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Abstract

Single-curvature sandwich panels combine the advantages of the shell and sandwich struc-
ture and are therefore envisaged to possess good potential to resist blast and shock or impact
loads. This study presents a comprehensive report on the dynamic response and shock
resistance of single-curvature sandwich panels, comprising two aluminum alloy face-sheets
and an aluminum foam core, subjected to air-blast loading, in terms of the experimental
investigation and numerical simulation. The deformation modes, shock resistance capability,
and energy absorption performance are studied, and the influences of specimen curvature,
blast impulse, and geometrical configuration are discussed. Results indicate that the defor-
mation/failure, deflection response, and energy absorption of curved sandwich panels are
sensitive to the loading intensity and geometric configuration. These results are significant to
guide the engineering applications of sandwich structures withmetallic foam cores subjected
to air-blast loading.

Keywords: metallic foam, sandwich structure, single curvature, blast loading, shock
resistance, energy absorption, deformation mode

1. Introduction

Light-weight cellular metallic foams possess good multifunctional combinations of mechanical,

physical, and electromagnetic properties including the high specific stiffness, high specific

strength, and superior energy dissipation capacity by plastic deformation of their cellular micro-

structures [1–3]. Since they can undergo the large plastic deformation at a constant nominal

stress, resulting in a relatively long plateau stress in their stress versus strain response history

curves shown in Figure 1, metallic foams are continually used in energy absorbers for the

protective purpose [3]. More commonly, the metallic foams are extensively used as the cores of

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



sandwich structures to enhance the blast/shock resistance performance. The sandwich structure

typically consists of two thinner but stiffer face-sheets and a softer crushable core, which is a

special topology form comprising a combination of different materials that are bonded to each

other so as to utilize the properties of each component for the structural advantage of the whole

assembly. The face-sheets resist nearly all of the applied in-plane loads and bending moments,

while the core sustains the transverse and shear loads mainly. The employment of flatted

sandwich structures (i.e., the beam and panel) to resist blast/shock loadings still remains aca-

demic and engineering interests, and the responses of these sandwich structures to various

loading cases have been widely investigated [4–12]. Some representative failure modes (e.g.,

face-sheet yielding and core compression or shear) have been experimentally observed [5, 7, 9–

11], while the load-carrying capability and mechanisms of plastic failure and energy absorption

have been predicted in theory and simulation [4, 6, 8, 12].

Curved sandwich panels, which better combine the advantages of shell and sandwich struc-

tures, are envisaged to possess good potential in withstanding blast or impact [13–15]. How-

ever, studies on curved metallic sandwich structures appear quite limited to date.

Consequently, a comprehensive study on blast-loaded single-curvature sandwich panels with

aluminum foam cores is conducted in experiment and simulation.

2. Air-blast experiments

2.1. Experimental procedure

2.1.1. Specimens

Single-curvature sandwich panel specimens, 310 mm long, with an arc length also of 310 mm,

were fabricated from two thin LY-12 aluminum alloy face-sheets bonded to an aluminum foam

Figure 1. Stress versus strain response curve of the aluminum foam with 11% relative density.
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core using commercially available adhesive. Figure 2 shows the picture of single-curvature

sandwich panels with two radii of curvature, that is, 250 and 500 mm. Three face-sheet

thicknesses (i.e., 0.5, 0.8, and 1.0 mm) and three core relative densities (i.e., 11, 15, and 18%)

were examined. The quasi-static mechanical properties of LY-12 aluminum alloy face-sheets

with the density r = 2780 kg/m3 are Young’s modulus E = 68 GPa, Poisson’s ratio ν = 0.33, yield

stress σfY = 310 MPa, and shear modulus G = 28 GPa.

The core material was closed-cell aluminum foam, and the typical quasi-static uniaxial compres-

sive stress-strain responses for three different relative foam densities are shown in Figure 3.

Here, an energy efficiency-based approach is proposed to calculate the plateau stress and densi-

fication strain. Energy absorption efficiency η (εa) is defined as the energy absorbed up to a given

nominal strain εa normalized by the corresponding stress value σc (ε) [16]:

η εað Þ ¼

Ð

εa

εcr
σ εð Þdε

σ εð Þ
ε¼εa

(1)

where εcr is the strain at the yield point corresponding to commencement of the plateau

regime. The densification strain εD is the strain value corresponding to the stationary point in

the efficiency-strain curve, that is, where the efficiency is a global maximum:

dη εð Þ

dε

�

�

�

�

ε¼εD

¼ 0 (2)

The energy absorption efficiency curves of the aluminum foams are also depicted in Figure 3,

and the plateau stress is obtained from

Figure 2. Photograph of specimens with the two radii of curvature.
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Figure 3. Stress versus strain response and energy absorption efficiency versus strain curves of aluminum foam cores.
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σpl ¼

Ð
εD

εcr
σc εð Þdε

εD � εcr
(3)

By calculating, the plateau stress σpl and densification strain εD of aluminum foams with three

various relative densities are σpl = 5.30 MPa and εD = 0.62 (for 11% relative density),

σpl = 5.49 MPa and εD = 0.55 (for 15% relative density), and σpl = 7.11 MPa and εD = 0.54 (for

18% relative density), respectively.

A total of 48 specimens were fabricated, and for each blast condition, two nominally identical

specimens were tested. All specimens were uniquely labeled—the label R500-H0.5-C10-r15%-

f1 represents the specimen with a 500 mm radius of curvature, 0.5 mm face-sheet thickness,

10 mm core thickness, and 15% core relative density, which is the first specimen used for

exploring the influence of face-sheet thickness on the dynamic response. The specimens were

arranged into four groups; each group was designated for examining the effect of one or two

parameters on the structural response.

2.1.2. TNT charge

Blast loading was applied to the specimens by detonating a cylindrical TNT charge with a

density of 1.55 g/cm3; a photograph is shown in Figure 4. Seven various mass charges (i.e., 10,

15, 20, 25, 30, 35, and 40 g) with an approximate height-to-diameter ratio of 1 were fabricated

by changing the diameter and height of the charges.

2.1.3. Ballistic pendulum system

The specimen-frame assembly was attached to a four-cable ballistic pendulum system, which

was employed to measure the impulse imparted to the front face of the specimen, as shown in

Figure 5. The charges were mounted in front of the center of specimens, at various standoff

Figure 4. Picture of cylindrical TNT charge.
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distances. The movement of the pendulum was measured by a laser displacement transducer.

Each single-curvature sandwich panel was clamped peripherally by steel frames, leaving an

effective exposed curved area of 250 � 250 mm.

When the TNT charge is detonated, the impulsive load produced causes the pendulum to move,

and its motion corresponds to that of a simple pendulum, described by the following equation:

M
d2x

dt2
þ C

dx

dt
þ
Mg

R
x ¼ 0 (4)

where M is the total mass, x the horizontal displacement, C the damping coefficient, and R is

the cable length. Suppose 2β ¼ C=M and ω2
n ¼ g=R, then Eq. (4) is simplified by

€x þ 2β _x þ ω2
nx ¼ 0 (5)

Introducing the damping ratio ξ ¼ β=ωn, the solution of Eq. (5) is given by

x ¼ Ae�βt sin ωtþ φð Þ (6)

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
n � β2

q

, A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x20 þ
_x0þβx20ð Þ
ω2

q

, and tanφ ¼ x0ω
_x0þβx0

.

With the initial condition x0 ¼ 0, Eq. (5) can be written as

x ¼
_x0
ω

e�βt sinωt (7)

The period of the oscillation of the pendulum T ¼ 2π=ω; if x1 is the displacement of the

pendulum for a period of t = T/4 and x2 for a period of t = 3 T/4, then

x1 ¼
T

2π
e�

βT
4 _x0 (8)

Figure 5. Photograph of the overall experimental setup.
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x2 ¼
T

2π
e�

3βT
4 _x0 (9)

β ¼
2ln x1=x2ð Þ

T
(10)

If the values of β, x1, and x2 are known, then the initial velocity of the pendulum is given by

_x0 ¼
2π

T
e
βT
4 x1 (11)

The impulse imparted into the pendulum is generally given by

I ¼ M � _x0 (12)

where M is the total mass of the pendulum. By introducing (11) into Eq. (12), given by

I ¼ Mx1
2π

T
e
βT
4 (13)

In the present tests, β = 0.031, M = 151.3 kg, T = 3.12 s, and R = 2.69 m. Generally, the rotation

angle (θ) should be less than 5�; in this study, θ is approximately 2.1�, which is acceptable.

2.2. Experimental results and discussion

The blast impulse is calculated by Eq. (13), according to the ballistic pendulum movement

measured by the laser displacement transducer, as shown in Figure 6. The permanent deflec-

tion of the center of the back face-sheet was also examined by the posttest measurements.

Here, the experimental results are classified and presented in the following subsections, in

terms of typical deformation/failure modes and influences of some key parameters on the final

permanent deflection (since the resistance to blast loading is quantified by the permanent

deflection of the central point of the back face-sheet).

2.2.1. Deformation modes

The deformation and failure modes of the single-curvature sandwich panels can be classified

into that of the front face-sheet, core, and back face-sheet, respectively, although all the sand-

wich panels present the evident global deformation with the various local failures.

The front face-sheet of single-curvature sandwich panels subjected to blast loading mainly fails

in the local indentation, transverse tearing, and petal-like tearing, as shown in Figure 7.

Indentation failure shown in Figure 7(a) is the localized severe deformation without rupture,

and the indentation depth is related with the load magnitude. When deformation of the face-

sheet exceeds its ductility at larger loads, failure is dominated by tearing. The transverse

tearing may occur for a certain range of blast loads, as shown in Figure 7(b). With the increase

of blast loading, the petal-like tearing mode shown in Figure 7(c) will be caused.
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Figure 8 illustrates the typical cross-sectional profiles of blast-loaded sandwich specimens with

two radii of curvature. Each specimen can be split into three regions (i.e., core crushing region,

shear failure region, and an uncompressed region) from the mid-span to the clamped end,

according to the deformation degree of the core. Core crushing is considered as the generation

of a hole in the specimen central zone, as shown in Figure 8(a). The fracture of core in the

central zone may be observed for some specimens as shown in Figure 8(b). The core also can

be failed by core shear under the transverse shear force. Moreover, the delamination between

the crushed core and face-sheets can be found in the core shear region. In those regions far

away from the loading area, the cores are generally uncompressed.

The deformation/failure of the back face-sheet corresponds to Mode I (gross inelastic deforma-

tion), Mode II (gross inelastic deformation with tensile tearing at the edges), and tearing. The

deformation profile of the back face-sheet for the typical Mode I response is dome-shaped at

the center, and with obvious plastic hinges extending from the plate corner to the base of the

Figure 6. Typical displacement-time response of ballistic pendulum in a blast test.

Figure 7. Three deformation and failure patterns in front face-sheets: (a) indentation failure, (b) transverse tearing, and (c)

petal-like tearing.
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dome, as shown in Figure 9(a). Figure 9(b) shows significant inelastic deformation with tensile

tearing at the clamped edges of the curved sandwich panel. For the thinner specimen subjected

to a larger impulse, tearing of the back face-sheet was observed, as shown in Figure 9(c).

2.2.2. Influence of blast impulse on the shock resistance

The maximum center-point deflection of curved sandwich panels (H = 0.8 mm, C = 10 mm,

relative density = 15%) and curved monolithic plates of equivalent mass (H = 3.0 mm) are

plotted in Figure 10, as a function of impulse for different blast distances and six charge

masses (10, 15, 20, 25, 30, and 35 g). As expected, the central deflection increases with impulse

for all test configurations. By applying a linear fit to the data, the relationship between the

central deflection and the blast impulse can be written as

W ¼ kI þ b (14)

whereW and I are, respectively, the central deflection in mm and impulse in Ns; k and b are the

two constants with the values of 1.22 mm/Ns and �9.03 mm for R = 500 mm curved sandwich

panels and 1.85 mm/Ns and �10.66 mm for R = 250 mm sandwich specimens, respectively.

Figure 8. Collapse patterns of the foam core: (a) progressive compression with shear failure in central area and (b)

fracture of central core.

Figure 9. The deformation/failure of the back face-sheet: (a) Mode I (gross inelastic deformation), (b) Mode II (gross

inelastic deformation with tensile tearing), and (c) tearing failure.
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A comparison of the blast resistance between curved sandwich panels and monolithic plates of

equivalent mass is also shown in Figure 10. Those R = 500 mm sandwich panel specimens

show the better resistance to blast loading compared to the solid shells with the equivalent

mass. However, the central deflection of R = 250 mm curved sandwich panels were larger than

that of solid counterparts. This may be explained that the deformation of the smaller radius of

curvature specimens is governed by the local failure, which may decrease the energy absorp-

tion capability of the foam cores; however, the deformation of the solid shell counterparts is

dominated by the global bending.

2.2.3. Influence of face-sheet thickness on the shock resistance

The dependence of the central deflection of the back face-sheet on face-sheet thickness is

shown in Figure 11, where additional data corresponding to the same conditions are included

to show the possible general trend. The central point deflection decreases with the increased

face-sheet thickness, as expected. For R = 250 mm curved sandwich panels, those specimens

with 0.8-mm- and 1.0-mm-thick face-sheets show the smaller deflections than curved panels

with the 0.5 mm face-sheets, by 28.3 and 56.3%, respectively. This is also the case for the

R = 500 mm specimens, whereby the deflections are, respectively, 48.5 and 68.8% smaller.

2.2.4. Influence of core relative density on the shock resistance

The central point deflection of specimens is plotted in Figure 12 as a function of core relative

density. For both curvatures, the specimens with the larger core relative density results in the

smaller deflections. Taking the core relative density of 11% as a reference, R = 250 mm

Figure 10. Relationship between central deflection and blast impulse.
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Figure 11. Effect of face-sheet thickness on central deflection of curved sandwich panels.

Figure 12. Effect of core relative density on central deflection of curved sandwich panels.
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sandwich panels with higher relative densities (15 and 18%) can decrease the average deflec-

tion, by 46.6 and 55.9%, respectively. However, for R = 500 mm sandwich panels, it is difficult

to quantify the effect of core relative density on the structural response of specimens, due to the

large variability in both impulse and deflection.

2.2.5. Influence of specimen curvature on the shock resistance

The influence of curvature is deduced primarily from Figure 10. Two major influences can be

identified: (i) the blast resistance of single-curvature sandwich panels with the larger radius of

curvature is better, and (ii) a comparison between the response of the curved sandwich panels

and the solid shell counterparts with the same mass is made, as stated in Section 2.2.2.

Obviously, the deformation of curved sandwich panels with the smaller radius of curvature is

governed by local penetration failure, while the deformation of the larger radius of curvature

specimens is the global deformation with bending and stretching dominants. The larger defor-

mation zone of the latter appears to contribute the greater plastic energy absorption and thus

enhances the resistance to blast loading.

3. Finite element simulations

Based on the experiments, corresponding finite element (FE) simulations have been under-

taken by employing the nonlinear, explicit finite element code LS-DYNA 970.

3.1. FE model

Since the curved sandwich panel is symmetric about x-z and y-z planes, only a quarter of the

curved panel was modeled, as shown in Figure 13. The entire model comprises 53,166 nodes

and 61,257 elements. The LY-12 face-sheets were modeled by Belytschko-Tsay shell element,

Figure 13. FE model of the 1/4 curved sandwich panel and charge.

Contact and Fracture Mechanics130



while the foam core was modeled by the default brick element. Similarly, one quarter of the

charge was modeled shown in Figure 13, and eight-node brick elements with arbitrary

Lagrange-Eulerian (ALE) formulation were adopted.

The mechanical behavior of face-sheets were represented by material model 3 of LS-DYNA

(*MAT_PLASTIC_KINEMATIC), while the aluminum foam corewasmodeled bymaterial model

63 of LS-DYNA (*MAT_CRUSHALBE_FOAM). A high-explosivematerial model (*MAT_HIGH_

EXPLOSIVE_BURN) incorporating the JWL equation of state (EOS_JWL)was used to describe the

material property of the TNTcharge:

p ¼ A 1�
ω

R1V

� �

e�R1V þ B 1�
ω

R2V

� �

e�R2V þ
ωE

V
(15)

where p is the blast pressure, E is the internal energy per initial volume, V is the initial relative

volume, and ω, A, B, R1, and R2 are the material constants, respectively. The material param-

eters of the curved sandwich panel and TNT charge are kept the same as experimental ones.

The bolts used in the tests to clamp the curved panels to the fixture were represented by nodal

constraints in the numerical model. Symmetric boundary conditions about x-z and y-z planes

were imposed. The blast load imparted on the front face-sheet of curved sandwich panel was

defined with algorithm of *CONTACT_ERODING_SURFACE_TO_SURFACE. Automatic,

surface-to-surface contact options were generally used for curved sandwich panels.

3.2. Simulation results and discussion

3.2.1. Explosion and structural response process

The whole response can be divided into three stages: Stage I (expansion of the explosive), Stage

II (explosive product interacts with the curved sandwich panel), and Stage III (plastic defor-

mation of the curved sandwich panel under the inertia).

3.2.1.1. Stage I: expansion of the explosive

The expansion of the explosive starts at the point of detonation (central point of the top surface

of charge), as shown in Figure 14. The detonation of a high-performance explosive is achieved

by compressing and heating of its constituents, resulting that a chemical reaction is triggered

and then it is supersonically propagated through the explosive at the Chapman-Jouguet

velocity. Whereafter, a strong shock wave, generated by the violent expansion of the gaseous

products, propagates into the ambient medium. Since the sound speed increases with the

increased temperature in the compressible flow, shock waves are generated. The detonation

wave generated by the cylindrical charge presents an obvious directionality and a cross

distribution shape. The axial propagation speed is larger than the radial propagation speed,

so the axial pressure is also greater than that of radial direction due to the proportional

relationship between the wave speed and intensity in air medium.
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Figure 14. A typical process of the charge detonation.
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Figure 15. A typical process of explosive product-structure interaction.
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3.2.1.2. Stage II: explosive product-curved panel interaction

The expansion of the explosive begins to interact with the front face-sheet of curved sandwich

panel at this stage. It is seen from Figure 15 that the explosive product-curved panel interac-

tion lasts over a time period of approximately 32 μs, from approximately t = 28 μs to t = 60 μs,

corresponding the duration of the contact force between the explosive product and target

structure almost becomes to zero. Figure 15 shows the interaction of the explosive product

with the curved panel, accompanied with the upward distortion as a result of the reflection

from the curved target panel. Indentation deformation is first occurred in the central region of

Figure 16. A typical process of curved sandwich panel deformation.
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front face-sheet of the specimen, and then it extends both outward and downward with the

transfer of blast impulse. Back face-sheet of the specimen has little deformation at this stage.

Once the coupling interaction is completed (i.e., the contact force becomes to zero at t = 60 μs),

the high-explosive model should be manually deleted from the finite element code.

3.2.1.3. Stage III: deformation of curved sandwich panel under its own inertia

In this stage, there is no coupling effect between the explosive product and the structure, and

the curved sandwich panel remained to deform under the inertia, as shown in Figure 16. The

central indentation failure of the front face-sheet is formed by gradually compressing the foam

core, and the deformation extends outward until to the external clamped boundaries by

traveling plastic hinges. The deformation of the curved sandwich panel structure is mainly

governed by the plastic bending and stretching, accompanied with the slight oscillation. The

whole curved sandwich panel finally presents a global dishing shape, and the maximum

deflection of the back face-sheet occurs at the central point of the specimen.

3.2.2. Deflection response of the back face-sheet

Figure 17 compares the experimental and simulated permanent deflection at the central point

of the back face-sheet. It is shown that all data points are close to the line of perfect match,

which represents that the simulated data are agreed well with the experimental results. In

order to better understand the deformation mechanism of curved sandwich panel, the pro-

gressions of deflections at several key nodes (as shown in Figure 18) along the central

Figure 17. Comparison of experimental and numerical back-face deflection.
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circumferential and longitudinal directions are presented in Figure 19. Both circumferential

and longitudinal nodes for the front and back face-sheets have the similar deformation trend.

At ~300 μs, all the nodes, except the node C5, have the maximum transient deflections, and

then the deflection of these nodes decreases obviously due to the rebound of the elastic

Figure 18. Locations of the circumferential and longitudinal nodes on the face-sheets.

Figure 19. Deflection variation of key points on the face-sheets of the curved sandwich panel. (a) Circumferential (front

face-sheet), (b) circumferential (back face-sheet), (c) longitudinal (front face-sheet), and (d) longitudinal (back face-sheet).
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deformation until the whole deformation process is finished. The deformation of the back face-

sheet obviously lags behind that of the front face-sheet, and the central point deflection of back

face-sheet is also smaller than that of front face-sheet due to the foam core compression.

3.2.3. Energy absorption capability

Figure 20 shows the histories of plastic dissipation of the components of a curved sandwich

panel (R250-h0.8-C10-r15%-B3) subjected to blast loading. In the early stage of the response,

the front face-sheet compresses the aluminum foam core, resulting in core crushing and

significant energy dissipation. It can be found from Figure 20 that most of energy is dissipated

by the large deformation of front face-sheet and core compression and core constitutes a major

contribution, which is about 60% of total dissipation.

Effects of the impulse level and geometric configuration on the energy absorption of the

components of the curved sandwich panels were indicated in a stack bar diagram in Figure 21.

The partition of energy absorption of specimens is compared and analyzed in terms of the

impulse level (specimen nos. 1–3), face-sheet thickness (specimen nos. 4–6), and core relative

density (specimen nos. 7–9). The increase of impulse leads to a rise of total plastic energy

dissipation in the specimens. Most of energy dissipation is attributed to large plastic deforma-

tion of front face-sheet and core compression. The energy absorption does not present a

monotonic relationship with the face-sheet thickness. The specimen with 0.8-mm-thick face-

sheets has the best energy absorption performance, followed by that of 0.5-mm-thick face-

sheet, and the worst is that of 1.0-mm-thick face-sheet. This can be explained as follows: the

Figure 20. History of plastic dissipation of sandwich specimen during plastic deformation.
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curved sandwich panel with thicker face-sheets deforms smaller due to the relatively larger

structural stiffness; however, the severe damage may occur at the thinner front face-sheet

under the large blast loading. Moreover, the total energy absorption amount of the curved

sandwich panels decreases with the increased core relative density. Compared to the sandwich

panels with the 10% core relative density, those specimens with 15 and 20% core density

display relatively smaller energy absorption values, by 3.95 and 8.3%, respectively. This is

attributed that the core compression values decrease with the increased core relative density,

and the dominant deformation/failure mode of curved sandwich specimens is converted from

the local core compression to global bending deformation, resulting in a weaker energy

absorption capability.

4. Conclusions

Single-curvature sandwich panels with closed-cell aluminum foam cores, which include two

radii of curvature (i.e., 250 and 500 mm), three face-sheet thicknesses (i.e., 0.5, 0.8, and 1.0 mm),

and six different arrangements of foam core layers, were tested under air-blast loadings of

various magnitudes. A total of 48 curved sandwich panels were examined, and the typical

deformation and failure modes and the quantitative blast impulse and specimen deflection

results were obtained and discussed. Based on the experiments, the corresponding finite

element simulations were conducted using LS-DYNA software. The explosion and structural

Figure 21. Plastic energy dissipation by the components of curved sandwich panels.
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response process, back face-sheet deflection response, and energy absorption capability were

explored. Experimental results show that permanent central point deflection linearly increases

with blast impulse for all the specimen configurations and blast resistance of specimens can be

enhanced by increasing the face-sheet thickness or the core density. The weaker blast resistance

of R = 250 mm curved sandwich panels, compared to monolithic plates with the same mass,

and the R = 500 mm sandwich panels, which are attributed to the different dominant deforma-

tion mechanisms. Simulation results present that the deformation modes, deflection responses,

and energy absorption capability of curved sandwich panels are related with the loading

intensity and geometric configuration. Energy absorption capability of curved sandwich spec-

imens is monotonically increasing with the increased blast impulse and decreasing with the

increase of core relative density. However, it does not monotonically change with the face-

sheet thickness.
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