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Abstract

Traumatic brain injury (TBI) is a growing health concern worldwide that affects a broad 
range of the population. As TBI is the leading cause of disability and mortality in children, 
several preclinical models have been developed using rodents at a variety of different 
ages; however, key brain maturation events are overlooked that leave some age groups 
more or less vulnerable to injury. Thus, there has been a large emphasis on producing 
relevant animal models to elucidate molecular pathways that could be of therapeutic 
potential to help limit neuronal injury and improve behavioral outcome. TBI involves a 
host of different biochemical events, including disruption of the cerebral vasculature and 
breakdown of the blood-brain barrier (BBB) that exacerbates secondary injuries. A better 
understanding of age-related mechanism(s) underlying brain injury will aid in establish-
ing more effective treatment strategies aimed at improving restoration and preventing 
further neuronal loss. This review looks at studies that focus on modeling the adolescent 
population and highlights the importance of individualized aged therapeutics to TBI.

Keywords: childhood, juvenile, traumatic brain injury, brain development, functional 
outcome, age dependence

1. Introduction

Traumatic brain injury (TBI) is a leading cause of long-term disability among all age groups 

with the adolescent population having a higher incidence of TBI [1]. Males sustain TBI at a 

much higher rate compared to females [1], and functional outcomes vary across patient’s 

age and severity of injury [2, 3]. Studies have shown that younger patients are more likely to 

demonstrate continued improvements, while older patients are more likely to decline [2, 4]. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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On the other hand, childhood TBI (<6 years of age) presents poorer recovery of function 

compared to early adolescent or adolescent-aged patients [5, 6], with severe TBI in early 

childhood resulting in long-term impairment. Although better neuroplasticity or adaptation 
to brain injury in children has once been attributed to better recovery, the effect of age on 
outcome depends upon the function under study and the stage of development at the time 

of injury. In fact, the effects of childhood TBI may take years to “grow into deficit” as the 
developing brain hits milestones of maturation [7, 8]. Multiple regression analyses has also 

identified that age-at-injury onset is a major contributor to post-injury IQ [6]. While there 

are distinct periods of vulnerability in the developing brain, evidence from animal mod-

els also show that metabolic and physiological alterations specific to the juvenile or early 
adolescent brain may induce acute protection compared to adults [9–11]. These potentially 

distinct age-related responses are currently understudied and require a more accurate cor-

relation of disease outcome with the maturation stage of the brain. Moreover, both small and 

large animal models need to be interpreted with caution since developmental milestones are 

distinct between swine, mice, and rat species as well as across different strains during the 
postnatal stages of growth. These differences make age comparisons to human infancy, child-

hood, early adolescence, adolescence, and adulthood challenging. To that end, correlating 

age-specific TBI outcomes from rodent to human thus requires consideration of key neuro-

biological maturation events, rather than chronological age, to predict differential responses 
to TBI which may eventually help guide effective diagnostic and treatment strategies. Here, 
we will review key events that accompany brain development in both humans and rodents 

to identify temporal “benchmarks” that may positively or negatively influence age-at-injury 
outcome. We will also provide an overview of research findings from clinical and preclinical 
age-related TBI studies.

1.1. Human brain structure and development

The human brain is a remarkably complex organ which we still do not fully understand. 

Representing 2% of the entire body weight in adulthood, the brain requires 20% of the body’s 

oxygen supply to accommodate its extreme metabolic demands. Human brain develop-

ment is a highly dynamic process which can be broken down into orchestrated cellular and 

molecular epochs. The neocortex is the newest and arguably most sophisticated structure in 

the human brain and accounts for most of the brain size. By adulthood, the neocortex will 

have amassed approximately 20 billion neurons each capable of forming an average of 7000 

connections with other neurons [12, 13]. The brain is considered to be immune privileged 

as it is isolated from the bloodstream by the blood-brain barrier (BBB). Cerebral spinal fluid 
(CSF) flows through the ventricles located in the center of the brain also provides a cushion. 
The cerebrum is described as having four lobes: frontal, parietal, temporal, and occipital. 

The frontal lobe is involved in higher-order executive functions such as planning, reasoning, 

abstract thinking, decision-making, attention, and personality. Gray and white matters repre-

sent the two broad components of the brain. Gray matter is heavily populated with neuronal 
cell bodies which are essential for transmitting/communicating information throughout the 
brain. White matter accounts for 50% of the human brain volume and is white in appearance 
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because it is highly composed of myelin [14], a specialized membrane, densely enriched with 

lipids, which can accelerate neuronal communication throughout the brain.

Human brain development commences during the third week of gestation and continues 
through adolescence [15]. Within the first year of life, the brain doubles in volume and will 
grow another 15% over the following year [16]. By the age of 6, the brain will have increased in 

size by fourfold which is roughly 90% of the size achieved in adulthood [15]. At the beginning 

of the fetal period of development, the brain is smooth, and later becomes convoluted with 

folds and ridges. This drastic increase in cortical volume is primarily through an increase in 

surface area, as opposed to an increase in thickness, which is how the cortex constitutes up to 

80% of the total brain mass [17]. Higher-order cognitive function requires precise connections 
and communication throughout the brain. For example, cortical neurons can form connec-

tions with neighboring and distant cells to enable communication and integration of sensory, 

cognitive, and motor modalities. The corpus callosum is the largest white matter tract in the 
brain and serves as a major highway of axons connecting the left and right cerebral hemi-

spheres. These axons are wrapped in myelin to foster rapid interhemispheric communication 

of information. Myelination is a process that begins around the middle of the second trimes-

ter, is most appreciably robust up to the second year of life, and continues throughout adoles-

cence, though to a much lesser degree during adulthood [18, 19]. White matter development 
in the human brain is an asynchronous process, commencing earlier and more rapidly in 

sensory than motor pathways, and is later highly prominent in the frontal and temporal lobes 

at 6–8 months of age [19]. The left and right cerebral hemispheres serve different functions 
and do not develop in a completely symmetric manner [19]. One explanation for such spatial 

and temporal asymmetries is a hierarchy of connections formed in an experience-dependent 

order, such that brain regions involved with lower-level processes need to be established 

earlier in life before higher-order integrative regions are required. For example, the somato-

sensory cortex—important for tactile information—matures earlier in development than the 

prefrontal cortex which is involved in higher-level executive functions such as planning [20].

Our knowledge of human brain development has primarily been gathered from noninva-

sive neuroimaging measurements and their functional correlates to neurological outcomes, 

in addition to cellular associations with histopathology. It has become increasingly clear that 

the brain is extremely vulnerable during key developmental epochs. During these sensitive 

maturation-dependent time windows, childhood TBI may increase the risk of brain dysmatu-

ration and atypical development depending on the severity and location of the injury [21–23]. 

For example, generalized (frontal/extrafrontal) or extrafrontal lesion severity but not frontal 
lesion alone was predictive of poor performance in children who sustained a moderate to 

severe TBI at ages 1–9 years of age [23]. Mechanistic insights into the etiologies of the neu-

rological deficits and age-specific regions of vulnerability are vital to the understanding and 
treatment of pediatric TBI. However, rodent models of childhood and adolescent TBI in the 
postnatal growth stage may be difficult to translate into chronological age in humans. A better 
understanding of the major developmental processes in the brain across species and strains 

at the time of injury may be more instrumental for interpreting key findings. A few of these 
major milestones in neurodevelopment are noted below in Table 1.
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1.2. Age-at-injury response to clinical TBI

The widespread conception that the young brain is more resilient in its response to TBI has 

been challenged as there is considerable evidence that childhood TBI results in poorer out-

comes. The developing brain may actually fair much worse compared to adults in cognitive 

and motor functions [30–32]. Levin and colleagues utilized the Glasgow Coma Scale (GCS), the 
primary measure of functional impairment, in children at 0–4 years of age and 5–10 years of 

age following TBI. The 0–4-year-olds were found to suffer the worst clinical outcome, com-

paratively. These and other findings analyzed the long-term behavioral outcomes in chil-
dren who sustained a moderate to severe head injury [33]. Moreover, given the longevity of 

white matter development and maturation, TBI negatively impacts white matter integrity in 
the chronic (13–19 post-injury) but not acute (1–5 months) phase of injury which was linked 

to cognitive impairments in patients at 8–19 years of age [34, 35]. Patients with a history of 

neurological illness, brain tumor, seizures, psychosis, ADHD, Tourette’s disorder, and other 
developmental disabilities were excluded from the study. This study also showed that the 

GCS was not significantly associated with white matter tract changes, as measured by diffuse 
tensor imaging (DTI), suggesting that advanced imaging modalities are vital to clinical track-

ing of disease progression and may be a more sensitive measure of outcome compared to GCS 
alone. Indeed, DTI coupled with functional MRI and perhaps other imaging strategies would 

greatly advance our understanding of the age-related mechanisms of repair and plasticity 

following TBI [36–39]. White matter dysregulation after childhood TBI may also affect motor 
recovery and social cognitive skills which are realized once the skills reach maturity [40–43]. 

Embryonic day (E), postnatal day (P),

months (M), years (Y)

Mouse Rat Human Reference

Sexual maturation# F: P23

M: P42

F: P32-34

M: P45-48

F: 10-17Y

M: 11-17Y

[1, 24]

Peak brain volume (MRI) P20 P60 F: 10.5Y

M: 14.5Y

[8, 25, 26]

Developmental processes/milestones

Neurogenesis completed by*,† P16.5 P15 7.5 M [8]

Astrocytogenesis peak At birth At birth At birth [8, 27]

Prefrontal cortex peak synaptic density* P27.5 P25 12.4 M [28]

Corpus callosum body myelination onset* P15.5 P14 2.6 M [28]

Corpus callosum body myelination end* P35.5 P32 20.4 M [28]

Internal capsule myelination onset* P13.5 P12 1.4 M [28]

Functional blood-brain barrier E15.5 E14 10w gestation [29]

*Estimates determined across species with www.translatingtime.net, based on Workman et al. [28].
†Estimate based off of neurogenesis completion in rat by postnatal day 15 [8]. F, female; M, male; P, postnatal days; Y, 

years; M, months; E, embryonic days; na, not applicable.
#Sexual maturation is strain dependent.

Table 1. Developmental processes and milestones across mammals.
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Therefore, given the lengthy developmental course of myelination and synaptogenesis, TBI 

may disrupt the maturation of functions that support higher-order cognitive outcomes later 

in life [39, 44, 45]. The expression of glutamate receptors NMDA and AMPA greatly changes 

during development [46, 47]. Typically, there is an imbalance between excitatory and inhibi-

tory neurotransmission in the developing brain, which could heighten the sensitivity of 

the young brain to glutamatergic excitotoxicity after trauma that may not be amplified in a 
mature brain [48]. Interestingly, the younger brain has less antioxidant capacity compared to 

the more matured brain, which during TBI increases the amount of reactive oxygen species 

(ROS) that could exacerbate the injury in the younger brain [49]. Inflammation also plays a 
critical role in brain tissue recovery after TBI [50]. In early childhood TBI, microglial cells that 

have infiltrated the brain may become overactive exacerbating secondary tissue damage [51]. 

Taken together, improving our understanding of developmentally related differences will be 
vital for predicting differential, age-specific outcomes and treatment responses to TBI .

Since the adolescent population sees a disproportionate percentage of hospitalizations and 

deaths compared to other age groups, this population should have its own outcome category 

tailoring research findings and treatment outcomes [52]. While adolescents fall between the 

childhood and adult age groups, how to appropriately treat these patients has been particu-

larly challenging in the hospital setting [53]. Over a 13-year study, Gross and colleagues ana-

lyzed the adolescent TBI population (15–17 years of age) treated at pediatric or adult trauma 

centers. Although this study found no significant differences in outcomes between the cen-

ters, it raised an important question regarding how to treat adolescent brain injury, where 

differences in developmental vulnerability may exist compared to early childhood [53]. While 

early childhood TBI is associated with deficits in memory [54, 55], attention [56], intellectual 

functioning [57], and language acquisition [58], few studies have compared the outcomes 

of adolescent aged or young adults to older adults. A multiple regression model has dem-

onstrated that increased age negatively influences outcome, as measured by the Disability 
Rating Scale (DRS) [4]. This study found a greater decline in older patients (≥40 years) over 
5 years post-TBI but also demonstrated that the greatest amount of improvement in disability 

in young adults (16–26 years) compared to adults (27–39 years) and aged (≥40 years) patients. 
The mechanism(s) underlying this age-specific difference may be due, in part, to a reduction 
in the capacity to recover or decreased synaptic plasticity and cortical volume as we age or yet 

undetermined protective factors present during the late adolescence. Although TBI incidence 

has a bimodal age distribution peaking in adolescence and again in the elderly, few age-

related studies have compared acute and chronic effects across the spectrum of age ranges 
including early childhood, adolescence, adulthood, and elderly. One prospective study of 

330 severe TBI patients showed that younger patients (0–19 years of age) had a significantly 
higher percentage of good outcomes, lower mortality rates, and a reduced incidence of sur-

gical mass lesions compared to adults (20–80 years of age) [11]. Although poorer recovery 

of function is known to exist in early childhood compared to adolescent-aged TBI patients, 

it should be noted that the mean age for the abovementioned study was 15–19 years and 

39 years, respectively. Taken together, these findings suggest that the greatest vulnerability in 
age-specific responses lies in early childhood and advanced ages. Interestingly, there may be 
a narrow time window during which adolescence may confer protection, the mechanism(s) of 

which may be fully elucidated using animal models of brain injury, discussed below.
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1.3. Age-at-injury response to preclinical TBI

Rodents are the most commonly used animal models in TBI research and are therefore well 

characterized and cross-validated [59–62]. The following sections will comprehensively 

review the acute and long-term TBI responses in both mice and rats at pre-weanling (P17), 

post-weanling/juvenile (P21), and adult (P60-90) ages. The commonly used models of TBI are 
the controlled cortical impact (CCI) injury and lateral fluid percussion injuries (LFPI) which 
have been adapted and scaled to younger rodent animals to account for differences in animal 
weight and brain size. However, the initial mechanical forces to the brain depend on an array 
of factors that are independently determined. These factors include location, severity, focal, 

or diffuse injury. Similar to clinical findings, there are a spectrum of outcomes following pre-

clinical TBI that are not only age dependent but species and strain specific which must be 
interpreted with caution. Although the importance of gyrification of the human brain, which 
is fully formed at birth but increases in complexity postnatally, is still under debate [63], this 

cross species differences should be kept in mind. Nonetheless, animal models of TBI have 
been instrumental in assessing the vulnerability of the developing brain to mechanical forces 

applied following CCI or LFP injury models.

Neurogenesis, gliogenesis, synaptogenesis, and myelination are key developmental events 

that may impact age-at-injury outcomes after TBI [64–66]. While neurogenesis peaks dur-

ing gestational periods, by adulthood the generation of neurons is restricted to the dentate 

gyrus (DG) of the hippocampus and the lateral wall of the subventricular zone (SVZ) [64, 67]. 

Induction of post-injury neurogenesis has been suggested to play a critical role in learning 

and memory recovery as well as providing neurotrophic factor secretion as neuroprotec-

tive cues. While selectively ablating adult neurogenesis can dampen functional recovery [68, 

69], the effects on early childhood or adolescence are unclear. Sun and colleagues analyzed 
the morphological changes within the subgranular zone of the DG and the SVZ following 
LFPI using P28 juvenile and P90 adult rats [70]. The LFPI model mimics both focal and dif-
fuse mechanical injuries and results in histopathological changes similar to those seen in 

humans [60]. The study determined that LFPI enhanced proliferation within the DG of both 
adult and juvenile rats. However, the juvenile response in the SVZ was greater compared to 
adults. Furthermore, they identified twice as many neurons that were born from the juvenile 
SVZ compared to adults. Similarly, juvenile mice at P21 subjected to CCI injury show an 
increased presence of doublecortin-positive neuroblasts in the DG at 2 weeks post-injury 
[71]. However, a significant decline in these cells was seen at 3 months post-injury suggesting 
that an acute protective response may be subdued by long-term activation of yet unknown 

cellular programs. No comparisons to adult CCI injury were made. Unfortunately, data 

regarding age effects on neurogenesis are still lacking since numerous studies in mice or rats 
either have not performed adult comparisons [72] or have not used relevant TBI models [67, 

73]. Of note, while naïve P9 mice display increased proliferation in the DG compared to P21, 
hypoxic-ischemic injury adversely affected neurogenesis in P9 but greatly enhanced it in P21 
suggesting that early adolescence may display a critical window of regenerative potential 

that may be lost in adulthood. These findings would need to be confirmed using an appro-

priately controlled, longitudinal investigation (days, weeks, months) of neurogenesis with 
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the  inclusion of adult mice. Likewise, suitably comparable ages of rats subjected to TBI could 
support this hypothesis and help demonstrate a cross species phenomenon.

Synaptogenesis peaks at 2 years of age in humans and in 3 weeks in both rats and mice [65]. 

The number of synapses at these time points is greater, and pruning events follow to decrease 

the number of synapses [74–76]. In addition, myelination is an ongoing process that contin-

ues well into adulthood [66]; atypical development of these processes as a result of TBI may 

significantly impact synaptic reorganization and long-term neurobehavioral development 
[77–79]. Ajao and colleagues found that TBI in rats at P17 resulted in measurable deficits 
in motor performance on the rotarod and foot faults at 60 days post-injury well into adult-

hood [77]. Anxiety-like behaviors were also increased compared to noninjured sham controls. 

Sensorimotor tasks and anxiety-like behaviors are often linked to histological changes such as 

cell death in the brain as a consequence of childhood TBI. Neuronal loss due to focal impact 

can impair major electrical signaling pathways by disconnecting circuits, increasing calcium 

in dying cells, triggering inflammation, and blunting key trophic support. The immature rat 
brain is particularly sensitive to excitotoxicity in the neonatal period [80, 81]. This is regu-

lated, in part, by developmental changes in expression of the NR2A and NR2B subunits of 

the NMDA receptor [82, 83] and/or GABAergic neurotransmission impairments through, for 
example, cortical loss of GABAergic interneurons [84, 85]. In the second and third postnatal 

weeks, however, this effect is reduced. In fact, minimal neuronal loss is seen following weight 
drop and LFPI in juvenile (P15–P19) rats [81, 86, 87] suggesting that long-term behavioral 

deficits following TBI are due in greater part to neuronal dysfunction rather than neuronal 
loss. On the other hand, a significant delay in loss of neural tissue is observed in juvenile (P21) 
mice after CCI injury [71, 88, 89] which correlates with progressive dysfunction. Differences in 
injury model, rodent species, or time of histopathological assessment after injury may account 

for these differences. Indeed, a gyrencephalic model of cortical impact delivered at different 
maturation stages to the piglet brain demonstrated increased vulnerability with age to corti-

cal trauma, with the smallest lesions seen at 7 days post-injury in 5-day-old pigs, modest 

injury in 1-month-old piglets, and largest lesion volume in 4-month-olds [90, 91]. Progressive 

histopathological or behavioral changes over time were not evaluated.

While the maturation-dependent response of the resident neuroimmune system (microglial 

and astrocytes) remains under investigation, a notable difference in peripheral immune activa-

tion following TBI has been demonstrated. Bidirectional neural-immune communication exists 

to clear the brain of dead cellular debris from necrotic spillover of intracellular components. 

However, when overactivated, the immune system can mediate neurotoxicity and exacerbate 
secondary injury including free radical formation and oxidative damage as well as activation 

of microglia [92]. Although TBI increases the presence of leukocytes both in neural tissue, due 

to BBB disruption, and in the peripheral blood [93], the destructive phenotype of activated 

immune cell subpopulations is not well understood. Recent findings suggest that progressive 
injury in P21 mice observed months following CCI injury compared to adult may result from 

an age-dependent temporal patterns in leukocyte infiltration [88]. While no differences were 
noted for the CD4+ and CD8+ populations, CD45+ cells and GR-1+ granulocytes remained 
elevated for weeks in P21 mice compared to 3 days in adult. This effect may be  regulated, in 
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part, by IL-1β. Injection of IL-1β into the P21 rat brain exacerbates rapid neutrophil recruit-
ment, CXC chemokine production, and BBB disruption compared to adult rats [94–96]. While 

the juvenile immune system may display increased sensitivity to neutrophil chemoattractants 
(CXCL1, CXCL2, CXC8) [97], extension of neutrophil life span may also translate into increased 

numbers [98, 99]. Indeed, adult neutrophil depletion studies appear to reduce edema, cell 

death, and macrophage/microglia activation while having no effect on BBB and functional 
outcome suggesting that neutrophils may negatively impact TBI outcome and their long-lived 

nature may cause progressive injury and contribute to other age-related responses [100, 101]. 

Findings from our laboratory have shown significant neuroprotection in P21 mice subjected 
to moderate CCI injury compared to adults (unpublished findings). Interestingly, we have 
identified numerous genes in the whole cell fractions of peripheral blood from P21 mice that 
are differentially regulated compared to adults (unpublished findings). Next-generation RNA 
sequencing and ontology analysis identified several pathways that are differentially regulated 
including (1) metabolic, (2) apoptotic, and (3) inflammatory processes (Figure 1). Peripheral 

blood cells isolated from P21 mice display reduced expression of several Toll-like receptors 

(Tlr1, Tlr6, Tlr4, Tlr2), TNF receptor (TNFRSF1A), MMP9, and upregulation of the antioxidant 

superoxide dismutase 2 (SOD2), autophagy-elated ATG4A, antiapoptotic Bag1, and a number 
of other genes that may influence their response once recruited after TBI. Enhanced survival of 
immune-derived cells in the brain may have long-lasting effects on tissue repair and recovery. 
There may be beneficial effects of early recruitment and survival in the damaged neural tissue 
that may be outweighed in the long run if their transient presence is extended. Differences in 
immune cell-type survival, gene expression, and function need to be further explored.

Figure 1. GO analysis of differentially expressed genes between juvenile and adult mouse peripheral blood cells. Six 

hundred and ten genes showed differential expression (q < 0.05) between juvenile and adults. Ontology analysis using 
GeneCodis (biological process) was performed using this gene list to identify differentially regulated pathways [1–3].
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Lastly, subtype-specific recruitment of monocytes/macrophages (M1 vs. M2) has also been 
shown to play a critical role in outcome following CNS injury [102, 103]. However, age-depen-

dent effects of these cell types in both acute and chronic TBI outcome have yet to be investi-
gated. Further examination into the temporal–spatial recruitment of immune cell subtypes 

and the employment of depletion and cell-type-specific knockout studies will help address 
the important emerging role of the peripheral-derived immune system in responding to brain 

trauma across the life span.

The BBB is established during embryogenesis in rodents and humans [104, 105]; however, 

postnatal coverage with astrocytic end feet, which aids in the maturation and maintenance 

of the BBB, occurs in the first few postnatal weeks [104, 106, 107]. This maturation stage is 

critical with regard to changes in permeability as a result of insult. For example, systemic 

inflammation increases BBB permeability in P0 and P8 rats while having no effect at P20 
[108, 109]. TBI induces endothelial cell dysfunction that increases the permeability of the BBB 

including disruption of astrocytic end feet, transporters/channels, and tight junction proteins 
claudin-5 and occludin-1 causing widespread vasogenic edema [110, 111]. The temporal 

changes in BBB permeability likely depend on the model of TBI, age-at-injury, and severity of 

impact. Interestingly, monocarboxylate transporter 2 (MCT2) is substantially increased in the 

microvessels of juvenile P35 rats following CCI injury compared to P75 adult rats [112]. This 

increase correlated with improved behavioral outcome and reduced cortical lesion volume 

in P35 rats receiving a ketogenic diet post-TBI compared to adults [113]. Pop and colleagues 

observed BBB disruption following CCI injury in P17 rats through high amounts of IgG stain-

ing, which is consistent with what is seen after CCI injury [114]. At 1-week after injury, a 

substantial reduction in BBB permeability correlated with an increase expression of tight junc-

tion protein (claudin-5). This was maintained as far out as 2 months post-injury, suggesting 

that tight junction proteins may modulate early disruption and subsequent repair. Likewise, 
administration of DHA and EPA, the main sources found in fish oil, after CCI injury in P17 
juvenile rats reduces BBB permeability, behavioral deficits, and MMP9 expression [115]. The 

relevance of these studies to the adult response was not evaluated, and further work needs 

to be conducted in order to improve our understanding of the age-dependent mechanism(s) 

regulating the BBB following TBI.

2. Conclusions

There has been intense investigation into the brain’s maturation-dependent response to TBI 

using numerous early childhood and juvenile rodent models. Over recent years, studies have 

revealed age-specific differences in the regulation of metabolism, oxidative stress, neurogen-

esis, innate immunity, and BBB function following acute and/or chronic injury. Further explo-

ration into the age-specific elements of vascular function, neuroimmune regulation, and the 
neurovascular niche would help improve our understanding, not only of typical but also 

atypical developmental trajectories as a consequence of childhood TBI. The insurgence of 

these animal models, however, must be met with caution as key maturation stages of the 

brain vary considerably between murine and rat species. Studies of immature or juvenile 
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injury must also be accompanied by appropriate comparisons to adult-aged animals, which 

thus far has been inadequate. The need for larger animal models that more accurately reca-

pitulate human brain structure and maturational age is also warranted. Although predicting 

the age-specific response to TBI in childhood, adolescence, and young adulthood is limited 
based on current available animal model data, it is clear that “a window of susceptibility” 
exists that may deter normal growth and development. On the other hand, it is important not 

to underestimate the early neuroprotective findings observed in a number of studies, which 
may yield valuable mechanistic insight into pathways that could be utilized for neuroprotec-

tion in the adult brain.
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