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Abstract

Quality of service is the ability to provide different priorities to different applications, users
or dataflows, or to guarantee a certain level of performance to a dataflow. The chapter uses
timed Petri nets to model techniques that provide the quality of service in packet-switched
networks and illustrates the behavior of developed models by performance characteristics
of simple examples. These performance characteristics are obtained by discrete-event simu-
lation of analyzed models.
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queuing, fair queuing, weighted fair queuing, performance analysis, discrete-event
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1. Introduction

Quality of service (or simply QoS) is the ability to provide different priorities to different

applications, users or dataflows, or to guarantee a certain level of performance to a dataflow

[1]. For example, a computer network can guarantee certain levels of error rate or jitter, or

maximal delay of transmitted information. Quality of service guarantees are important if the

network capacity is insufficient, especially for real-time streaming multimedia applications

such as voice over internet (voice over IP), TV over internet (TV over IP), or multimedia

applications, since these are often delay sensitive and require fixed bit rate [1, 2]. Similarly,

quality of service is essential in networks where the capacity can be a limiting factor, for

example, in cellular data communication [3].

There are two principal approaches to QoS in modern packet-switched IP networks, an inte-

grated services approach based on application requirements that are exchanged with the

network, and a differentiated approach where each packet identifies a desired service level to

the network [4]. Early networks used the integrated services approach. It was realized,
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however, that in broadband networks, the core routers are required to deal with tens of

thousands of service requirements—the integrated services approach does not scale well with

the growth of the internet. Routers supporting differentiated services configure their network

schedulers to use multiple queues for packets awaiting transmission. In practice, packets

requiring low jitter (e.g., voice over IP or videoconferencing) are given priority over packets

of other types. Typically, some bandwidth is also allocated to network control packets, which

must be sent over the network without any unnecessary delay.

Modern packet-switched networks are complex structures [5], which, for modeling, require a

flexible formalism that can easily handle concurrent activities as well as synchronization of differ-

ent events and processes that occur in such networks. Petri nets [6, 7] are such formal models.

As formal models, Petri nets are bipartite directed graphs, in which two types of vertices

represent, in a very general sense, conditions and events. An event can occur only when all

conditions associated with it (represented by arcs directed to the event) are satisfied. An occur-

rence of an event usually satisfies some other conditions, indicated by arcs directed from the

event. So, an occurrence of one event causes some other event (or events) to occur, and so on.

In order to study performance aspects of systems modeled by Petri nets, the durations of

modeled activities must also be taken into account. This can be done in different ways,

resulting in different types of temporal nets. In timed Petri nets [8], occurrence times are

associated with events, and the events occur in real time (as opposed to instantaneous occur-

rences in other models). For timed nets with constant or exponentially distributed occurrence

times, the state graph of a net is a Markov chain (or an embedded Markov chain), in which the

stationary probabilities of states can be determined by standard methods [9]. These stationary

probabilities are used for the derivation of many performance characteristics of the model [10].

In this chapter, timed Petri nets are used to model priority queuing systems, which provide the

quality of service in packet-switched networks. Section 2 recalls basic concepts of Petri nets

and timed Petri nets. Section 3 discusses (strict) priority queuing and its performance charac-

teristics. Fair scheduling is described and illustrated in Section 4, while Section 5 deals with

weighted fair scheduling. A combined approach, using several types of scheduling methods, is

outlined in Section 6. Section 7 concludes the chapter.

2. Timed Petri nets

In Petri nets, concurrent activities are represented by tokens, which can move within a (static)

graphlike structure of the net. More formally, a marked inhibitor place/transition Petri net M is

defined as a pair M ¼ N ;m0ð Þ, where the structure N is a bipartite-directed graph,

N ¼ P;T;A;Hð Þ, with two types of vertices, a set of places P and a set of transitions T, a set of

directed arcs A connecting places with transitions and transitions with places, A⊆T�P ∪P�T,

and a set of inhibitor arcs H connecting places with transitions, H⊂P�T; usually A ∩H =∅. The

initial marking functionm0 assigns non-negative numbers of tokens to places of the net,m0 :P!

{0, 1,…}. Marked nets can be equivalently defined asM = (P,T,A,H,m0).
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A place is shared if it is connected to more than one transition. A shared place p is free choice if

the sets of places connected by directed arcs and inhibitor arcs to all transitions sharing p are

identical. A shared place p is (dynamically) conflict free if for each marking reachable from the

initial marking at most one transition sharing p is enabled. A net is a free choice if all its shared

places are either free choice or (dynamically) conflict free. Only free-choice nets are used in this

chapter.

In timed nets [8], occurrence times are associated with transitions, and transition occurrences

are real-time events; i.e., tokens are removed from input places at the beginning of the occur-

rence period, and they are deposited to the output places at the end of this period. All

occurrences of enabled transitions are initiated in the same instants of time in which the

transitions become enabled (although some enabled transitions may not initiate their occur-

rences). If, during the occurrence period of a transition, the transition becomes enabled again, a

new, independent occurrence can be initiated, which will overlap with the other occurrence(s).

There is no limit on the number of simultaneous occurrences of the same transition (some-

times, this is called infinite occurrence semantics). Similarly, if a transition is enabled “several

times” (i.e., it remains enabled after initiating an occurrence), it may start several independent

occurrences in the same time instant.

More formally, a free-choice timed Petri net is a triple, T ¼ M; c; fð Þ, whereM is a marked net,

c is a choice function that assigns probabilities to transitions in free-choice classes, c! [0, 1],

and f is a timing function that assigns an (average) occurrence time to each transition of the net,

f :T!R
+, where R+ is the set of non-negative real numbers.

The occurrence times of transitions can be either deterministic or stochastic (i.e., described by

some probability distribution function); in the first case, the corresponding timed nets are

referred to as D-timed nets [11]; in the second, for the (negative) exponential distribution of

occurrence times, the nets are called M-timed nets (Markovian nets) [12]. In both cases, the

concepts of state and state transitions have been formally defined and used in the derivation

of different performance characteristics of the model. In simulation applications, other dis-

tributions can also be used; for example, the uniform distribution (U-timed nets) is some-

times a convenient option. In timed Petri nets, different distributions can be associated with

different transitions in the same model providing flexibility that is used in simulation exam-

ples that follow.

In timed nets, the occurrence times of some transitions may be equal to zero, which means that

the occurrences are instantaneous; all such transitions are called immediate (while the others

are called timed). Since the immediate transitions have no tangible effects on the (timed)

behavior of the model, it is convenient to “split” the set of transitions into two parts, the set of

immediate and the set of timed transitions, and to first perform all occurrences of the (enabled)

immediate transitions, and then (still in the same time instant), when no more immediate

transitions are enabled, to start the occurrences of (enabled) timed transitions. It should be

noted that such a convention effectively introduces the priority of immediate transitions over

the timed ones, and therefore conflicts of timed and immediate transitions are not allowed in

timed nets. Detailed characterization of the behavior or timed nets with immediate and timed

transitions is given in [8].
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3. Priority queuing

The basic idea of priority scheduling [13] is that separate queues are used by servers for packets

of different priority classes, as shown in Figure 1 (there are three classes of priorities with queues

Q1, Q2, and Q3, for example, for voice, video and data packets, respectively). It is assumed that

priorities decrease with the queue numbers; i.e., Q1 is the highest priority queue. In Figure 1, a1 is

the arrival rate of packets in priority class 1, a2 is the arrival rate in class 2, and s is the service

rate; 1/s is the average transmission time of a packet over the communication channel

(represented as the server in Figure 1). For simplicity of the description, it is assumed that the

transmission times are (approximately) the same for packets of different classes, but this can

easily be replaced by rates s1, s2, and s3.

To select a packet for transmission, the scheduler first checks the highest priority queue (Q1)

and if this queue is nonempty, the scheduler uses the first packet from this queue. If Q1 is

empty, the scheduler checks the next queue in the order of priorities (i.e., Q2 and then Q3).

Consequently, a lowest priority packet is transmitted only when all other (higher priority)

queues are empty.

Figure 2 shows a Petri net model of priority queuing outlined in Figure 1. Transitions t01, t02,

and t03 with places p01, p02, and p03 are (independent) sources of packets for classes 1, 2, and 3,

a2

Q2

s

a3

Q3

a1

Q1

Figure 1. Priority queuing.

p5

t1

t2

t3

p1

p2

p3

p01

t01

p02

p03

t02

t03

Figure 2. Timed Petri net model of priority queuing.
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respectively. The rates of generated packets are determined by the occurrence times associated

with t01, t02, and t03; a1 = 1/f(t01), etc. Also, the mode of the timed transition (M, D, or U)

determines the distribution of the interarrival times for the respective source.

Transitions t1, t2, and t3 model the transmission times for packets of classes 1, 2, and 3,

respectively. Place p5, shared by these three transitions, guarantees that no two packets can be

transmitted at the same time. Finally, the inhibitor arcs (p1, t2), (p1, t3), and (p2, t3) implement the

priorities: if there is a packet of class 1 waiting for transmission (in p1), no packet of class 2 or 3

can be transmitted; if there is a packet of class 1 or 2, no class 3 packet can be transmitted.

The priority scheme works well when the traffic intensity is small; when, however, the traffic

becomes intensive, it is quite possible that bursts of packets of higher priorities can (temporar-

ily) block the transmission of lower priority packets for extended periods of time, significantly

degrading their performance. Figure 3 shows the utilization of a transmission channel shared

by three streams of packets (as in Figure 1) as a function of traffic intensity of packets of

priority 1, ρ1, with fixed traffic intensities for packets of priorities 2 and 3 (at the values of

ρ2 = 0.5 and ρ3 = 0.25).

It can be observed that for traffic intensity ρ1 > 0.25, i.e., ρ1 > 1.0� ρ2� ρ3, channel utilization

for packets of priority 3 decreases to zero; for ρ1 ≥ 0.5, packets of priority 3 are blocked.

Similarly, for ρ1 > 0.5, the utilization of the channel for packets of priority 2 decreases, which

means that only some of such packets can be send through the channel.

Waiting times of packets with priorities 1, 2, and 3, for the case shown in Figure 3, are presented

in Figure 4. As the traffic intensity ρ1 approaches 0.25, waiting times for packets of priority 3

increase indefinitely, and for ρ1 approaching 0.5, so do waiting times of packets of priority 2.

It should be noted that for ρ1 > 0.25, queue Q3 (with infinite capacity) is nonstationary as the rate

of packets entering the queue is greater than the rate of packets removed from it (for transmission

through the channel). Similarly, queue Q2 (with infinite capacity) is also nonstationary for
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ρ1 > 0.5. This is the reason that, in Figure 4, waiting times are shown only for stationary regions of

behavior.

4. Fair queuing

In fair queuing [14], a transmission medium is shared (in a fair way, i.e., in “equal parts”) by all

classes of traffic (and the classes of traffic correspond to different packet flows, e.g., voice over

IP, video, etc.). Implementations of fair queuing use separate queues for different classes of

traffic, and packets are forwarded from these queue in a cyclic way, providing the same service

for all classes.

Timed Petri nets model of fair queuing with three classes of traffic (as in Figure 1) is shown in

Figure 5.

Places p1, p2, and p3 are queues for classes 1, 2, and 3, respectively. If the queues for all classes

are nonempty, the selection is performed cyclically in a loop:

p31, t11, p10, t10, p12, t22, p20, t20, p23, t33, p30, t30, p31:

This loop is modified if (at the selection time) some queues are empty. For example, if after

selecting a packet of class 1 packet, the queue for class 2 is empty, while the queue for class 3 is

nonempty, the sequence is:

p31, t11, p10, t10, p12, t32, p30, t30, p21:

If the only nonempty queue is the queue for class 1, the sequence is
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Figure 4. Average waiting times as functions of traffic intensity ρ1 with ρ2 = 0.5 and ρ3 = 0.25.
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p31, t12, p10, t10, p31:

Generally, there are three cases when packets are selected from (nonempty) queue 1:

• queue 1 is checked in the order of fair queuing (marked place p31) and the queue is

nonempty (i.e., transition t11 can occur),

• queue 3 is checked in the order of fair queuing (marked place p23), but the queue is empty

so queue 1 is checked as the next one and it is nonempty (i.e., transition t13 can occur),

• queue 2 is checked in the order of fair queuing, but queue 2 as well as the next queue,

queue 3, are empty, while queue 1 is nonempty (i.e., transition t12 can occur).

There are similar cases for queues 2 and 3.

It should be observed, that the set of places:

p31; p12; p23; p10; p20; p30
� �

always contains a single token (initially shown in p31 in Figure 5). The cyclic checking of

queues of fair queuing is controlled by this token.

Figure 6 shows the average waiting times for a system with fair queuing and three classes of

traffic when the traffic intensities are the same for all three classes. Since the service rates are
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Figure 5. Timed Petri net model of fair queuing.
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also the same for all classes, channel utilizations as well the average waiting times for are the

same in this case for all classes of traffic.

If, however, traffic intensities are different for different classes, average waiting times as well as

utilizations of the shared transmission channel are also different. Figure 7 shows the average

waiting times for the case when ρ1 = 0.5ρ, ρ2 = ρ3 = 0.25ρ.

In this case, the average waiting times for traffic classes with greater traffic intensity (class 1)

increase much faster with increasing traffic intensity than for other classes of traffic (classes

2 and 3).
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5. Weighted fair queuing

Weighted fair scheduling [13] restricts the priority scheduling by introducing limits on the

number of consecutive packets of the same class that can be transmitted over the channel;

when the scheduler reaches such a limit, it switches to the next nonempty priority queue and

follows the same rule. So, if there are sufficient supplies of packets in all priority classes, the

scheduler selects w1 packets of class 1, then w2 packets of class 2, then w3 packets of class 3, and

again w1 packets of class 1, and so on, where w1, w2, and w3 are the weights for classes 1, 2 and 3,

respectively. Consequently, in such a situation (i.e., for sufficient supply of packets in all classes),

the channel is shared by the packets of all priority classes, and the proportions are

ui ¼
wi=siP

j¼1,…, k wj=sj
, i ¼ 1, 2,…k, (1)

where k is the number of priority classes and si, i = 1,…, k, is the transmission rate for packets of

class i. If the transmission rates are the same for packets of all priority classes (as is assumed for

simplicity in the illustrating examples), the properties are

ui ¼
wiP

j¼1,…, k wj
, i ¼ 1,…, k: (2)

For an example with three priority classes and the weights equal to 4, 2, and 1 for classes 1, 2,

and 3, respectively, these “utilizations bounds” are equal to 4/7, 2/7, and 1/7, for classes 1, 2,

and 3, respectively.

A Petri net model of weighted fair scheduling for three priority classes with weights 4, 2, and 1

is shown in Figure 8. The model is composed of three identical interconnected sections

corresponding to the three priority classes. The main elements of the model are the three

queues represented by places p1, p2, and p3 for classes 1, 2 and 3, respectively, and timed

transitions t1, t2, and t3 modeling the transmission of selected packets through the communi-

cation channel. The three classes of packets are generated (independently) by transitions t01,

t02, and t03 with places p01, p02, and p03.

As in fair queuing, the scheduling is based on cyclic selection of queues for the transmission of

waiting packets. This cyclic operation is represented by a (rather complex) loop with places r1, r2,

and r3; q1, q2, and q3; and also s1, s2, and s3. There is a single “control token” in this loop (shown in

place s3 in Figure 8). This token always indicates the queue that is used for transmission of packets.

The section for class 2 is shown separately in Figure 9 to make its description easier to follow.

Place r2 becomes marked only when nonempty queue 2 is used for the selection of packets.

Place w2 contains the weight of class 2 (in this case 2). Transition a2 selects a packet (from p2)

and forwards it to p20, moving a single token from w2 to u2. When the channel becomes

available (i.e., p5 becomes marked), the selected packet is forwarded from p20 to p22 and then

is transmitted (transition t2). At the same time, a token is returned by t20 to r2 to allow selecting

another packet from p2. This is repeated until:
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• there are no more token in w2 (transition c2 occurs), or

• there are no more token in p2 (transition d2 occurs).

In both cases, the token from r2 is moved to q2 and then a number of occurrences of b2 moves

all tokens form u2 back to w2. When u2 becomes unmarked, transition e2 moves the token from

q2 to s2 in order to select the next traffic class. If p3 is nonempty, transition t23 moves the token

from s2 to r3. If p3 is unmarked and p1 is marked, transition t21 moves the token from s2 to r1. If

both p1 and p3 are unmarked but p2 is marked, transition t22 moves the token from s2 to r2 and

transmission of class 2 packets continues. Finally, if none of t21, t22, and t23 is enabled, the token

remains in s2 waiting for a packet arriving to p1, p2, or p3.

It should be observed that when the traffic is intense, i.e., when the queues p1, p2, and p3 are

nonempty most of the time, the queuing mechanism repeatedly selects w1 packets from p1,

then w2 packets from p2, then w3 packets from p3, and so on. On the other hand, when the

traffic is light, all packets are transmitted with very little delay.
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Figure 8. Petri net model of weighted fair queuing with weights 4-2-1.
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Figure 10 shows the utilization of the transmission channel shared by three classes of packets

(as in Figure 1) as a function of traffic intensity of traffic class 1, ρ1, with fixed traffic intensities

for traffic classes 2 and 3 (at the values of ρ2 = 0.5 and ρ3 = 0.25).

For ρ1 > 0.25, channel utilization for packets of priority 3 decreases from the initial value of 0.25 to

its weighted value of 0.14 (i.e., 1/7). Also, channel utilization for packets of priority 2 decreases

from its initial value of 0.5 to its weighted value of 0.28 (i.e., 2/7). At ρ1 = 0.57 (i.e., 4/7), the total

utilization of the channel becomes 100% and no further increase of utilization is possible.

Similarly as before (Figures 3 and 4), queues Q2 and Q3 are nonstationary for ρ1 > 0.25 and

queue Q1 is nonstationary for ρ1 > 0.57 (i.e., 4/7).
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Figure 9. Petri net model of class 2 of weighted fair queuing.
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For the same weights but for different (fixed) arrival rates for classes 2 and 3, i.e., for ρ2 = 0.25

and ρ3 = 0.1, the utilization of the transmission channel as a function of traffic intensity of traffic

class 1 is shown in Figure 11.

For this case, queues Q2 and Q3 are stationary for 0 ≤ρ1 < 1 and Q3 is nonstationary for

ρ1 > 0.65 (i.e., 1.0–0.25–0.1). The average waiting times for classes 2 and 3 depend in a limited

way on the traffic intensity ρ1, as shown in Figure 12.

In weighted fair queuing, if weights are equal to the arrival rates, the traffic of lower priority

classes is (almost) independent of the traffic intensity of higher-priority classes; the effect is
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Figure 11. Channel utilization as a function of ρ1 with ρ2 = 0.25 and ρ3 = 0.1.
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Figure 12. Average waiting times as functions of ρ1 with ρ2 = 0.25 and ρ3 = 0.1.
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similar to assigning some (shared) transmission capacity to lower priority traffic classes.

Moreover, if this “reserved” capacity is not used, it is available to other classes of traffic.

6. Combined queuing

The basic queuing methods discussed earlier can be combined into more complex systems. For

example, the combination of priority queuing and weighted fair queuing is known as low-

latency queuing (LLQ) [15]. A simpler case of combining priority queuing and fair queuing, as

shown in Figure 13, is used as an illustration of the combined approach.

It is assumed in this example that 40% of bandwidth is allocated to the priority queue (Q1) and

that the remaining 60% of bandwidth is equally divided among queues Q2, Q3 and Q4.

a1

Q1

priority queueing

a2

Q2

s

a3

Q3

fair queueing

a4

Q4

Figure 13. Priority queuing combined with fair queuing.
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Figure 14. Average waiting times as functions of ρ with ρ1 = 0.4ρ and ρ2 =ρ3 =ρ4 = 0.2ρ.
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Average waiting times for all four classes of traffic (Figure 13) as functions of traffic intensity

are shown in Figure 14.

Figure 14 shows the effects of priority scheduling (class 1) on lower priority classes (classes 2,

3, and 4) when traffic intensity approaches 1—the average waiting times increase rather

significantly for classes 2, 3, and 4 while class 1 remains practically unaffected by the increased

traffic. Also, because of fair queuing, the average waiting times for classes 2, 3, and 4 are

practically identical.

7. Concluding remarks

The Internet 2 project, launched in 2001, was probably too early for implementation of QoS

protocols with the equipment that was then available [16]. It should not be surprising that this

resulted in a conclusion that adding more bandwidth (i.e., over-provisioning) is more effective

than any of the various schemes for accomplishing QoS [17]. But cost and other factors prevent

service providers to built and maintain permanently over-provisioned networks; other

approaches must be used to guarantee the performance of services available in modern

packet-switched networks [16].

Several models of techniques used for providing quality of service in packet-switched net-

works are discussed in this chapter. These models are used to derive performance characteris-

tics of scheduling methods and to provide some insights into the behavior of packet-switched

networks. In particular, the blocking of lower priority classes of traffic, typical for priority

scheduling, can easily be observed. Also, the guaranteed levels of service of fair scheduling

and weighted fair scheduling can easily be illustrated.

It should be noted, however, that the discussed techniques are just basic elements of complex

computer networks and that the behavior of real systems is very dynamic and usually difficult

to predict [18]. Therefore, more work is needed in this area to use the networks in an efficient

and predictable way.

Also, an attractive aspect of the models would be some kind of compositionality that would

allow models to be easily combined into more complex ones, as outlined in Section 6. The

models presented in this chapter need to be revised to make such compositions straightfor-

ward.
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