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Abstract

Genomic selection (GS) is playing a major role in plant breeding for the selection of
candidate individuals (animal or plants) early in time. However, for improving GS
better statistical models are required. For this reason, in this chapter book we provide
an improved version of the Bayesian multiple-trait and multiple-environment (BMTME)
model of Montesinos-López et al. that takes into account the correlation between traits
(genetic and residual) and between environments since allows general covariance’s
matrices. This improved version of the BMTME model was derived using the matrix
normal distribution that allows a more easy derivation of all full conditional distribu-
tions required, allows a more efficient model in terms of time of implementation. We
tested the proposed model using simulated and real data sets. According to our results
we have elements to conclude that this model improved considerably in terms of time of
implementation and it is better than a Bayesian multiple-trait, multiple-environment
model that not take into account general covariance structure for covariance’s of the
traits and environments.

Keywords: genomic selection, multiple-trait and multiple-environment, Bayesian,
general covariance’s matrices

1. Introduction

Genomic selection is revolutionizing plant breeding, since allows the selection of candidate

individuals (animal or plants) early in time. However, the success of genomic selection is
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linked directly to the use of statistical models, since the process of selection of candidate

individuals is done using statistical models. However, most of the models currently used in

genomic selection are univariate models mostly for continuous phenotypes, which not exploit

the existing correlation between traits when the selection of individuals (genotypes or animals)

is done with the purpose to improve simultaneously multiple-traits. The advantage of jointly

modeling multiple-traits compared to analyzing each trait separately, is that the inference

process appropriately accounts for the correlation among the traits, which helps to increase

prediction accuracy, statistical power, parameter estimation accuracy, and reduce trait selec-

tion bias [1, 2]. For this reason, there is a great interest of plant and animal scientist to develop

appropriate genomic selection models for multiple-traits and multiple-environments to take

advantage of this correlation and to improve the prediction accuracy in the selection of

candidate individuals.

For this reason, in this chapter we propose an improved version of the Bayesian multiple-trait,

multiple-environment (BMTME) model proposed by Montesinos-López et al. [3] that is appro-

priate for correlated multiple-traits and multiple-environments but instead of building this

model using the multivariate normal distribution we propose to build it using the matrix

normal distribution which should avoid that the number of rows of the datasets grows

proportional to the number of traits under study.

Also, the BMTME model was improved adding a general covariance structure for the genetic

covariance of environments in place of assuming a diagonal matrix as the original BMTME

model. Additionally, in this chapter we compare the improved model in terms of prediction

accuracy and time of implementation with the original BMTME model of Montesinos-López

et al. [3] and with a multiple-trait and multiple-environment model where it is ignored the

correlation between traits and between environments. Our hypothesis is that the improved

model should be similar in terms of prediction accuracy, but considerably faster in terms of

time of implementation with regard to the original BMTME of Montesinos-López et al. [3] and

a little better in terms of prediction accuracy that a multiple-trait and multiple-environment

model that ignore the correlation between traits and environments. Also, we propose to

implement the proposed model with simulated and real data sets. Our results suggest that

the construction and implementation of the proposed model should be of great help for

breeding scientist and programs since will help to select candidate genotypes early in time

with more accuracy.

2. Material and methods

2.1. Matrix normal distribution

The matrix normal distribution is a probability distribution that is a generalization of the multi-

variate normal distribution to matrix-valued random variables. According with Rowe [4] the

n� p matrix normal distribution can be derived as a special case of the np-variate Multivariate

Normal distribution when the covariance matrix is separable. A np-dimensional vector x is

distributed according to multivariate normal distribution with np-dimensional mean μ and

np� np covariance matrix Ω if its probability density function is given by
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P xjμ,Ωð Þ ¼ 2πð Þ�
np
2 Ωj j�

1
2e�

1
2 x�μð ÞTΩ�1

x�μð Þ (1)

When the covariance matrixΩ is separable, that is, is one of the formΩ =Σ⊗Φ, where⊗ is the

Kronecker product which multiplies every entry of its first matrix argument by its entire

second matrix argument, Eq. (1) becomes

p XjM,Σ,Φð Þ ¼ 2πð Þ�
np
2 Σj j�

n
2 Φj j�

p
2e�

1
2tr Σ

�1
X�Mð ÞTΦ�1

X�Mð Þ½ � (2)

upon using the following matrix identities

Ωj j ¼ Σ⊗Φj j ¼ Σj j Φj j (3)

and

x� μð ÞT Σ⊗Φð Þ�1
x� μð Þ ¼ tr Σ�1

X �Mð ÞTΦ�1
X �Mð Þ

h i

(4)

where X andM are matrix of dimension n� p such that x = vec(X) and μ = vec(M), with vec is the

vec operator that stacks the columns of its matrix argument from left to right into a single

vector, tr(.) is the trace operator which gives the sum of the diagonal elements of a square

matrix argument.

Then, according with Rowe [4] the density function given in Eq. (2) correspond to a random

variable that follows a n� p matrix normal distribution and it is denoted as

X∣M,Σ,Φ � MNn�pðM,Φ,ΣÞ (5)

where (M,Σ,Φ) parametrize the above distribution with M ∈R
n� p, and Σ and Φ are positive

defined matrix of dimension n� n and p� p, respectively. The matrices Σ andΦ are commonly

referred to as the within and between covariance matrices. Sometimes they are referred to as

the right and left covariance matrices [4].

Some useful properties of the matrix normal distribution are: the mean and model is equal to

E(X|M,Σ,Φ) =M and the variance var(vec(X)|M,Σ,Φ) =Σ⊗Φ, which can be found by

integration and differentiation. Since X follows a Matrix Normal distribution, the condi-

tional and marginal distributions of any row or column subset are Multivariate Normal

distributions [4].

2.2. Univariate model with genotype by environment interaction (M1)

First, for each trait we considered the following univariate linear mixed model:

yij ¼ Ei þ gj þ gEij þ eij (6)

were yij represents the normal response from the jth line in the ith environment (i = 1, 2,…, I,

j = 1, 2,…, J). For illustration purposes, we will use I = 3. Ei represents the fixed effect of the ith

environment and is assumed as a fixed effect, gj represents the random effect of the genomic
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effect of jth line, with g ¼ gj ,…,gJ

� �T
� N 0,σ2

1Gg

� �

,Gg is of order J� J and represents the Geno-

mic Relationship Matrix (GRM) and is calculated using the VanRaden method [5] as Gg ¼
WWT

p ,

with W as the matrix of marker of order J� p. gEij is the random interaction term between

the genomic effect of the jth line and the ith environment where gE ¼ gE11;…; gEIJ

� �T

� N 0,σ2
2II ⊗G

� �

and eij is a random error term associated with the jth line in the ith environment

distributed as N(0,σ2). As previously mentioned, this model was used for each of the l=1,…,L

traits, where L denotes the number of traits under study.

2.3. Multivariate correlated model with multiple-trait and multiple-environment (M2)

To account for the correlation between traits, all of the L traits given in Eq. (6) should be jointly

modeled in a whole multiple-trait, multiple-environment mixed model as the following:

Y ¼ Xβþ Z1b1 þ Z2b2 þ e (7)

where Y is of order n� L, with n = I� J,X is of order n� I, β is of order I� L and contains the beta

coefficients of the environment by trait combinations, Z1 is of order n� J, Z2 is of order n� IJ, b1
is of order J� L and follows a normal matrix distribution MNJ� L(0,Gg,Σt),b2 is of order IJ� L

with a normal matrix distribution b2�MNIJ� L(0,ΣE⊗Gg,Σt) and e is of order n� L with a

normal matrix distribution e�MNn� L(0, In,Re), where Σt is the genetic covariance matrix

between traits and it is assumed unstructured (or general), ⊗ denotes a Kronecker product, ΣE

is assumed as a general matrix of order I� I,Re is the residual general covariance matrix between

traits. It is important to point out that the trait� environment (T� E) interaction term is included

in the fixed effects, while the trait� genotype (T� G) interaction term is included in the random

effect b1 and the three-way (T � G � E) interaction term is included in b2.

2.4. Joint posterior density and prior specification

In this section, we provide the joint posterior density and prior specification for the improved

BMTME model. Assuming independent prior distributions for β, Σt, ΣE, and Re, the joint

posterior density of the parameter vector becomes:

P β, b1, b2,Σt ,ΣE,Re

� �

∝P Y β, b1, b2,Re

�

�

��

P β
� �

P b1 Σtj ÞP b2 Σt ,ΣEj ÞP Σtð ÞP ΣEð ÞP Reð Þðð (8)

where P(β),P(Σt),P(ΣE) and P(Re) denote the density prior distributions of β, Σt, ΣE, and Re,

respectively. Specifically, we are assuming an Inverse-Wishart (IW) forΩv with shape parameter

κ and scale matrix parameter B, and is denoted byΩv� IW(κ,B), with density function given by

P Ωvð Þ∝ Bj j
κ
2 Ωvj j�

κþpþ1
2 exp � 1

2 tr BΩ�1
v

� �� �

,κ > 0,B,Ωv both are positive definite matrices. For the

remaining parameters we are assuming the following prior distributions: �MNn� p(β0, II, IL),

b1|Σt�MNJ� L(0,Gg,Σt),Σt� IW(νt +L� 1,St), b2|Σt,ΣE�MNIJ� L(0,ΣE⊗Gg,Σt), ΣE� IW(νE + I

� 1, SE), and Re� IW(νe +L� 1,Se). Next we combine the joint posterior density of the parameter

vector with the priors to obtain the full conditional distribution for parameters β, b1, b2, Σt,Re.

All full conditionals, as well as details of their derivations, are given in Appendix A.
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2.5. Gibbs sampler

In order to produce posterior means for all relevant model parameters, below we outline the

exact Gibbs sampler procedure that we proposed for estimating the parameters of interest. The

ordering of draws is somewhat arbitrary; however, we suggest the following order:

Step 1. Simulate β according to the normal distribution given in Appendix A (A.1).

Step 2. Simulate bh for h = 1, 2, according to the normal distribution given in Appendix A (A.2

and A.3).

Step 3. Simulate Σt according to the IW distribution given in Appendix A (A.4).

Step 4. Simulate ΣE according to the IW distribution given in Appendix A (A.5).

Step 5. Simulate Re according to the IW distribution given in Appendix A (A.6).

Step 6. Return to step 1 or terminate when chain length is adequate to meet convergence

diagnostics.

2.6. Multivariate uncorrelated model with multiple-trait and multiple-environment (M3)

To compare the model given in Eq. (7) we considered also model M3 (Eq. 6) that consists of

using the following multi-trait, multi-environment model that ignore the correlation between

traits and between environments:

yijl ¼ Ei þ gj þ Tl þ gEij þ TEil þ gTjl þ gETijl þ eijl (9)

where yijl represents the normal response from the jth line in the ith environment for trait l

(i = 1, 2,…, I, j = 1, 2,…, J, l = 1,…, L). Tl represents the fixed effect of the lth trait, TEil is the fixed

interaction term between the lth trait and the ith environment, gTjl represents the random effect

of the interaction of genotype j and the lth trait, with gT ¼ gT11;…; gTJL

� �T
� N 0, σ211G⊗ IL

� �

,

gETijl is the three-way interaction of genotype j, the ith environment and the lth trait, with

gET ¼ gET111;…; gETIJL

� �T
� N 0, σ222II⊗G⊗ IL

� �

and eijl is a random error term associated

with the jth line in the ith environment distributed as N(0, σ2).

2.7. Experimental data sets

2.7.1. Simulate data sets

For testing the proposed models and methods we simulated multiple-trait and multiple-

environment data using model in Eq. (7). We studied six scenarios depending of the parame-

ters used. For the first scenario (S1) we used the following parameters: three environments,

three traits, 80 genotypes, 1 replication for environment-trait-genotype combination. We

assumed that βT = [15, 12, 7, 14, 10, 9, 13, 11, 8], where the first three beta coefficients belong to

traits 1, 2 and 3 in environment 1, the second three values for the three traits in environment 2

and the last three for environment 3. We assumed that the genomic relationship matrix is
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known and is equal to Gg = 0.3I80 + 0.7J80, where I80 is an identity matrix of order 80 and J80 is a

matrix of order 80� 80 of ones. Therefore, the total number of observations is

3� 80� 3� 1 = 720, that is, 240 for each trait. Since a covariance matrix can be expressed in

terms of a correlation matrix (Rr) and a standard deviation matrix (D1=2
r Þ as: Σr ¼ D1=2

r RrD
1=2
r ,

with r = t,E, e, where r = t represent the genetic covariance between traits, r =E represents the

genetic covariance matrix between environments and r = e, represents the residual covariance

matrix between traits. For the three covariance matrices (r = t,E, e) in this scenario we

used Rr = 0.15I3 + 0.85J3, where J3 is a matrix of order 3x3 of ones, and D
1=2
t ¼ diag 0:9; 0:8; 0:9ð ),

D
1=2
E ¼ diag 0:5; 0:65; 0:75ð ) and D1=2

e ¼ diag 6; 0:43; 0:33ð ). For the second scenario (S2) we used

exactly the same set of parameters defined in S1 except that for the correlation matrix now we

assumed that the pair of correlations between traits and between environments is equal to 0.5,

that is, Rr = 0.5I3 + 0.5J3, while the third scenario (S3) also is exactly as S1 with the exception that

Rr = 0.75I3 + 0.25J3, that is, the pair of correlations between traits and between environments is

equal to 0.25. These three set of correlation matrices given in S1, S2 and S3 were proposed in

order to study the performance of the methods proposed in the context of high correlation (S1),

medium (S2) and low correlation (S3) between traits (genetic and residual) and between

environments. Other 3 scenarios were studied: scenario 4 (S4) is exactly as scenario S1 but in

place of 80 lines were used 100 lines, scenario 5 (S5) was exactly as scenario S2 but with 100

lines and the last scenario (S6) was exactly as scenario S3 but using 100 lines in place of 80.

2.7.2. Real wheat data set

Here, we present the information on the first real data set used for implementing the proposed

models. This real data set composed of 250 wheat lines that were extracted from a large set of

39 yield trials grown during the 2013–2014 crop season in Ciudad Obregon, Sonora, Mexico

[6]. The trials under study were days to heading (DTHD), grain yield (GRYLD), plant height

(PTHT) and the green normalized difference vegetation index (GNDVI), each of these traits

were evaluated in three environments (Bed2IR, Bed5IR and Drip). The marker information

used after editing was 12,083 markers. This data set was also used by Montesinos-López et al.

[3] for this reason those interested in more details of this data set see this publication.

2.7.3. Real maize data set

The second real data set used for implementing the proposed models is composed of 309

double-haploid maize lines. Traits available in this data set include grain yield (Yield),

anthesis-silking interval (ASI), and plant height (PH); each of these traits were evaluated in

three optimum rainfed environments (EBU, KAT, and KTI). The marker information used after

editing was 12,083 markers. Also, this data set was also used by Montesinos-López et al. [3] for

this reason those interested in more details of this data set see this publication.

2.8. Assessing prediction accuracy

For assessing prediction accuracy for the simulated and real data sets a 20 training (trn)-testing

(tst) random partitions were implemented under a cross-validation that mimicked a situation
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where lines were evaluated in some environments for the traits of interest; however, some lines

were missing in all traits in the other environments, this cross-validation scheme is called CV1.

Under this cross-validation, we assigned 80% of the lines to the trn set and the remaining 20%

to the tst set. We used the Pearson correlation and mean square error of prediction (MSEP) to

compare the predictive performance of the proposed models. Models with Pearson correlation

closet to one indicated better predictions, while under the MSEP values closed to zero are

better in terms of prediction accuracy. It is important to point out that model M2 was

implemented with R code done for the authors implementing the Gibbs sampler given above

for this model, while model M3 was implemented in the R package BGLR [7].

3. Results

The results are presented in two sections. The first section presents the results of the simulated

data set, while the second the results with the real data sets.

3.1. Simulated data sets

In Table 1, under scenario S1 we can observe that the proposed model M2 was the best in

terms of prediction accuracy (with Pearson correlation and MSEP) since in the 9 trait-

environment combinations model M2 (improved BMTME model) was better than model M3

(uncorrelated multiple-trait multiple-environment). In average in terms of Pearson correlation

the modelM2was better than the modelM3 by 8.72%, while in terms of MSEP modelM2was

better than model M3 in average by 6.24%. Under scenario S2, in terms of Pearson correlation

model M2 was better in 7 out of 9 trait-environment combinations and in 6 out of 9 trait-

environment combination in terms of MSEP. In terms of Pearson correlation model M2 was

better than M3 in average by 7.76%, while in terms of MSEP was better by 2.27% in average

(Table 1). While under scenario S3 also modelM2was better than modelM3, since in 7 out of 9

trait-environment was the best, while under MSEP model M2 was better than M3 in 5 out of 9

trait-environment combination, however, in average model M2 was better than model M3 by

3.98 and 1.028% in terms of Pearson correlation and MSEP, respectively (Table 1).

In Table 2, under scenario S4 model M2 was the best in terms of prediction accuracy (with

Pearson correlation and MSEP) since in the 9 trait-environment combinations was better than

model M3. In average in terms of Pearson correlation and MSEP model M2 was better than

model M3 by 4.4 and 4.1%, respectively. Also, under scenario S5, in terms of Pearson

correlation and MSEP, model M2 was better than model M3 in 7 out of 9 and in 6 out of 9

trait-environment combinations, respectively. Model M2 was better than M3 in average by

1.6% in terms of Pearson correlation and by 1.2% in average in terms of MSEP (Table 2).

While under scenario S6 also model M2 was better than model M3 in terms of Pearson

correlation, since in 7 out of 9 trait-environment was the best, while under MSEP model M2

was better than M3 in 5 out of 9 trait-environment combination, however, in average model

M2 was better than model M3 by 1.6 and 1.02% in terms of Pearson correlation and MSEP,

respectively (Table 2).
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Scenario Trait_Env M2 M3

CorP SE MSEP SE CorP SE MSEP SE

11 0.401 0.052 0.693 0.050 0.375 0.048 0.723 0.050

21 0.481 0.044 0.561 0.033 0.434 0.044 0.605 0.035

31 0.563 0.042 0.494 0.033 0.530 0.043 0.522 0.033

12 0.408 0.037 0.658 0.045 0.343 0.041 0.715 0.046

S1 22 0.485 0.049 0.648 0.049 0.393 0.053 0.728 0.056

32 0.506 0.042 0.580 0.049 0.420 0.049 0.642 0.049

13 0.595 0.030 0.528 0.033 0.570 0.034 0.535 0.034

23 0.473 0.043 0.565 0.036 0.461 0.039 0.582 0.039

33 0.629 0.031 0.424 0.027 0.619 0.036 0.441 0.033

Average 0.505 0.041 0.572 0.040 0.461 0.043 0.610 0.042

11 0.349 0.054 0.748 0.057 0.302 0.052 0.750 0.055

21 0.486 0.044 0.571 0.030 0.447 0.042 0.603 0.031

31 0.503 0.044 0.588 0.033 0.508 0.045 0.579 0.031

S2 12 0.384 0.037 0.590 0.045 0.335 0.038 0.602 0.040

22 0.476 0.049 0.664 0.047 0.407 0.053 0.726 0.057

32 0.415 0.044 0.626 0.059 0.368 0.048 0.651 0.061

13 0.599 0.028 0.548 0.043 0.566 0.030 0.537 0.037

23 0.373 0.051 0.719 0.058 0.374 0.048 0.723 0.057

33 0.565 0.034 0.530 0.043 0.584 0.037 0.513 0.047

Average 0.448 0.044 0.632 0.046 0.413 0.045 0.646 0.046

11 0.326 0.054 0.764 0.055 0.297 0.053 0.777 0.055

21 0.480 0.043 0.588 0.030 0.443 0.041 0.616 0.030

31 0.446 0.045 0.657 0.035 0.465 0.047 0.629 0.030

S3 12 0.404 0.038 0.545 0.045 0.391 0.038 0.553 0.039

22 0.470 0.047 0.661 0.045 0.402 0.050 0.721 0.055

32 0.343 0.045 0.630 0.062 0.311 0.048 0.648 0.064

13 0.567 0.035 0.598 0.048 0.552 0.030 0.592 0.042

23 0.327 0.054 0.832 0.067 0.324 0.052 0.831 0.067

33 0.498 0.034 0.615 0.055 0.522 0.036 0.584 0.056

Average 0.429 0.044 0.654 0.049 0.412 0.044 0.661 0.049

CorP: average of Pearson correlation; SE: standard error, MSEP: mean square error of prediction. S1: scenario with high

correlation (0.85); S2: scenario with medium correlation (0.5); S3: scenario with low correlation (0.25). The values of this

table correspond to the simulations done with 80 lines in each environment. In bold are the best predictions of each row

(Trait-Env).

Table 1. Comparison in terms of prediction accuracy of models M2 and M3 under scenarios S1, S2 and S3.
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Scenario Trait_Env M2 M3

CorP SE MSEP SE CorP SE MSEP SE

11 0.495 0.042 0.782 0.052 0.483 0.043 0.800 0.056

21 0.569 0.028 0.693 0.050 0.534 0.035 0.731 0.055

31 0.621 0.028 0.589 0.038 0.596 0.033 0.619 0.044

12 0.467 0.043 0.814 0.044 0.449 0.044 0.850 0.043

S4 22 0.471 0.040 0.689 0.040 0.440 0.041 0.740 0.046

32 0.572 0.034 0.548 0.035 0.534 0.035 0.597 0.034

13 0.498 0.040 0.975 0.060 0.486 0.035 0.984 0.060

23 0.535 0.035 0.812 0.051 0.520 0.032 0.824 0.054

33 0.631 0.034 0.638 0.043 0.604 0.029 0.674 0.044

Average 0.540 0.036 0.727 0.046 0.516 0.036 0.758 0.049

11 0.403 0.052 0.805 0.055 0.405 0.050 0.807 0.056

21 0.537 0.029 0.666 0.047 0.510 0.035 0.688 0.049

31 0.567 0.031 0.595 0.040 0.555 0.032 0.608 0.042

S5 12 0.399 0.051 0.899 0.051 0.397 0.053 0.907 0.053

22 0.432 0.041 0.722 0.043 0.406 0.043 0.749 0.048

32 0.509 0.034 0.554 0.037 0.503 0.035 0.564 0.035

13 0.416 0.043 1.025 0.056 0.413 0.040 1.024 0.055

23 0.487 0.033 0.791 0.042 0.488 0.034 0.784 0.045

33 0.588 0.037 0.625 0.040 0.589 0.032 0.630 0.038

Average 0.482 0.039 0.742 0.046 0.474 0.039 0.751 0.047

11 0.370 0.054 0.798 0.057 0.369 0.052 0.802 0.057

21 0.512 0.028 0.635 0.043 0.485 0.033 0.654 0.043

31 0.521 0.034 0.587 0.040 0.511 0.034 0.596 0.041

S6 12 0.367 0.052 0.945 0.057 0.364 0.055 0.948 0.060

22 0.412 0.040 0.759 0.045 0.382 0.042 0.776 0.047

32 0.449 0.034 0.576 0.036 0.466 0.034 0.568 0.034

13 0.379 0.045 1.013 0.053 0.374 0.042 1.016 0.051

23 0.462 0.032 0.759 0.038 0.463 0.033 0.751 0.039

33 0.542 0.039 0.618 0.040 0.558 0.035 0.610 0.036

Average 0.446 0.040 0.743 0.045 0.441 0.040 0.747 0.045

CorP: average of Pearson correlation obtained across all trait-environment combination; SE: standard error; MSEP: mean

square error of prediction. S4: scenario with high correlation (0.85); S5 the scenario with medium correlation (0.5); S6: scenario

with low correlation (0.25). The values of this table correspond to the simulations done with 100 lines in each environment. In

bold are the best predictions of each row (Trait-Env).

Table 2. Comparison in terms of prediction accuracy of models M2 and M3 under scenarios S4, S5 and S6.
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3.2. Real data sets

In Table 3 we can observe that in the wheat data set the best predictions were observed

under the proposed improved BMTME model (M2), since in all trait-environment combina-

tions was better model M2 in terms of Pearson correlation and in 10 out of 12 was the better

in terms of MSEP than model M3 (that ignore the correlation between traits and between

environments). However, in the maize data set the best predictions were observed under

Data set Trait_Env M2 M3

CorP SE MSEP SE CorP SE MSEP SE

DTHD_Bed2IR 0.876 0.008 8.117 0.692 0.875 0.009 10.636 0.882

GNDVI_Bed2IR 0.848 0.008 0.000 0.000 0.009 0.022 0.103 0.006

GRYLD_Bed2IR 0.639 0.014 0.055 0.002 0.463 0.015 0.161 0.007

PTHT_Bed2IR 0.658 0.014 22.527 0.841 0.566 0.020 25.798 0.895

DTHD_Bed5IR 0.873 0.007 13.074 0.733 0.845 0.010 15.312 0.508

Wheat GNDVI_Bed5IR 0.758 0.019 0.000 0.000 0.496 0.023 0.219 0.011

GRYLD_Bed5IR 0.178 0.023 0.251 0.008 0.175 0.020 0.336 0.014

PTHT_Bed5IR 0.076 0.016 24.064 0.620 0.245 0.023 20.831 0.721

DTHD_Drip 0.915 0.005 4.514 0.201 0.895 0.006 3.321 0.224

GNDVI_Drip 0.681 0.012 0.000 0.000 �0.262 0.022 0.123 0.008

GRYLD_Drip 0.653 0.011 0.126 0.005 0.638 0.011 0.144 0.005

PTHT_Drip 0.658 0.019 21.565 0.531 0.602 0.012 21.306 0.728

Average 0.651 0.013 7.858 0.303 0.462 0.016 8.191 0.334

Yield_EBU 0.320 0.019 0.789 0.018 0.365 0.018 0.731 0.017

ASI_EBU 0.501 0.016 0.396 0.012 0.510 0.015 0.391 0.012

PH_EBU 0.308 0.025 0.015 0.003 0.305 0.011 0.010 0.000

Yield_KAK 0.402 0.022 0.446 0.020 0.416 0.020 0.438 0.019

Maize ASI_KAK 0.389 0.015 0.936 0.043 0.423 0.018 0.822 0.029

PH_KAK 0.462 0.025 0.011 0.001 0.369 0.022 0.013 0.001

Yield_KTI 0.276 0.015 0.848 0.022 0.318 0.018 0.825 0.024

ASI_KTI 0.290 0.018 0.607 0.018 0.280 0.020 0.614 0.019

PH_KTI 0.460 0.017 0.019 0.001 0.443 0.017 0.020 0.001

Average 0.379 0.019 0.452 0.015 0.381 0.018 0.429 0.014

CorP: average of Pearson correlation obtained across all trait-environment combination; SE: standard error; MSEP: mean

square error of prediction. Trait_Env means trait-environment combination. In bold are the best predictions of each row

(Trait-Env).

Table 3. Comparison in terms of prediction accuracy of models M2 and M3 using the two real data sets.

Physical Methods for Stimulation of Plant and Mushroom Development28



model M3, since in 5 out of 9 trait-environment combinations this model was superior to

model M2, however there is not a great superiority of the results under model M3 regarded

to model M2. This results obtained in the maize data set are in agreement with the

correlation study performed since this data set has a very low genetic correlation between

traits and between environments.

According to the results observed with the simulated data sets (Tables 1 and 2) and real data

sets (Table 3) there is evidence that the larger the correlation between traits (genetic and

residual) and environments (genetic) the better the performance of the proposed improved

BMTME (M2) model with regard to the uncorrelated multiple-trait and multiple-environment

model (M3), which means that when the there is considerable correlation between traits and

between environments this help to increase prediction accuracy.

4. Conclusions

In this paper we proposed an improved version of the Bayesian multiple-trait multiple-

environment (BMTME) model of Montesinos-López et al. [3] that was derived using the

matrix normal distribution. The advantage of the proposed model (M2) is that it is more

efficient in terms of time of implementation since this improved version works using as

rows the genotypes by environment combinations in place of using as rows the combination

of traits, genotypes and environments which allows a more practical implementation of the

Gibbs sampler in terms of time of implementation. Another, improvement of the BMTME

model is that now allows unstructured covariance matrix for modeling environments in

place of only a diagonal matrix as the original BMTME model. We compared the extended

model (M2) with an uncorrelated multiple-trait and multiple-environment model (M3) that

ignores the general correlation between traits (genetic and residual) and between environ-

ments and we found that the proposed improved BMTME model (M2) outperforms model

(M3) in all the scenarios under study with simulation, however the larger the correlation

between traits and between environments the better the performance in terms of prediction

accuracy of the improved BMTME model. Additionally, we provided all full conditionals

required for the implementation of the improved BMTME model (see Gibbs sampler section

and Appendix A). However, we are aware that more empirical evidence with real and

simulated data is needed to support our findings, and for this reason, we encourage

researcher to implement our proposed improved model and compare with models that

ignore the correlation between traits and between environments like the model M3 given

in Eq. (8).

A. Derivation of full conditionals of the improved BMTME model under

the matrix normal distribution

Full conditional distribution for vec(β)
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where eΣβ ¼ I�1
L ⊗ I�1

I þ R�1
e ⊗XTX

� ��1
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� �
¼ eΣβ I�1
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In the simplification of some calculations the following properties were involved: tr(AB) = vec

(AT)Tvec(B) = vec(B)Tvec(AT), and vec (AXB) = (BT
⊗A)vec(X).
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Full conditional for ΣE
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where k(Y�Xβ�Z1b1�Z2b2)k = (Y�Xβ�Z1b1�Z2b2)
T(Y�Xβ�Z1b1�Z2b2) .
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