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Abstract

Chemical exchange saturation transfer (CEST) is one of the contrast mechanisms in mag-
netic resonance imaging (MRI) and has been used to detect dilute proteins through the
interaction between bulk water and labile solute protons. Amide proton transfer (APT)
MRI has been developed for imaging diseases such as acute stroke. Moreover, various
CEST agents have been explored to enhance the CEST effect. The contrast mechanism of
CEST or APT MRI, however, is complex and depends not only on the concentration of
amide protons or CEST agents and exchange properties, but also varies with imaging
parameters such as radiofrequency (RF) power and magnetic field strength. When there
are multiple exchangeable pools within a single CEST system, the contrast mechanism of
CEST becomes even more complex. Numerical simulations are useful and effective for
analyzing the complex contrast mechanism of CEST and for investigating the optimal
imaging parameter values. In this chapter, we present the basics of CEST or APT MRI
and a simple and fast numerical method for solving the time-dependent Bloch-McConnell
equations for analyzing the behavior of magnetization and/or contrast mechanism in
CEST or APT MRI. We also present a method for analyzing the behavior of magnetization
in spin-locking CEST MRI.

Keywords: Bloch-McConnell equations, numerical solution, chemical exchange
saturation transfer (CEST) MRI, amide proton transfer (APT) MRI, spin-locking

1. Introduction

Chemical exchange saturation transfer (CEST) is one of the contrast mechanisms in magnetic

resonance imaging (MRI) [1] and has been increasingly used to detect dilute proteins through

the interaction between bulk water protons and labile solute protons [2–4]. Amide proton

transfer (APT) MRI has been developed for imaging diseases such as acute stroke and cancer,

and is now under intensive evaluation for clinical translation [5, 6]. APT MRI is a particular

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



type of CEST MRI that specifically probes labile amide protons of endogenous mobile proteins

and peptides in tissue [5, 6]. In addition to APT MRI [5, 6], useful CEST MRI contrast for

clinical imaging can be generated from amine protons [7], hydroxyl protons [8], glycosamino-

glycans [9], and glutamate [10], as well as from changes in creatine and lactate concentrations

[11]. Glucose and iopamidol have been used as exogenous CEST agents that have been admin-

istered to patients [12, 13]. Moreover, various CEST agents have been energetically developed

to detect the parameters that reflect tissue molecular environment such as hydrogen ion

exponent (pH) and/or to enhance the CEST effect [14].

In CEST or APT MRI, the exchangeable proton spins are saturated, and the saturation is

transferred upon chemical exchange to the bulk water pool [1, 15]. As a result, a large contrast

enhancement in bulk water can be achieved. The contrast mechanism of CEST or APT MRI,

however, is complex and depends not only on the concentration of amide protons or CEST

agents, relaxation, and exchange properties but also varies with imaging parameters such as

radiofrequency (RF) power and magnetic field strength [15]. When there are multiple exchange-

able pools within a single CEST system, the contrast mechanism of CEST becomes all the more

complex [16]. Numerical simulations are useful and effective for analyzing the complex CEST

contrast mechanism and for investigating the optimal imaging parameter values [17, 18]. In

order to perform extensive numerical simulations for CESTor APT MRI, it requires the develop-

ment of a simple and fast numerical method for obtaining the solutions to the time-dependent

Bloch-McConnell equations.

In this chapter, we present the basics of CEST or APT MRI and a simple and fast numerical

method for solving the time-dependent Bloch-McConnell equations for analyzing the behavior

of magnetization and/or contrast mechanism in CEST or APT MRI. We also present it in SL

CEST MRI.

2. Bloch-McConnell equations in the presence of CEST

2.1. Two-pool chemical exchange model

A two-pool chemical exchange model is illustrated in Figure 1. A and B in Figure 1 represent

the pools of bulk water protons and labile solute protons, respectively. The time-dependent

Bloch-McConnell equations for the two-pool chemical exchange model in CEST or APT MRI

are expressed as [17, 18].

Figure 1. Two-pool chemical exchange model.
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(1)

where superscripts a and b show the parameters in pool A and pool B, respectively. For

example, Ma
x tð Þ, Ma

y tð Þ, and Ma
z tð Þ are the x, y, and z magnetization components in pool A at

time t, respectively. Ra
1 and Ra

2 are the reciprocals of the longitudinal (Ta
1) and transverse

relaxation times (Ta
2), that is, the longitudinal and transverse relaxation rates in pool A,

respectively. kab and kba denote the exchange rate from spins in pool A to those in pool B and

that from spins in pool B to those in pool A, respectively (Figure 1).Ma
0 andMb

0 are the thermal

equilibrium z magnetization components in pool A and pool B, respectively. Δωa =ωa�ω and

Δωb =ωb�ω, where ωa, ωb, and ω denote the Larmor frequencies in pool A and pool B, and the

frequency of the RF-pulse irradiation, respectively. ωx
1 and ω

y
1 are the x and y components of

the amplitude of the RF-pulse irradiation (ω1), respectively. Note that ω1 =γB1, where γ and B1

are the gyromagnetic ratio (γ/2π = 42.58 MHz/T) and RF power, respectively. When the RF

pulse is applied along an angle φ from the x-axis of the rotating frame as illustrated in Figure 2,

ωx
1 and ω

y
1 are represented by ωx

1 =ω1 cosϕ and ω
y
1 =ω1 sinϕ, respectively. When the RF pulse is

applied along the x-axis of the rotating frame, ωx
1 and ω

y
1 become ω1 and 0, respectively.

The differential equations given by Eq. (1) can be combined into one vector equation (homo-

geneous linear differential equation) [18]:

dM tð Þ

dt
¼ A ω;ω1;ϕ

� �

∙M tð Þ, (2)

where

M tð Þ ¼ Ma
x tð Þ Ma

y tð Þ Ma
z tð Þ Mb

x tð Þ Mb
y tð Þ Mb

z tð Þ 1
h iT

(3)

and
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(4)

T in Eq. (3) denotes the matrix transpose.

For simplicity, we assume that the RF pulse is applied along the x-axis of the rotating frame,

that is, ϕ = 0. According to Koss et al. [19], the matrix A(ω,ω1, 0) can be given by.

A ω;ω1; 0ð Þ ¼
E C

0 0

� �

, (5)

where E is the evolution matrix and C is the constant-term matrix. Furthermore, E is given by.

E ¼ RþK: (6)

In the case of A given by Eq. (4), R is reduced to.

R ¼
Ra 0

0 Rb

� �

, (7)

where

Ra ¼

�Ra
2 ∆ωa 0

�∆ωa �Ra
2 ω1

0 �ω1 Ra
1

2

6

4

3

7

5
, (8)

and

Figure 2. Parameters for analyzing the behavior of magnetization in the rotating frame.
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Rb ¼
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2 Δωb 0
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2 ω1
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5
, (9)

K in Eq. (6) is given by

K ¼
�kab kba

kab �kba

� �

⊗ I, (10)

where I is a 3-by-3 identity matrix and ⊗ denotes the Kronecker tensor product. C in Eq. (5) is

given by.

C ¼ Ra
1M

a
0 Rb

1M
b
0

� �T
⊗ 0 0 1½ �T: (11)

The solution of Eq. (2) with ϕ being 0 can be given by [18].

M tð Þ ¼ eA ω;ω1;0ð ÞtM 0ð Þ, (12)

where t represents the so-called saturation time and M(0) is the matrix of initial values at t = 0.

e
A(ω,ω1, 0)t is the matrix exponential.

It should be noted that mass balance imposes the following relationship between the exchange

rates (kab and kba) of pool A and pool B [17]:

kab ¼ kab þ kbað Þ∙
Mb

0

Ma
0 þMb

0

(13)

and

kba ¼ kab þ kbað Þ∙
Ma

0

Ma
0 þMb

0

(14)

2.2. Three-pool chemical exchange model

Figure 3 illustrates a three-pool chemical exchange model in which pool a represents the bulk

water pool. In this case, R and K are given by [19].

Figure 3. Three pool chemical exchange model.
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respectively. Rc in Eq. (15) is given by Eq. (8) in which the subscript a and superscript a are

replaced by c. C is given by.

C ¼ Ra
1M

a
0 Rb

1M
b
0 Rc

1M
c
0

� �T
⊗ 0 0 1½ �T : (17)

The solutions of other multi-pool chemical exchange models such as an hour-pool chemical

exchange model are described in Ref. [20].

2.3. Calculation of Z-spectrum, MTRasym, and PTR

The CEST effect has usually been analyzed using the so-called Z-spectrum [18]. The Z-spectrum

is given by the following equation:

Z� spectrum ¼
Ma

z ∆ωoff

� �

Ma
0

, (18)

where Ma
z Δωoff

� �

is the z magnetization component of bulk water protons (pool A) at Δωoff.

Note that Δωoff = �Δωa.

The magnetization transfer asymmetry (MTRasym) analysis has been performed using the

following equation [18]:

MTRasym ¼
Ma

z �∆ωoff

� �

�Ma
z ∆ωoff

� �

Ma
0

: (19)

Instead of MTRasym, the following equation for proton transfer ratio (PTR) has also been used

for analyzing the CEST effect [18]:

PTR ¼
Ma

z �∆ωoff

� �

�Ma
z ∆ωoff

� �

Ma
z �∆ωoff

� � , (20)

where Ma
z �Δωoff

� �

denotes the z magnetization component of pool A at the opposite side of

the water resonance (Δωoff).
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Figure 4(a) shows Z-spectra as a function of offset frequency (Δωoff) for various saturation

times (0.5, 1, 2, 5, and 10 s) in the two-pool chemical exchange model (Figure 1). Figure 4(b)

shows Z-spectra as a function of Δωoff for various ω1 values (25, 50, 100, 150, and 200 Hz). It

should be noted that because B1 =ω1/γ, ω1 values of 25, 50, 100, 150, and 200 Hz correspond to

B1 values of 0.59, 1.17, 2.35, 3.52, and 4.70 μT, respectively. Figure 4(c) shows Z-spectra as a

function of Δωoff for various M
b
0=M

a
0 values (1/500, 1/250, 1/125, 1/100, and 1/50).

In the above simulations, we assumed that Ta
1 and Ta

2 were 3 s and 100 ms, respectively, and

Tb
1 ¼ 1 s and Tb

2 ¼ 15 ms [16]. The chemical shift of protons in pool B was set to be 4 ppm. It

should be noted that the chemical shift of 4 ppm corresponds to Δωoff of 1192.8 Hz for the

magnetic field strength of 7 T. Unless otherwise indicated, kab + kba was assumed to be 100 Hz.

Ma
0 and Mb

0 were assumed to be 1 and 1/250, respectively. The saturation time and ω1 were

taken as 2 s and 100 Hz, respectively. The matrix exponential and Kronecker tensor product

were calculated using the MATLAB® functions “expm” and “kron,” respectively.

The peaks at 0 Hz (0 ppm) and 1192.8 Hz (4 ppm) in Figure 4 derived from pool A and pool B,

respectively. As shown in Figure 4(a) and Figure 4(b), Z-spectra changed largely depending on

the saturation time and ω1, that is, Z-spectra became broad and tended to saturate with

increasing saturation time and ω1. As shown in Figure 4(c), the peaks at 1192.8 Hz increased

with increasing Mb
0=M

a
0 value.

Figure 5 shows cases for the three-pool chemical exchange model (Figure 3) consisting of bulk

water (pool A) and two labile proton pools (pool B and pool C). In these cases, we assumed

that Ta
1 ¼ 3 s, Ta

2 ¼ 100 ms, Tb
1 ¼ Tc

1 ¼ 1 s, and Tb
2 ¼ Tc

2 ¼ 15 ms [16]. The chemical shifts of two

labile proton pools were set to be 4 ppm (Δωoff = 1192.8 Hz for the magnetic field strength of

7 T) and 5 ppm (Δωoff = 1491.0 Hz for 7 T). Unless otherwise indicated, kab + kba, kac + kca, and

kbc + kcb were assumed to be 100 Hz, 300 Hz, and 100 Hz, respectively. Ma
0, M

b
0, and Mc

0 were

assumed to be 1, 1/250, and 1/500, respectively. The saturation time and ω1 were taken as 5 s

and 50 Hz, respectively.

Figure 4. Z-spectra as a function of Δωoff for various values of saturation time að Þ,ω1 bð Þ, andMb
0=M

a
0 (c) in the two-pool

chemical exchange model.
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Figure 5(a) shows Z-spectra as a function of Δωoff for various saturation times (0.5, 1, 2, 5, and

10 s). The peaks at 0 Hz (0 ppm), 1192.8 Hz (4 ppm), and 1491.0 Hz (5 ppm) derive from pool

A, pool B, and pool C, respectively. As shown in Figure 5(a), Z-spectra changed largely

depending on the saturation time, that is, Z-spectra became broad and tended to saturate

with increasing saturation time. Figure 5(b) shows Z-spectra as a function of Δωoff for

various ω1 values (25, 50, 100, 150, and 200 Hz). As in Figure 4(b), Z-spectra became broad

with increasing ω1 value. Figure 5(c) shows Z-spectra as a function of Δωoff for various

Mc
0=M

a
0 values (1/500, 1/250, 1/125, 1/100, and 1/50). The peaks at 1491.0 Hz increased with

increasing Mc
0=M

a
0 value.

Figure 6(a) shows the MTRasym values given by Eq. (19) as a function of ω1 for various

saturation times (0.5, 1, 2, 5, and 10 s) in the two-pool chemical exchange model (Figure 1),

whereas Figure 6(b) shows those as a function of saturation time for various ω1 values (25, 50,

100, 150, and 200 Hz). As shown in Figure 6(a), when ω1 was small, MTRasym tended to

Figure 5. Z-spectra as a function of Δωoff for various values of saturation time að Þ,ω1 bð Þ, and Mc
0=M

a
0 (c) in the

three-pool chemical exchange model.

Figure 6. (a) MTRasym values as a function ofω1 for various saturation times in the two�pool chemical exchange model.

(b) MTRasym values as a function of saturation time for various ω1 values.
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increase with increasing ω1 and saturation time. However, when ω1 was large, MTRasym

tended to saturate or decrease with increasing ω1 value, depending on the saturation time.

As shown in Figure 6(b), MTRasym tended to saturate with increasing saturation time for all

ω1 values.

Figure 7(a) shows the PTR values given by Eq. (20) as a function of ω1 for various saturation

times (0.5, 1, 2, 5, and 10 s) in the two-pool chemical exchange model (Figure 1), whereas

Figure 7(b) shows those as a function of saturation time for various ω1 values (25, 50, 100, 150,

and 200 Hz). As shown in Figure 7, although PTR showed almost the same tendency with

MTRasym (Figure 6), the change in the PTR value depending on the saturation time or ω1 was

larger than that in the MTRasym value.

In this study, we presented a simple equation for solving the time-dependent Bloch-McConnell

equations, in which our previous method [18] and the approach presented by Koss et al. [19]

were combined. Our method can be easily expanded to multi-pool chemical exchange models

by modifying the matrix A in Eq. (2). We previously reported that the solutions obtained by

our method agreed with the analytical solutions given by Mulkern and Williams, [21] and the

numerical solutions obtained using a fourth/fifth-order Runge–Kutta-Fehlberg (RKF) algo-

rithm [18], indicating the validity of our method. In addition, our method considerably

reduced the computation time as compared with the RKF algorithm [18]. These results suggest

that our method will be useful in calculating the parameters such as the exchange rate of CEST

agents using the non-linear least-squares fitting method [17].

As previously described, the so-called Z-spectrum has usually been used to analyze the CEST

effect [18]. The Z-spectrum is obtained by plotting the z magnetization component of bulk

water protons (Ma
z) in the form of Ma

z versus Δωoff [Eq. (18)]. Figure 4(a) and Figure 5(a)

showed that the saturation time affected the Z-spectra, and the CEST effect increased and

saturated with increasing saturation time. The fact that the CEST effect saturates with increas-

ing saturation time is more clearly confirmed by the relationship between MTRasym or PTR,

Figure 7. (a) PTR values as a function of ω1 for various saturation times in the two�pool chemical exchange model.

(b) PTR values as a function of saturation time for various ω1 values.
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and the saturation time shown in Figure 6(b) or Figure 7(b). As shown in Figure 4(b) and

Figure 5(b), ω1 also affected the Z-spectra. Although the CEST effect increased with increasing

ω1 value, the separation among peaks in the Z-spectrum plots degraded with increasing ω1

value. The influence of ω1 on the CEST effect is also clearly demonstrated by the relationship

between MTRasym and PTR, and ω1 shown in Figure 6(a) or Figure 7(a). The use of large ω1

may directly saturate bulk water protons, causing the so-called spillover effect [18]. The results

shown in Figures 4–7 suggest that the values of imaging parameters in CEST MRI such as the

saturation time and ω1 must be determined in consideration of both the CEST effect and

spillover effect. Our method is useful for determining the optimal values of imaging parame-

ters in CEST MRI.

2.4. Calculation of R1r and R2r

The longitudinal relaxation rate in the rotating frame (R1r) can be obtained from the negative

of the largest (least negative) real eigenvalue (λ1) of the matrix A in Eq. (2), that is, R1r = �λ1

[19, 22].

The transverse relaxation rate in the rotating frame (R2r) can be obtained from the absolute

value of the largest real part of the complex eigenvalue (λ2) of the matrix A in Eq. (2), that is,

R2r = |Re(λ2)| [22], where Re denotes the real part of a complex number.

Figure 8 shows the common logarithm of R1r (a) and R2r (b) as a function of Δωoff for

saturation times of 0.5, 1, 2, 5, and 10 s in the two-pool chemical exchange model (Figure 1).

The peaks at 0 Hz (0 ppm) and 1192.8 Hz (4 ppm) derive from pool A and pool B, respectively.

As shown in Figure 8, R1r and R2r were not affected by the saturation time.

Figure 9 shows the common logarithm of R1r (a) and R2r (b) as a function of Δωoff for ω1 values

of 25, 50, 100, 150, and 200 Hz in the two-pool chemical exchange model (Figure 1). As shown

in Figure 9, both parameters became broad with increasing ω1 value.

Figure 8. (a) Common logarithm of R1r and (b) R2r values as a function of Δωoff for various saturation times in the

two-pool chemical exchange model.
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As described above, R1r and R2r can be obtained from the negative of the largest (least

negative) real eigenvalue and the absolute value of the largest real part of the complex eigen-

value of the matrix A in Eq. (2), respectively. We previously reported that there was good

agreement between the R1r and R2r values thus obtained and those obtained numerically [22].

These results appear to indicate the validity of these procedures.

As shown in Figure 8, R1r and R2r were not affected by the saturation time, because the matrix

A in Eq. (2) is independent of the saturation time. When ω1 was varied, the influence of ω1 on

R1r and R2r increased with increasing ω1 value (Figure 9). Especially, the separation between

peaks in the R1r plots degraded with increasing ω1 value [Figure 9(a)]. This also appears to be

due to the spillover effect.

3. Spin-locking CEST MRI

3.1. Principle of spin-locking

Longitudinal relaxation time in the rotating frame (T1r) has been demonstrated to be effective

for probing the slow-motion interactions between motion-restricted water molecules and their

local macromolecular environment [23] and provides novel image contrast that is not available

from conventional MRI techniques. The imaging of biologic tissue based on T1r is currently

being investigated for various tissues, including articular cartilage, breast, and head and neck

[24–26]. In T1r-weighted MRI of tissues, the image is sensitive to molecular processes that

occur over a range of frequencies determined by the amplitude of an applied SL pulse [23].

As pointed out by Jin et al. [27], the SL approach is useful for improving the signal-to-noise

ratio (SNR) in CEST MRI. Furthermore, Kogan et al. [28] demonstrated that a combination

of the CEST and SL approaches is useful for detecting proton exchange in the slow-to

intermediate-exchange regimes.

Figure 9. (a) Common logarithm of R1r and (b) R2r values as a function of Δωoff for various ω1 values in the two-pool

chemical exchange model.
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As earlier described, the Bloch-McConnell equations for the two-pool chemical exchange

model (Figure 1) in the rotating frame with the same frequency as that of the RF-pulse

irradiation is given by Eq. (2) [18, 29]. The solution of Eq. (2) can be given by [18]

M tð Þ ¼ eA ω;ω1;ϕð ÞtM 0ð Þ: (21)

Figure 10 illustrates the image of the pulse sequence with SL. We assume that the SL pulse

(frequency: ω, amplitude: ω1, and frequency offset: Ω) is applied on the x-axis (Figure 2). The

effective magnetic field (B
eff
1 Þ and its angle with respect to the z� axis θð ) are given by B

eff
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 þΩ2

q

=γ and θ = tan�1(ω1/Ω), respectively (Figure 2). To achieve SL, the magnetization

is first flipped by the θ-degree RF pulse (frequency: ω and amplitude: ωθ
1 ) to the x-z plane,

then spin locked by B
eff
1 for a duration of tSL, and then flipped back to the z-axis for imaging

(Figure 10). The θ-degree RF pulse for flipping is applied on the –y axis, that is, ϕ = �π/2,

whereas the θ-degree RF pulse for flipping back is applied on the y axis, that is, ϕ =π/2. The θ-

degree rotation matrix for flipping [R(θ)] is given by [30].

R θð Þ ¼ eA ωa ;ω
θ

1
;�π=2ð Þtθ , (22)

where ωθ
1 and tθ denote the amplitude and the duration of the θ-degree RF-pulse irradiation,

respectively (Figure 10), and ωθ
1 � tθ ¼ θ. Thus, we obtain the magnetization vector immedi-

ately after SL for a duration of tSL [M
�(tSL)] as.

M� tSLð Þ ¼ eA ω;ω1 ;0ð ÞtSLR θð ÞM 0ð Þ: (23)

The θ-degree rotation matrix for flipping back to the z-axis [R(�θ)] is given by.

R �θð Þ ¼ eA ωa;ω
θ

1
;π=2ð Þtθ , (24)

Thus, the magnetization vector after flipping back to the z-axis [M+(tSL)] is given by.

Mþ tSLð Þ ¼ R �θð ÞM� tSLð Þ ¼ R �θð ÞeA ω;ω1;0ð ÞtSLR θð ÞM 0ð Þ: (25)

Figure 10. Diagram of spin-locking pulse sequence.
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Note that Ω and θ are taken to be 0 and π/2, respectively, for an on-resonance SL sequence,

whereas the saturation pulse is applied without flipping the magnetization in the sequence

without SL such as the conventional CEST sequence [15]. Therefore, the magnetization vector

after the saturation pulse [M(tSAT)] in the conventional CEST MRI is simply expressed as.

M tSATð Þ ¼ eA ω;ω1 ;0ð ÞtSATM 0ð Þ, (26)

where tSAT denotes the duration of saturation.

3.2. Calculation of T1r

T1r can be obtained numerically by fitting the z component of magnetization for tSL [M+(tSL)

given by Eq. (25)] in pool A [Ma
z tSLð Þ] to the following equation [30]:

Ma
z tSLð Þ ¼ Ma

0 �Ma
zss

� �

e�tSL=T1r þMa
zss, (27)

where Ma
zss denotes the steady-state z component of magnetization in pool A. In this study, we

used the Simplex method [31] to calculate T1r from Eq. (27).

The approximate solution for T1r has been derived by Trott and Palmer [29]:

T1r ≈
1

R1 cos 2θþ R2 þ Rexð Þ sin 2θ
, (28)

where θ = tan�1(ω1/Ω), Rex ¼ PaPbΔω
2kex= ω

2
aeω

2
be=ω

2
e þ k2ex

	 


, ωae ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 þ Δω2

a

q

, ωbe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 þ Δω2

b

q

,

ωe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 þΩ2

q

, Ω ¼ ω� ω, ω ¼ Paωa þ Pbωb, Δω =Δωb�Δωa =ωb�ωa, and kex = kab + kba. Pa

and Pb are the fractional sizes of pool A and pool B, and are given by Pa ¼ Ma
0= Ma

0 þMb
0

� �

and

Pb ¼ Mb
0= Ma

0 þMb
0

� �

, respectively. R1 and R2 are the population-averaged relaxation rates, and

are given by R1 ¼ PaR
a
1 þ PbR

b
1 and R2 ¼ PaR

a
2 þ PbR

b
2, respectively. It should be noted thatΩ is

the population-averaged offset frequency in this case. Ma
zss in Eq. (27) is approximated by [27].

Ma
zss

Ma
0

≈

R1 cos
2
θ

R1r
: (29)

Figure 11 shows an example of the three-dimensional plots of the magnetization vector in pool

A in the two-pool chemical exchange model (Figure 1). Figure 11(a) and 11(b) show cases

without and with SL, respectively. In these cases, the relaxation time constants were assumed

to be Ta
1 ¼ 1:5 s, Ta

2 ¼ 0:06 s, Tb
1 ¼ 0:77 s, and Tb

2 ¼ 0:033 s [32]. tθ in Eq. (22) and (24) was taken

as 200 μs [27]. ωθ

1 in Eq. (22) and (24) was calculated from ω
θ

1 ¼ θ=tθ. Unless specifically stated,

Δω (=ωb�ωa) and ω1 were assumed to be 2400 and 1000 Hz, respectively. Ω was assumed to

be 2000 Hz. Thus, θ was tan�1(ω1/Ω) = tan�1(1000/2000) ≈ 26.6 degrees. kex (= kab + kba) was

assumed to be 1500 Hz, and kab was assumed to be given by kab ¼ Mb
0=M

a
0

� �

kba [18]. M
b
0=M

a
0

was assumed to be 0.03. As shown in Figure 11(a), when the SL pulse was not applied, the

magnetization vector rotated largely around B
eff
1 . On the other hand, when the SL pulse was
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applied [Figure 11(b)], the magnetization vector moved along B
eff
1 , and the rotation around B

eff
1

was suppressed.

When Mb
0=M

a
0 was 0.003, there was good agreement between the T1r values calculated from

Eq. (27) and Trott and Palmer’s solutions given by Eq. (28) (data not shown). WhenMb
0=M

a
0 was

0.03, some difference was observed between them in the off-resonance case. When Mb
0=M

a
0 was

0.3, large differences were observed between them in both the on- and off-resonance cases [30].

In this study, we developed a simple and fast method for calculating the magnetization vector

in SL CEST MRI, in which a simple matrix equation was derived for solving the time-

dependent Bloch-McConnell equations in SL MRI [Eq. (25)] and the θ-degree rotation matrix

[Eq. (22)] was introduced for considering the effect of the θ-degree RF pulse for flipping

the magnetization. As shown in Figure 11, the trajectory of the magnetization vector in the

sequence with SL could be visualized by calculatingM�(tSL) using Eq. (23), whereas that in the

sequence without SL could be visualized by calculating M(tSAT) using Eq. (26). Although

Figure 11 shows the three-dimensional plots observed from one direction, we can observe the

trajectory of the magnetization vector from various directions by rotating the plot. If we

compared the three-dimensional plots with and without SL (Figure 11), then the effect of SL

is well understood. Therefore, our method is helpful for visually understanding the effect of

SL. In addition, as our method allows us to simply and quickly calculate the time evolution of

the magnetization vector under various study conditions in SL CEST MRI, our method can

also be useful for optimizing the study conditions in SL CEST MRI.

As previously described, when Mb
0=M

a
0 was small, that is, when the population of two pools

was highly asymmetric, the T1r values calculated from Eq. (27) agreed with the solutions given

by Eq. (28). However, the difference between them increased with increasing Mb
0=M

a
0 [30]. This

finding appears to be due to the fact that Trott and Palmer’s solution [Eq. (28)] was derived by

approximating the parameters such as relaxation rates using their population-averaged values,

and thus the validity of this approximation decreases with decreasing asymmetry in the

populations of the two pools.

Figure 11. Three-dimensional plots of the magnetization vector in pool A in the two-pool chemical exchange model. (a)

and (b) show cases without and with spin-locking pulse, respectively.
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Although we treated the two-pool chemical exchange model (Figure 1) for analyzing T1r or R1r

in SL CEST MRI, recent investigations have shown the importance of improved theoretical

approaches for describing multi-site chemical exchange phenomena [33, 34]. Thus, Trott and

Palmer [33] have tried to generalize their approach for T1r or R1r [29]. For such purposes, it is

necessary to expand the Bloch-McConnell equations to those based on multi-pool chemical

exchange models. Our method can be easily expanded to multi-pool chemical exchange

models by modifying the matrix A given by Eq. (4) [20] as previously described, and it is

helpful for testing the validity of newly developed approaches for analyzing multi-site chem-

ical exchange phenomena.

4. Correction of B0 and B1

As previously described, the CEST effect has usually been analyzed using MTRasym [Eq. (19)]

or PTR [Eq. (20)]. However, these parameters are susceptible to the B0 inhomogeneity of the

static magnetic field. When there exists the B0 inhomogeneity, the spillover effect is no longer

symmetric. Furthermore, the B1 inhomogeneity of the RF pulse may also cause spatial variation

in labeling efficiency and spillover factor [35]. Apart from the efforts in improving magnetic

field inhomogeneities using hardware-based methods, such as parallel transmit technologies

[36], post-processing algorithms have been developed for field inhomogeneity correction

[37, 38].

Kim et al. [37] showed that direct water saturation imaging allows measurement of the

absolute water frequency in each voxel, allowing proper centering of Z-spectra on a voxel-by-

voxel basis independent of spatial B0 field variations, and that the B0 inhomogeneity in CEST

MRI can be corrected on a voxel-by-voxel basis through the centering of Z-spectra. This

method is called “water saturation shift referencing (WASSR)” approach. This method, how-

ever, would require acquisition of saturation images at 20–40 frequencies [38]. Since the SNR of

CEST MRI is low, multiple acquisitions for each frequency offset of complete Z-spectra would

be needed, which is not practical in the clinical setting. Zhou et al. demonstrated that a

practical six-offset multi-acquisition method combined with a single reference Z-spectrum to

acquire high-SNR CEST MRI can accomplish improved CEST MRI with B0 inhomogeneity

correction within an acceptable scanning time [38].

A B1-correction of CEST contrasts is crucial for the evaluation of data obtained in clinical

studies at high field strengths with strong B1-inhomogeneities. To correct for the B1 inhomoge-

neity, a B1 map is acquired for correction of Z-spectra using either a calibration [39] or an

interpolation approach [40]. Singh et al. [39] developed an approach for B1 inhomogeneity

correction based on acquiring calibration data at a coarsely sampled B1 values in conjunction

with the measured B1 maps, whereas Windschuh et al. [40] developed an approach based on

Lorentzian line fits.

The comprehensive methods like simultaneous mapping of B0 and B1 fields [35, 41], and

model-based correction algorithm, [42] have also been developed to improve the accuracy of

MTRasym or PTR.
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