)), Staphylococcus epidermidis (methicillin-sensitive 

S. epidermidis (MSSE) and/or methicillin-resistant S. epidermidis (MRSE)), Staphylococcus 

saprophyticus, Streptococcus spp., Enterococcus faecium, Enterococcus faecalis, diphtheroids and 
Corynebacterium urealyticum and fungal agents like C. albicans, Candida glabrata and Candida 
tropicalis. As aforementioned, some pathogens are predominant in complicated UTIs, and 
some others are responsible for uncomplicated UTIs; however, the UPEC strains are common 
causative agents in both types of complicated and uncomplicated UTIs. Moreover, the pres-

ence of living microbial cells determines the condition of UTIs. The usual threshold for UTI 
pathogens is estimated ≥105 living cells per urine millilitre (ml). As each living cell can grow 
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and create its own colony, the 105 cells can be construed as 105 colony-forming units (CFUs). 
But we have to notice that, in some cases, the aforementioned threshold must be counted less 
than 105 CFUs/ml [3, 6, 10–14].

1.2. The genus of Escherichia: A great bacterial empire

The genus of Escherichia includes E. albertii, E. coli, E. fergusonii, E. hermannii, E. marmotae and 

E. vulneris. The familiarity of these species is shown in Figure 1. In addition to these species, 
there are some Escherichia strains which have no differences in their phenotypes; but from 
the genotypic aspects, they have different characteristics. These strains are named as cryptic 
clades, which are branched into five strains of C-I to C-V [15–18].

E. coli is the most famous member of Gram-negative bacterial family of Enterobacteriaceae which 

was identified by Theodor Escherich. This non-spore forming and generally motile (with a 
peritrichous flagellated arrangement) facultative anaerobic rod-shaped bacterium was named 
E. coli by the suggestion of Castellani and Chalmers in 1919 [7, 19, 20]. There are a diver-

sity of E. coli strains which are divided into commensal types (intra-intestinal non-pathogenic 
strains) and pathotypes (intra-intestinal pathogenic E. coli (InPEC) and extra-intestinal patho-

genic E. coli (ExPEC)). The commensal types of E. coli are able to be settled within the infants’ 
alimentary canal just in some hours after birth as beneficial normal flora populations [21, 22].

The E. coli pathotypes are divided into a vast range of strains which may cause different types 
of infectious diseases. Table 1 indicates the pathotypes and their related infections. In accor-

dance with the table, the pathotypes have been divided into three groups: ExPEC, InPEC and 
ShiToPInPEC. Phylogenetic studies show a close relationship between Shigella spp. and E. coli. 
A close genetic similarity is recognized between Shigella spp. and enteroinvasive E. coli (EIEC) 

pathotypes [4, 7, 23–30].

Figure 1. The genome of uropathogenic E. coli (UPEC) has been compared with E. albertii, E. fergusonii, E. marmotae and 

E. vulneris by the online GView Server system. The figure indicates genomic familiarities between the Escherichia species. 
As shown, the species of E. marmotae and E. vulneris have very close genomic similarities with UPEC, whereas there is some 
dissimilarity between genomic treasures of E. albertii, E. fergusonii and UPEC (GView Server; https://server.gview.ca/).
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2. Escherichia coli and pangenomics

E. coli is a quite diverse genus which involves a vast range of strains with different meta-

bolic properties, pathogenesis, genomic treasure, virulence factors and ecological varieties. 
These characteristics make E. coli an important case in association with infectious diseases. 
The E. coli strains range from commensal strains (useful normal flora) to AIEC, DAEC, EAEC, 
EHEC, EIEC, EPEC, ETEC, NEMEC, SEPEC and UPEC pathotypes. The characteristic diversi-
ties among E. coli strains are completely pertaining to their specific pangenomes. The type of 
genes and the gene pool of microorganisms determine the quality and the quantity of genetic 
evolutionary properties [4, 7, 22].

The term pangenome was applied by Sigaux for a database with the content of tissues and 
tumour genomic data; but the application of pangenome with its microbial content was used 
by Tettelin and colleagues for the first time, and this refers to a collection of genes and genetic 
elements in a family group which can be recognized among species of a genus. According to 
genomic studies, each microbial genus encompasses a main genomic pool which is known as 
core genome. The core genome contains all those vital genes belonging to different species of a 
microbial genus. In addition to core genome, there is a group of genomic materials pertaining 
to species members of a genus which is named as extra genome (flexible or accessory genome). 
Sometimes some accessory genome pools contain unique genes which are completely related 
to specific strain. The extra genome possesses genes that are vital but varies in different genome 
pools. Some genera bear closed pangenomes, whereas the others contain open pangenomes. 
The open pangenomic microbial organisms involve a vast range of strains. In parallel with 
molecular techniques, bioinformatics has a key role in pangenomics. Computational analyses 
give us brilliant information regarding chromosomal genes and motile genetic elements such 
as plasmids, transposons and phages. Today, the bacterial genus of E. coli is known as the most 

progressive prokaryote with the highest detected genomic sets [7, 31–34].

The complete genomic data regarding E. coli (K12 strain) was reported in 1997 for the first time. 
Due to the recent aforementioned information regarding E. coli genomics, we now know that 

Category  Pathotype  Type of infection  Appearance  Phylogroup  

ExPEC  

Neonatal Meningitis E.coli (NEMEC)  Meningitis in neonates  Opportunistic  D, E  

Septic E.coli (SEPEC)  Sepsis  Opportunistic  B1  

Uropathogenic E.coli (UPEC)  Urogenital tract infections  Opportunistic  B2 , D  

InPEC  

Entero -Aggregative E.coli (EAEC)  Diarrhoea (bloody)  Pathogenic  

A , B1 , D, E  
Entero -Pathogenic E.coli  

(EPEC)  
Diarrhoea (bloody)  Pathogenic  

Entero -Toxigenic E.coli (ETEC)  Diarrhoea (bloody)  Pathogenic  

Shigella Toxin 

Producer InPEC  

(ShiToPInPEC)  

Entero -Hemorrhagic E.coli  

(EHEC)  
Bloody Diarrhoea  Pathogenic  B1, D, E  

Entero -Invasive E.coli (EIEC)  Bloody Diarrhoea  Pathogenic  A, B1, E  

Adhesive -Invasive E. coli (AIEC)  Bloody Diarrhoea  Pathogenic  B2  

Diffused -Adhesive E.coli (DAEC)  Bloody Diarrhoea  Pathogenic  A, B2, D  

Table 1. The categorization of E. coli pathotypes, the related infections and the condition of appearance.
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each strain comprises core genome, accessory genome (extra genome and/or flexible genome) 
and some unique genes which are specific for each strain. Furthermore, the accessory genomic 
pool which is flexible may contain integrons, pathogenicity islands (PAIs), phages, plasmids, 
prophages and transposons. The presence of these genomic elements is related to the nature of 
the environment in which bacterial cells exist. So, the size of genome is completely dependent 
on the habitat of bacteria. In another word, the condition of genomic pool and sequence of the 
genome determine the biological characteristics of the bacteria. Therefore, genomics of E. coli 

strains reveal the needs of them in their own habitats [7, 23, 35].

The reported results from previous studies show that the commensal strains of E. coli bear 
the smallest pangenome (with no virulence genes or with minimal capacity), whereas the 
pathogenic strains of E. coli like UPEC pathotypes encompass large pangenomes (because of 
the presence of a mass of virulence genes). So, the added genes in pathotype pangenomes are 
recognized as virulence genes (virulome). It is estimated that UPEC pathotypes carry 105 bp 
much more than commensal strains within their pangenomes. This property gives a high 
plasticity to UPEC pathotype pangenomes. As shown in published reports, the pangenome 
of E. coli strains involve 4.6–5.9 Mbp and the chromosomal genomes are consisted of limited 
number of genes [7, 23, 26, 36].

Table 2 shows a number of well-known databases in which the genomic data regarding E. coli 

genomes are accessible.

Database The main subject URL Reference

EcoCyc E. coli Database Escherichia coli

K-12 MG1655
https://ecocyc.org/ [37, 38]

EcoGene 3.0 Escherichia coli K-12 http://ecogene.org/ [39]

Kyoto Encyclopedia of 
Genes and Genomes
(KEGG)

Genes, genomes, etc. http://www.genome.jp/kegg/
http://www.genome.jp/kegg/

[40]

SHared Information 
of GENetic Resources 
(SHIGEN)

The profiling of Escherichia 

coli chromosome

(PEC) database

https://shigen.nig.ac.jp/ecoli/pec/ [41]

Pfam 31.0 Protein family database http://pfam.xfam.org/ [42]

Ensembl Genomes
(The European 
Bioinformatics Institute 
(EMBL-EBI))

Genomes http://ensemblgenomes.org/ [43]

The DNA Data Bank of 
Japan (DDBJ)

Nucleotide sequence 

database
http://www.ddbj.nig.ac.jp/ [44]

GenBank
(National Center for 

Biotechnology Information 
(NCBI))

Nucleotide sequence 

database
http://www.ncbi.nlm.nih.gov/
genbank/

[45]

Table 2. Some useful and helpful databases which can be used for Escherichia coli pangenome.
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Figure 2. A chromosomal comparison between UPEC (UTI89), Shigella sp. and Salmonella enterica. The GC content and 
GC skew are shown, too (GView Server; https://server.gview.ca/).

The pangenomic studies reveal an interesting evolutionary relationship between E. coli, Shigella 

spp. and Salmonella enterica. It seems that E. coli is the ancestor of Shigella spp. The Shigella spp. have 
derivated from E. coli pathotypes within a duration of 270,000–35,000 years, whereas the origina-

tion of E. coli and S. enterica bacteria from a common progenitor goes back to 100,000,000 years 
ago [4, 46] (Figure 2).

3. Uropathogenic Escherichia coli (UPEC)

The UTIs are divided into community-acquired and nosocomial infectious diseases. The 
UPEC pathotypes are the most dominant causative bacterial agents of UTIs. As previous 
investigations show, about 50% of nosocomial and up to 95% of community-acquired UTIs 
are occurred by UPEC strains. So, the UPEC pathotypes are one of the most considered UTI 
causative agents worldwide. These reports lead us to a wide variety of virulence factors in 
UPEC pathotypes. Besides, the bioinformatic approaches and pangenomics confirm the pres-

ence of a giant treasure of virulence genes within the pangenome of UPEC [7, 8, 35, 47].

The spread of virulence genes among UPEC pathotypes is quite different. The range of UTIs 
varies from ignorable cases like asymptomatic bacteriuria to deathful cases like urosepsis. The 
severity of UTIs is completely in association with the UPEC virulence gene pool (virulome). 
Sometimes, pathotypes undergo mutations in their hosts’ bodies which may lead to lose their 
own virulence genes. It seems that the UPEC pathotypes, which may cause asymptomatic bac-

teriuria, have undergone virulence gene deletions. On the other hand, strong uropathogenic 
strains encompass a mass of virulence genes which enable them to occur severe UTIs within 
their hosts’ bodies. The occurrence of UTIs is associated with the host’s genetic predispos-

ing factors, immune system, gender, hospitalization, catheterization, social behaviour, sexual 
activities, personal hygiene and the presence of virulence factors in uropathogenic microbial 
agents [3, 7, 11, 13, 22, 48–50].
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The outcomes of several studies reveal the presence of a huge number of virulence factors which 
have been expanded among different strains of UPEC. Here, the most considerable virulence 
factors are mentioned and the most considerable filamentous adhesins are explained one by one.

4. Uropathogenic Escherichia coli (UPEC) virulome

The severity of UPEC pathogenesis is completely in association with diversity of virulence 
genes in their pangenomes. Figure 3 shows the pangenome of UTI89. The virulence genes 
may be located on chromosomes (added through vertical gene transfer) or plasmids, transpo-

sons, integrons and phages (added via horizontal gene transfers). Previous studies indicate 
that the majority of virulence genes belonging to UPEC are located on pathogenicity islands 
(PAIs) where many of genes are transferred from other species rather than E. coli through the 

feature of horizontal genomic exchange. UPEC pathotypes are effective pathogens due to 
their high capacity of virulome. The diversity of virulence factors enables UPEC to manifest 
different types of UTIs in their human hosts. Adhesion, immune system escape mechanisms, 
iron uptake systems, protease enzymes and toxins are the most significant mechanisms that 
UPEC pathotypes should utilize them to survive in the human host urinary tract [22, 51–53].

Because of the vast variety of pathogenicity potentials in UPEC strains, only hair-like struc-

tures of afimbrial adhesins (including curli and Afa) and fimbrial adhesins (comprising Dr, 
Type 1 fimbriae, Type 3 fimbriae, F1C fimbriae, S fimbriae, P fimbriae, Auf and F9 fimbriae) 
are discussed in this chapter. There are some useful databases such as Center for Genomic 
Epidemiology (https://cge.cbs.dtu.dk/services/VirulenceFinder/) and Virulence Factors of 
Pathogenic Bacteria (http://www.mgc.ac.cn/VFs/) which may be used for detection and identi-
fication virulence genes within the E. coli strain populations’ genomes [54].

Figure 3. The pangenome map (chromosomal and plasmid genomes) of UPEC (UTI89). The GC content and GC skew 
are shown, too (GView Server; https://server.gview.ca/).
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4.1. Filamentous adhesin virulome

Each microorganism either pathogen or non-pathogen needs to be adhered for colonization. 
Indeed, colonization of pathogenic microorganisms results in pathogenesis within human 
body’s host. For this reason, UPEC has a range of superficial proteins and adhesins (Table 3). 
However the hair-like structured fimbriae are invaluable virulence factors which enable 
UPEC pathotypes to have successful attachment, colonization, biofilm formation and viru-

lence [7, 22, 53, 55–65].

Fimbrial adhesins are superficial peritrichous arranged exterior proteinaceous appendages 
which target special motifs upon the cell surface receptors to join them in the manner of 
key-and-lock operation. These adhesins are able to attach onto biotic (e.g. host cells) and abi-
otic (e.g. catheter) surfaces. The aforementioned characteristics make UPEC bacteria func-

tional and effective pathogenic microorganisms. The attachment of bacterial cells of UPEC 
onto the host cells is a complicated process which may be caused by important proteinaceous 
molecules of adhesins. Adhesins prepare suitable condition for a successful signalling con-

trolled communication between UPEC cells and human body cells. In other words, the fim-

brial adhesins act as signal molecules. As shown in Table 3, the most studied and recognized 
superficial filamentous adhesins are Curli, Dr, AFA, Type 1 fimbriae, Type 3 fimbriae, F1C 
fimbriae, S fimbriae, P fimbriae, F9 fimbriae and Auf. Some of these superficial fimbrial organ-

elles involving F1C, P, S, Auf, Type 1, Type 3 and F9 fimbriae are categorized into chaperone-
usher (CU) proteins [8, 27, 53, 59, 62, 66].

4.1.1. Curli adhesins

Curli adhesins of UPEC are known as types of fragile exterior proteinous coiled fibrous append-

ages which contribute in linking the UPEC cells onto related receptors situated upon the human 
body cells such as endothelial cells, epithelial cells, matrix proteins, urothelial cells, mucosal cells, 
blood cells, etc. In addition to UPEC pathotypes, curli adhesins are recognized in Salmonella spp. 
too. The affinity between curli organelles and Congo red makes it easy to observe these tiny 
adhesins by microscope. Curli adhesins with up to 12 nm width and 1 μm length are made of 
CsgA (curlin as major content with amyloid property) and CsgB (as minor content with amy-

loid property and nucleator activity) proteins. The highly conserved curli gene clusters in UPEC 
pathotypes are organized into csgBAC and csgDEFG operons. Curli molecules are effective struc-

tures to adhere UPEC cells onto the urine bladder and kidney urothelial cells within human bod-

ies [50, 52, 53, 57, 67–69] (Table 3).

4.1.2. Dr/Afa adhesins

The Dr and Afa adhesins are the members of DR family. Dr adhesins (with a homology rate 
of ≥70%) and Afa molecules are able to bind to the Dra blood group antigen molecules situ-

ated onto the decay-accelerating factors (DAFs). The DAF molecules are located upon the 
surface of different types of cells such as urothelial cells. The Dr gene operons consisted of 
five genes, including draA–draE, which are detectable in 7% of the UPEC populations. The 
draE gene is responsible for Dr haemagglutinin production, which is contributed in type 
IV collagen attachment. draA–draG genes are highly conserved and produce the accessory 

Urinary Tract Infection - The Result of the Strength of the Pathogen, or the Weakness of the Host72



 proteins, whereas the draE genes with lower conserved sequences are responsible for adhesin 
structural subunits. Moreover, the AFA adhesins are encoded by a five-member gene operon 
including afaA, afaE, afaD, afaB and afaC. The proteins of AFAI and AFAIII are known as Dr 
family members. In accordance with previous studies, some of Dr and AFA adhesins have 
close similarities with chaperone-usher pathway adhesins. The AFA adhesins are recognized 
in up to 65% of UPEC pathotypes causing cystitis, 26% causing pyelonephritis and 6% asymp-

tomatic bacteriuria (ABU) [7, 8, 22, 55, 61, 70, 71] (Table 3).

4.2. Chaperone-usher fimbrial adhesins

There are varieties of fimbriae which are produced by Gram-negative bacteria such as 
Enterobacteriaceae family members. The subunits of these fimbriae are assembled by differ-

ent pathways like CU pathway. Those fimbriae produced via CU pathway are the most fre-

quent filamentous organelles among Gram-negative bacteria populations. The CU pathway 
is a kind of common bacterial secretion system with a high conservancy. In a fimbrial CU 
pathway, chaperone (a periplasmic protein molecule) together with a pore-forming protein 
of usher (situated within bacterial outer membrane) orchestrate this secretion system. So 
through the CU pathway, the usher protein plays its role as platform assembler by employ-

ing a chaperone to produce and secrete subunits of CU fimbriae class. F1C, P, S, Auf, Type 1,  
Type 3 and F9 fimbriae in UPEC pathotypes are known as CU pathway proteinaceous adhes-

ins [62, 66, 72–75] (Table 3).

4.2.1. Type 1 fimbriae

Type 1 fimbriae as mannose-sensitive adhesins (belonging to chaperone-usher class) are able 
to attach to those receptors with mannose residues. Uroplakin molecules with high frequency 
in human urine bladder are known as one of the most important Type 1 fimbriae receptors. 
Furthermore, there are different types of Type 1 fimbriae receptors which are located on 
human ureter and Henle’s tubules. These fimbriae are encoded in 99% of commensal and 
pathogenic strains of E. coli including UPEC pathotypes. As important virulence factors, Type 
1 fimbriae have peripheral arrangement upon the microorganisms’ surfaces with a number 
of 1–5 hundred. Type 1 fimbriae with up to 10 nm width and up to 2 μm length are able to 
perform haemagglutination. The Type 1 fimbriae are encoded by the highly conserved gene 
operon consisted of nine genes of fimBEAICDFGH. The FimH protein which is located on the 
top of Type 1 fimbria is recognized as the main adhesin. FimG, Fim F and FimA protein mol-
ecules are, respectively, situated under the FimH molecule. FimC and FimD play their roles 
as chaperone and usher proteins, respectively. The recombinase enzymes of FimB and FimE 
activate as bidirectional switching molecules for turning on and/or turning off the cluster 
gene expression. The activities of FimB and FimE are directly associated with environmental 
factors [7, 22, 50, 53, 55, 60, 62, 68, 71, 74, 76, 77] (Table 3).

4.2.2. Type 3 fimbriae

Type 3 fimbriae are encoded by mrk gene operon of mrkABCDEF in UPEC and other mem-

bers of Enterobacteriaceae family such as Klebsiella pneumoniae. The highly conserved gene 
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of mrkB encodes chaperone protein of MrkB, whereas the MrkC plays role as usher protein. 
MrkA and MrkF are the major and minor subunits in Type 3 fimbriae, respectively. The adhe-

sin molecule of Type 3 fimbria is recognized as MrkD and MrkE plays its role as a regulator 
protein. It seems that mrk gene cluster originally belongs to K. pneumoniae which has been 
horizontally transferred into UPEC pathotypes by plasmids. The role of Type 3 fimbriae in 
biofilm formation regarding catheter-associated urinary tract infections (CAUTs) is signifi-

cantly considered [53, 56] (Table 3).

4.2.3. F1C fimbriae

The F1C fimbriae are encoded by a gene operon consisting of seven genes of focAICDFGH. 
F1C fimbriae are expressed by up to 30% of UPEC pathotypes. The F1C fimbria is composed 
of FocA (major fimbrin subunits), FocF and FocG (minor fimbrin subunits) proteins. On the 
top of F1C fimbria, FocH monomer is located which acts as an adhesin. So, F1C fimbriae 
adhere onto the receptors with galactosylceramide (situated on the surfaces of urothelial cells 
of the urinary bladder, kidneys and ureters) and globotriaosylceramide (located in kidneys) 
residues. Previous surveys indicate a strong attraction between F1C fimbriae and Gal-NAc-
beta-1-4-Gal-beta structure of glycolipids. FocC and FocD proteins are recognized as chaper-

one and usher molecules, respectively. Due to prior scientific investigations, the F1C fimbriae 
are able to bind to their specific receptors upon the whole zone of the urinary tract. There is a 
close homology between F1C and S fimbriae [7, 53, 55, 62, 66, 78] (Table 3).

4.2.4. S fimbriae

In addition to FIC, the S fimbriae organelles have also a close morphology to F9, P and Type 
1 fimbriae and are detected in ≥22% of the UPEC pathotypes. The S fimbriae are encoded by 
sfa gene operon with nine genes. SfaA, SfaS and SfaH proteins contribute in S fimbrial adhe-

sion. The SfaA protein is a dominant subunit, and the minor subunits are composed of SfaG, 
SfaH and SfaS. SfaS is located on the top of S fimbriae and adhere to alpha-sialyl-2,3-alpha-
galactose residues upon the glycoproteins of urothelial tissues of the urinary bladder and 
kidneys. The presence or absence of S fimbriae is determined by environmental factors. The 
related regulations and phase variations are done by SfaB and SfaC [7, 22, 35, 50, 53, 55, 62, 

66, 71, 77, 79] (Table 3).

4.2.5. P fimbriae

P fimbriae as considerable adhesins are encoded by 11 genes within a gene operon of papA-K in 

up to 70% of UPEC pathotypes. The predominant subunit in P fimbria is PapA fimbrin placed 
in the basis of the fimbrial stalk. PapG is known as the main adhesin which is linked to the stalk 
by PapE, PapF and PapK proteins. PapD and PapC have chaperone and usher roles, respec-

tively. There are some isoclasses for PapG (PapGI, PapGII (major isoclass in UPEC strains) and 
PapGIII) in different UPEC pathotypes. The related receptor epitopes of P fimbriae are alpha-
D-galactopyranosyl-(1-4)-beta-D-galactopyranoside which are located on the surface of entire 
urothelial cells covering the human urinary tract. P fimbriae are recognized as significant viru-

lence factors in UPEC virulome [7, 22, 50, 53, 62, 66, 71, 77] (Table 3).
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4.2.6. Auf fimbriae

Auf (acronym for another UPEC fimbria) fimbriae are detected in 67% of isolated UPEC 
pathotypes. The Auf fimbriae are encoded by the gene operon of aufABCDEFG. AufA protein 
is predominant subunit in Auf fimbria, whereas AufC is known as an usher protein. The Auf 
protein receptors are still unknown in human body cells [7, 22, 53, 62, 74] (Table 3).

4.2.7. F9 fimbriae

The F9 fimbriae encoded by f9 gene operon including c1931–c1936 are detectable in 78% of 
UPEC populations. The C1931 protein is the major subunit identified in F9 fimbriae. The 
genetic and structural characteristics of F9 fimbriae are very close to Type 1, F1C and S fim-

briae. Gal-beta-(1-3)-Glc-NAc and lacto-N-tetraose glycans are recognized as the main F9 fim-

briae receptors [22, 53, 59, 60] (Table 3).

5. Diagnostic methods for virulence genes of filamentous adhesins

Detection and identification of genes such as virulence genes of filamentous adhesins may be 
achieved by a vast range of molecular techniques. PCR tools from conventional and multiplex 
to real time are the commonest molecular diagnostic techniques which can be used for limited 
samples [80–86].

Furthermore there are advanced pangenomic techniques like microarray technology which 
can be applied for detection and identification of different types of genes, when there are huge 
numbers of specimens. Microarray technology is divided into three types of DNA, protein 
and RNA microarray tools. The outcome of microarray technology is reliable, sensitive, spe-

cific, flexible and rapid with high accuracy [4, 7, 8, 87–93].

6. Conclusion

UPEC strains are expanded pathogenic microorganisms which are able to carry a mass of 
virulence genes within their genomes. The environmental condition and the genomic abilities 
and capacity determine the expression of virulence genes and factors. The UPEC strains bear 
different types of virulence factors in different parts of their cellular structures. These proper-

ties make UPEC pathotypes interesting pathogenic microorganisms which can appear a vast 
range of UTIs: from acute to chronic, from light to severe, from complicated to uncomplicated, 
from lower to upper and from asymptomatic to symptomatic signs and syndromes. So, know-

ing the genotypic and phenotypic characteristics of UPEC strains in different regions of world 
helps us to recognize the probable UPEC strains with their local clinical demonstrations. This 
enables us to have an accurate diagnosis with a definite treatment to reduce the healthcare 
costs around the world. Moreover, equipped microbiology laboratories with normal molecu-

lar tools and techniques like PCR or advanced pangenomic technologies support us to have 
specific, sensitive and reliable outcome.
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