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Abstract

It is increasingly recognized that acquired traits may be transgenerationally transmitted 
through non-DNA sequence-based elements, with epigenetics as perhaps the most impor-
tant mechanism. Here we review examples of non-genetic transgenerational inheritance in 
Drosophila, highlighting transgenerational programming of metabolic status and longevity, 
one particular histone modification as an evolutionarily conserved underlying mechanism, 
and important implications of such studies in understanding health and diseases.

Keywords: aging, Drosophila, H3K27me3, metabolic state, PRC2, transgenerational 
epigenetic inheritance

1. Introduction

Epigenetics is the science of non-DNA sequence-based modifications of gene expression and, 
subsequently, phenotypic variability at both the genomic and organismal levels [1]. Studies 

over the past several decades have distinguished DNA methylation, histone modification, 
and non-coding RNA-based processes as the key mechanisms underlying epigenetic regula-

tion. Epigenetic inheritance has been observed across species, including prokaryotes, plants, 

and animals [2–8], with an epigenetic trait defined as “a stably heritable phenotype resulting 
from changes in a chromosome without alterations in the DNA sequence” [9]. Interestingly, 

certain epigenetically-regulated phenotypes can propagate across multiple generations, 

leading to the concept of transgenerational epigenetic inheritance (TEI) [4–8]. This emerg-

ing concept has triggered numerous debates and revived old controversies in the scientific 
community as to whether acquired traits may be transmitted across generations. Nonetheless, 
it has profoundly reshaped our understanding of biology, particularly human diseases, as 
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Year Intervention/treatment (F0 only) Phenotypic/genomic  

response

Generation 

with effect
Authors

2007 Tumor suppressor gene mutation Tumor risk F2 but not  

F3

Xing et al.

2009 Chronic pentylenetetrazole  

treatment of adult males

Transcriptomic profile in 
CNS

F2 Sharma and 

Singh

2010 Old age Memory loss F2 Burns and 

Mery

2012 Low male availability during mating Number of offspring (to 
quantify fitness)

F2 & F3 Brommer et al.

2013 Post-eclosion feeding of virgin 

females with a high-sugar diet

Body composition in larvae F2 Buescher et al.

2015 Gamma radiation in young adult 

males

Longevity & rate of 

development

F2 but not F3 Shameer et al.

2015 Yeast concentration in diets used to 

raise larvae through development

Somatic rDNA instability  

& copy number variation

F2 & up to  

F60

Aldrich and 

Maggert

2016 Post-eclosion feeding of both virgin 

males and females with various diets

Longevity & reproduction F2 & F3 Xia and de 

Belle

2016 Extended olfactory training with 

young adults

Approach bias to the same 

trained odors

F2 Williams

2016 High fat diet to raise larvae through 

development

Pupal body weight F2 Dew-Budd 

et al.

2016 Different food conditions used to 
raise male larvae and adults

Longevity F2 Roussou et al.

2016 Post-eclosion dietary, genetic and 

pharmacological treatments of 

 both virgin males and females

Longevity & H3K27me3 

levels

F2 Xia et al.

2017 Epialleles, as defined by differential 
levels of H3K27me3

Eye color F5 & up to  

F10

Ciabrelli et al.

2017 Grandmaternal age Embryonic & embryonic to 

adult viability

F2* Bloch Qazi 

et al.

2017 Genetic manipulation of parental 

metabolism

Triglyceride levels & 

transcriptional profile
F2 Palu et al.

*Potential transgenerational effects were not clearly-defined and quantified.

Table 1. Primary research papers describing TEI in Drosophila where phenotypic and/or genomic responses were 

investigated in the F2 or later generations.

stable epigenetic marks may record environmental challenges through modified gene expres-

sion patterns and ensure long-lasting, while reversible responses in the absence of the initial 
triggering events [10–17]. Importantly, the adaptive and reversible nature of epigenetic regu-

lation may offer exciting therapeutic targets to help prevent or treat most, if not all, chronic 
diseases, including cardiovascular disease (CVD), diabetes, neurodegenerative diseases, and 

cancers [10–13, 16, 18–20].
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The fruit fly (Drosophila melanogaster) offers multiple advantages for assaying TEI, in particular 
to characterize the underlying epigenetic mechanisms, and to identify gene targets for drug 

discovery. First, the short rearing period and lifespan of fruit flies facilitate transgenerational 

experiments over multiple generations within a reasonable time scale. Second, various exam-

ples of transgenerational inheritance have been established in Drosophila (Table 1) that enable 

rapid identification and characterization of underlying epigenetic mechanisms. Third, all major 
epigenetic mechanisms are present in this model system [1], although DNA methylation in flies 
appears to be different from many other eukaryotic organisms and is present only at very low 
levels in adults [21, 22]. Importantly, N6-methyladenine may complement the function of DNA 

methylation in flies [23]. Finally, Drosophila has been increasingly used for modeling human 

diseases and drug discovery [24–28]. The Drosophila heart has been used to model several differ-

ent aspects of human CVDs, including congenital heart disease and cardiomyopathy [29–31]. 

Drosophila is a recently-established model system for obesity and diabetes [26, 32, 33]. It has also 

been widely used to model cognitive diseases [34, 35], and various cancers [36].

TEI has been thoroughly reviewed, focusing mostly on data obtained from mammals [5, 6, 8, 

37–39]. Here, such studies from Drosophila are discussed, in particular, to highlight transgen-

erational programming of metabolic status and longevity, and tri-methylation of histone H3 at 

lysine 27 (H3K27me3) as an evolutionarily conserved epigenetic mechanism underlying TEI.

2. Transgenerational inheritance at the organismal level

2.1. Metabolism

The current Western diet has been defined by increased consumption of meat products, dairy 
items, grains, and sugar-infused drinks [40]. Having profound effects on glycemic load, fatty 
acid composition, macronutrient composition, micronutrient density, acid-base balance, 

sodium-potassium ratio, and fiber content, this diet may underlie the growing prevalence of 
chronic diseases in Western society, especially CVD, obesity, diabetes, and dementia [41–44]. 

Often, multiple conditions manifest themselves simultaneously in afflicted individuals, sug-

gesting shared elements in disease pathology. Obesity and other metabolic disorders, for 

example, are associated with various secondary disease indications as the underlying cellu-

lar and organismal metabolism is fundamental to nearly all necessary biological processes 

[45]. The prominent role of nutrition and other environmental factors in the development of 

metabolic disorders offers a promising model to identify and characterize the underlying epi-
genetic mechanisms, leading to diet optimization and nutrition-responsive therapies to com-

bat chronic diseases (cf. [42]). Thus, nutrition has been studied extensively regarding TEI of 

diabetes and other metabolic disorders across various animal models [14, 46–48]. Metabolic 

dysfunctions are often measured through development and glucose/insulin homeostasis after 

nutritional or dietary interventions including overnutrition, high-fat, low-protein (LP), and 

high-sugar (HS) diets. Typically, the well-controlled application of dietary manipulations and 

well-established hallmarks of various metabolic disorders offer a tractable yet indispensable 
approach to studying TEI in many animal models.
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Drosophila shares key metabolic pathways and characteristics with vertebrates (cf. [29, 32]). 

Glucose has been well-studied in the context of metabolic status given its pivotal role in insu-

lin signaling since the 1930s [49]. Drosophila utilizes trehalose, the disaccharide of glucose, as 

its primary form of hemolymph (insect equivalent of blood) sugar [50, 51]. Regulating glyco-

metabolism and maintaining viability in response to shifting external factors [51], trehalose is 

broken down through the catalyzing activity of trehalase into accessible glucose molecules. 

Thus, hemolymph trehalose and glucose levels may be quantified to assay glycometabolism 
in Drosophila [29, 32]. As the primary source of body fat from Drosophila to humans [52], tri-

glycerides (TAGs) may be quantified for monitoring gluconeogenesis, the metabolic pathway 
responsible for glucose generation from non-carbohydrate substrates [29, 32]. Both AKT and 

4EBP proteins are phosphorylated in response to insulin signaling [53, 54]. AKT is particularly 

well-characterized as a core component of the PI3K/AKT/mTOR pathway, which is linked to 

cell cycle regulation, cancer, and longevity [55]. Quantification of phosphorylated-AKT and 
phosphorylated-4EBP levels has been used to measure insulin sensitivity or resistance [29]. 

The availability of these assays to characterize both metabolic homeostasis and underlying 

pathways has supported the use of Drosophila to examine TEI of metabolic status after nutri-

tional or genetic manipulations in the founding (F0) generation [32, 56, 57].

Buescher et al. recorded elevated trehalose, glycogen, and TAG levels as well as reduced 

body weight in adult female F0 flies after feeding on an HS diet for 7 days post-eclosion [32]. 

Glucose levels were found to be affected by the HS treatment, suggestive of gluconeogenesis 
dysregulation. Interestingly, trehalose and glucose levels were elevated in the first genera-

tion (F1) male larvae, along with a decrease in glycogen levels. Consistently, gene expres-

sion analyses demonstrated decreased expression of the genes involved in fat body lipolysis 

and gluconeogenesis, and increased expression of the ones involved in gut lipolysis, fatty 
acid synthesis, sugar transport and glycolysis. These results have confirmed the traditional 
models of insulin signaling, in which impaired insulin sensitivity leads to global increases 

in circulating blood sugars and decreases in sugar storage. Both glucose and trehalose levels 

were elevated, with TAG unaffected in the F2 male larvae; trehalose was elevated while TAG 
was decreased, with glucose unaffected in the F2 female larvae, supporting the existence of 
gender-dependent differences in transgenerational inheritance of metabolic programming. 
These results have demonstrated the long-lasting and transgenerational effects of early-life 
(post-eclosion) nutrition on metabolic status, establishing Drosophila as a useful model system 

to study TEI of nutritional programming of metabolic homeostasis and disorders.

Then, Dew-Budd et al. assayed the effects of gender and genetic lineage on transgenera-

tional inheritance of certain metabolic phenotypes after rearing male (F0; paternal ancestry) 
and female (maternal ancestry) larvae of 10 (to measure pupal body weight) or 3 (metabolic 

composition and egg size) independent genetic lines on a high-fat diet [57]. Substantial dif-

ferences in body weight, metabolic composition, or egg size were observed in both F1 and 

F2 generations between paternal and maternal ancestries or among different F0 genotypes. 
Interestingly, phenotypic changes in the F0 flies appeared not to be a consistent predictor 
of these hallmarks in their untreated F1 and F2 descendants. Therefore, “personalized” con-

sideration of ancestral contributions may be needed to understand and prevent metabolic 

diseases such as obesity and diabetes.
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Palu et al. have employed loss-of-function mutants to induce obesity, assayed with elevated 

TAGs, in F0 parents and then check TAG levels in heterozygous F1 and wild-type F2 offspring 
[56]. Loss of AKHR (encoding adipokinetic hormone receptor) leads to reduced fat body lipid 

mobilization and elevated TAG accumulation, as adipokinetic hormone functions analogously 

to the fasting hormone glucagon in mammals [52]. Mutant AKHR F0 and wild-type flies in 
reciprocal crosses produced heterozygous F1 offspring. These F1 heterozygotes were then 
crossed to wild-type females or males to generate four types of genetically distinct wild-type 

F2 (+/+) progeny, corresponding to mutant AKHR F0 grandpaternal or grandmaternal and het-

erozygous F1 paternal or maternal ancestors. Both male and female F0 mutants displayed ele-

vated TAG levels, which were then normalized in the F1 heterozygotes, possessing a functional 

copy of AKHR. Interestingly, this Mendelian model of inheritance was not always followed in 

the F2 generation with low TAG levels observed in the grandpaternal/maternal group, while 

normal in the other three groups. Consistently, ACC, encoding a conserved Acetyl-CoA car-

boxylase that acts as the rate-limiting step in fatty acid synthesis [58], was found to be dysregu-

lated in this particular F2 group. These results suggest that genetic manipulation of parental 

metabolism can provide an effective approach for studying TEI of metabolic state.

2.2. Aging

Aging has been increasingly recognized as a malleable process and the largest risk factor for 

most aging-related diseases (ARDs). It is no accident that the rapid increase in life expectancy 

worldwide is concomitant with the epidemic progression of many of these life-threatening 

and costly diseases [59, 60]. Recent work has demonstrated that many factors, including envi-

ronmental conditions (e.g., diet) and genetic mutations, can impact the aging process across 

species [61–63]. In particular, anti-aging interventions often delay or prevent multiple ARDs 

in animal models [62–64], stimulating the emerging interdisciplinary field of geroscience to 
study the connection between aging and diseases, and to develop novel multi-disease preven-

tative and therapeutic interventions by targeting the aging process itself [59, 65]. There are 

clear practical and ethical complications associated with studying aging and its transgenera-

tional inheritance directly in human populations. The timescale of conducting such longitu-

dinal studies would be unreasonable, at best. The shortage of isogenic replicates (e.g., twins) 

and imprecise environmental manipulation in human models also pose a significant problem 
in terms of reproducibility and subsequent mechanistic studies.

Drosophila presents itself as an excellent model to study aging, especially its transgenerational 

inheritance and the underlying mechanisms, owing to its relatively short lifespan, genetic 

homology with other models and humans, and suite of enriched investigative tools. Drosophila 

has an average lifespan of 2–3 months yet undergoes key parallel developmental stages similar 

to those of humans [25]. Studies on its life cycle have revealed a number of highly conserved 

pathways involved in organismal development. The Hox genes, for example, which control 

segment identity during embryonic development, were first identified in Drosophila after obser-

vation of mutant flies growing legs in the place of antennae [66]. Hox genes were later found 

to be conserved in humans and also linked to congenital disorders, including synpolydac-

tyly and hand-foot-genital syndrome [67–69]. In addition, the key aging pathways, including 

mechanistic target of rapamycin, sirtuin, and insulin/insulin growth factor 1 signaling, are well 
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conserved in fruit flies [70–72]. Finally, tissue-specific and time-dependent genetic manipula-

tions may be readily achievable for most genes, for instance, using the 22,270 transgenic lines 

(currently, covering ~88% of all predicted protein-coding genes) from the Vienna Drosophila 

Resource Center [73]. Therefore, Drosophila is well-suited for both correlational and mechanistic 

studies focusing on transgenerational programming of longevity after nutritional or environ-

mental manipulations in the F0 parents [74–77].

Gamma radiation causes DNA damage and mutations, leading to various health dysfunctions 

and subsequent lifespan reduction [78, 79]. High doses of gamma irradiation were found to 

decrease longevity in the F0 flies and further propagate to the F1 and F2, but not to the F3 gen-

eration [76]. In contrast, low doses extended longevity across the F0−F2 generations, consistent 
with the concept of hormesis, by which low exposure to harmful agents (irradiation, caloric 

restriction, heat stress, and free radicals) improves general health and longevity [79–81]. Related 

studies have revealed several underlying mechanisms including insulin and glucose metabo-

lism, proteasome activity and histone deacetylation [81, 82]. Histone deacetylation may be par-

ticularly relevant in this context as an epigenetic modification involved with many biological 
processes and human diseases, including CVD, metabolic disorders, and cancers [83–85].

Our recent work has established the first animal model of early-life nutrition-mediated pro-

gramming of longevity and its transgenerational inheritance [74]. Newly-eclosed F0 virgin 

flies were reared on one of three different diets (low-protein or LP, intermediate-protein, 
and high-protein) for the first 7 days post-eclosion. Longevity was assayed for males and 
females, both virgin and mated, across the F0−F2 generations, allowing us to determine the 
potential impact of gender and mating on transgenerational inheritance of longevity. Our 

results suggest that early-life nutrition-induced programming effects on longevity may be 
transmitted to the F1 generation through intergenerational effects and further to the F2 gen-

eration through transgenerational effects, independently of gender and mating. The program-

ming effects, although diminishing, were still present in the F3 generation for the low- and 
intermediate-protein diets. These observations suggest that early-life nutrition may produce 

long-lasting and transgenerationally heritable effects on the aging process across multiple 
generations. Notably, these long-lasting programming effects may be derived from both 
maternal and paternal contributions, as we treated both newly-eclosed F0 males and females 

to induce potentially maximal alterations. In contrast, a similar treatment was applied only to 

the females to examine transgenerational programming of metabolic status [32]. Most rodent 

studies also used either males or females, instead of both [48]. This design would not distin-

guish potentially different contributions from males and females, something that requires fur-

ther investigation. Interestingly, transgenerational glucose intolerance in mice (Mus musculus) 

may be transmitted via the maternal or paternal line through different mechanisms [86, 87], 

suggesting that transgenerational nutritional programming effects may potentially be addi-
tive when induced in both males and females.

A more recent study has demonstrated that distinct dietary manipulations in the larval stage 

or throughout adulthood may also induce transgenerational programming of longevity [75]. 

The F2 male offspring were found to be long-lived if F0 male adults were subjected to dietary 
restriction, but not to starvation, whereas the same outcome was observed if F0 male larvae were 

exposed to starvation, but not to dietary restriction. The authors also generated two separate 
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groups of F2 males, from the F1 male (paternal) or female (maternal) offspring of the F0 male 
larvae exposed to various food media. Extended longevity was observed in both groups of F2 

males, but greater extension was seen in the F2 maternal males with one laboratory strain. By 

contrast, the starvation-induced transgenerational effects were observed only in the F2 paternal 
males with a different strain. Therefore, cross-generational inheritance of nutrition-mediated 
longevity changes may be passed through either the male or female line or both, depending 

on genetic background. Unfortunately, it is unclear whether the observed gender-dependent 

differences resulted from intergenerational or transgenerational inheritance, as longevity was 
not assessed in the F0 and F1 generations.

2.3. Fitness

Fitness refers to the reproductive success of an organism over the duration of its lifetime, and 

has often been linked to genetic regulation. Recent studies, though sparse, have prompted 

the idea that non-genetic or epigenetic mechanisms may modulate fitness across generations 
[74, 88–90]. Studying the interplay between genetics and epigenetics through fitness may 
help us understand various complex traits and disorders [89]. Drosophila is particularly suit-

able for studying TEI of fitness for its rapid maturation following eclosion and high fecundity 
among model organisms [91].

Brommer et al. have reported that sexual conflict (male availability) may impact the fitness of 
future progeny up to the F3 generation [90]. Female fitness was quantified by lifetime production 
of offspring, and male fitness by total offspring produced in a six-day period. For the F0 genera-

tion, female flies underwent either a low (one male for 1 day followed by no male for 3 days) or 
high male (one male for 1 day followed by a different male for 3 days) exposure treatment. This 
four-day cycle was repeated for the duration of the females’ lifespan to measure lifetime fecun-

dity. The same process was repeated for the F1 and F2 generations, thus producing eight groups 

of F3 flies with distinct ancestral history. All F3 generation daughters experienced the treatment 
of high male exposure. All comparisons, when made relative to the low versus high male treat-

ments experienced by the F0 females, provided a measure of transgenerational inheritance of 

fitness. The results indicated that low male exposure treatment in the F0 females did not affect 
female fecundity across the F1−F3 generations, but increased male fitness in the F1 generation 
and decreased male fitness in the F2 and F3 generations.

In the same study where we assayed transgenerational nutrition-mediated programming of 

longevity (see above), we also explored the transgenerational effects of the same early-life 
diets on lifetime fecundity (egg production) as a measure of fitness and the potential trade-
off between longevity and fecundity [74]. Lifetime fecundity was found to be decreased 

across the F0–F2 generations after raising the F0 virgin male and female flies on the LP diet 
for 7 days before their mating, while increased transgenerationally after the same treatment 

with the intermediate-protein diet. Fecundity was also increased in the F0 and F1 genera-

tions after the same treatment with the high-protein diet, but the increasing effect was not 
seen in the F2 generation. These results demonstrate that early-life dietary changes affect fit-
ness of the same generation and the reproductive success of future generations with certain 

dietary changes. Interestingly, correlation analyses on longevity and fecundity data revealed 

no evidence for trade-off between them across the F0–F2 generations. This finding argues 
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that lab-raised flies, with abundant food supplies at all times, may have evolved to abandon 
such trade-off constraints through hundreds of generations. Therefore, transgenerational 
nutritional programming of fitness may be achieved independently of longevity, raising the 
interesting possibility of elevating both longevity and fitness with proper nutrition across 
generations.

Bloch Qazi et al. recently reported the cross-generational effects of grandmaternal and mater-

nal age on offspring viability and development up to the F2 generation [88]. The study, how-

ever, appeared not to distinguish between intergenerational (grandmaternal to maternal and 

maternal to F2 offspring) and transgenerational (grandmaternal to F2) effects. The compli-
cated design with three interacting factors (i.e., grandmaternal age, maternal age, and stress) 

and subsequent analyses with mixed-model ANOVAs made it challenging to make conclu-

sions about a straight forward transgenerational effect, although the P value was smaller than 
0.05 in three of analyses for the “grandmaternal” factor (in the presence of the intergenera-

tional effect or “maternal” factor).

2.4. Memory

Many behavioral traits, including cognitive functions, may be transgenerationally affected by 
experiences and environmental factors in mammals, most likely through epigenetic mecha-

nisms [92]. Memory is an essential cognitive function which declines during aging and is 

impaired in most neurodegenerative diseases such as Alzheimer’s disease; it is subjected to 
various epigenetic regulations, providing novel therapeutic avenues to combat cognitive dis-

orders [12, 93]. Therefore, studying TEI of memory is of immense importance to our under-

standing of mental health and diseases. A Drosophila memory TEI model is established by two 

recent studies [94, 95] and further corroborated by a similar report in which increased startle 

responses to the conditioned odor after paternal F0 olfactory fear conditioning was observed 

in the subsequent adult F1 and F2 mice [96].

A widely-used dual-odor discriminative Pavlovian conditioning assay involves training groups 

of flies to associate one odor (CS+; conditioned stimulus) with aversive electric or mechanical 
shocks (US; unconditioned stimulus), and the other odor (CS−) as a non-associative control 

[97–99]. Aged (25-day-old) flies produced F1 offspring with memory impairment detectable 
in young adults (3–5 days old), and this impairment was transmitted to the F2 generation [95]. 

The transgenerational effect was specific to short-term memory (STM; as tested 15 min after 
training), and appeared to be caused by oxidative stress in both F0 maternal and paternal 

flies. Although the same authors did not evaluate memory in aged F0 parents, an earlier study 
[100] demonstrated that aging specially impaired middle-term memory (MTM), which starts 

to form within 15 min after training and is considered to be an aging-sensitive component of 

STM [101, 102]. In addition to concluding that offspring cognitive ability may be influenced 
by parental age [95], these studies collectively argue that aged F0 parents may acquire a loss 

of oxidative stress-sensitive STM, and this acquired memory loss can be transgenerationally 

inherited at least to the F2 generation. This new explanation also provides a possible mecha-

nistic direction for future investigation, as MTM formation requires normal function of the 
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amnesiac (amn) gene that encodes a precursor neuropeptide encompassing fly homologs of 
mammalian pituitary adenylate cyclase activating peptide (PACAP) and growth hormone-

releasing hormone (GHRH; see below for further discussion) [103].

In a more recent study, F1 and F2 flies, without any training and prior exposure, displayed 
selective preference toward the same CS odors which were used during 5 days of discrimina-

tive training of F0 parents [94]. This preference was selective for the salient CS odors experi-

enced by the F0 parents but not the specific CS-US association, as the F1 and F2 flies did not 
differentiate between odors that were originally used to train their F0 parents under an aver-

sive (with electric shocks as US) vs. appetitive (with corn meal and sucrose as US) conditions. 

Consistently, discriminative conditioning appeared to increase the perceived salience of the 

CS+ odors [104]. Importantly, the observed odor-selective preference in the F1 flies required 
normal function of amn and preserved function of dorsal paired medial neurons in which 

amn is predominantly expressed [105]. Thus, the amn gene may be involved with transgen-

erational inheritance of acquired loss of STM in aged F0 parents [95] and odor-selective pref-

erence from discriminative training in the F0 flies [94]. In agreement with this idea, PACAP 

and/or GHRH stimulate growth hormone release [106], while down-regulation of growth 

hormone may be involved with cross-generational toxicity [107]. The amn gene also plays an 

important role in the behavioral response to intoxicating levels of alcohol [108], while alco-

hol abuse has been known to be transgenerationally heritable [109]. Collectively, these stud-

ies support Drosophila as a useful model to study transgenerational inheritance of memory 

impairment triggered by environmental factors (e.g., aging) and behavioral traits acquired 

from experiences (e.g., training), and epigenetic regulation of amn-encoded peptides as one 

potential underlying mechanism.

3. Transgenerational inheritance at the molecular and genomic level

Despite advancement of high-throughput sequencing and the recent surge of research on TEI, 

there are currently few studies focusing on the transgenerational effects at the molecular and 
genomic level, and thus the underlying mechanisms remain largely obscure [6, 8, 37–39, 92, 110]. 

Several recent studies in flies, however, may shed some light on this situation [77, 111–115].

Chronic treatment (7-day feeding and 7-day withdraw) of the F0 males with pentylenetetra-

zole (PTZ), an FDA-revoked convulsant drug, caused locomotor deficits and long-term altera-

tions in the CNS (central nervous system) transcriptome [116]. A follow-up study from the 

same group [113] demonstrated that the F0 males (with PTZ treatment) displayed a CNS tran-

scriptomic profile closest to the F2 males; and differentially expressed genes in the F1 males, 
F1 females, and F2 males showed significant overlap with the PTZ-impacted genes in the F0 
males. Interestingly, further clustering analysis of CNS and testis transcriptome profiles and 
concordant analysis of differentially expressed genes between them implied gametic involve-

ment in the observed transgenerational effect in gene expression. These results suggest that 
the acquired somatic transcriptomic alteration in F0 PTZ-treated males may be passed via 
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sperm at least to the F2 generation. This is the first report to study transgenerational inheri-
tance of genome-wide transcriptomic profile as a “phenotype,” acquired through drug treat-
ment in the F0 generation.

In another study, a high-protein diet led to somatic rDNA instability and copy number 

reduction in F0 parental flies [111]. As the insulin/insulin-like growth factor and TOR sig-

naling pathways regulate ribosome biogenesis and rDNA expression for nutrient availabil-

ity [117], genetic and pharmacological manipulation of insulin/TOR signaling produced 

similar effects, corroborating the results from dietary treatment. Importantly, rDNA copy 
number reduction remained in the F2 generation and was still present in flies maintained on 
standard food for 6 years. These results suggest that the genome rearrangement in F0 flies 
acquired through feeding on the high-protein diet occurred in both somatic and germ cells, 

and was transgenerationally heritable for over 150 generations. This outcome revealed a 

robust and long-lasting transgenerational consequence of adult diets. In a remarkable recent 

study, early-life protein restriction in mice induced a linear correlation between growth 

restriction and DNA methylation at certain rDNA copies that lasted into adulthood [118]. 

These findings, establishing rDNA as a genomic target of nutritional availability across spe-

cies, are of obvious importance for human health and diseases, as copy number variations 

have been linked to many chronic diseases such as schizophrenia and Alzheimer’s disease 

[119–121].

Another curious study has shown that a dominant and hyperactive mutation in the hopscotch 

gene (HopTum−l), encoding the Drosophila JAK kinase, caused epigenetic alterations in F0 paren-

tal flies that were transgenerationally heritable and thus influenced tumorigenesis in their F1 
and F2 offspring [114]. Interestingly, the transcriptional repressor Krueppel, known to repress 

transcription of the fushi-tarazu gene which encodes a homeodomain protein required for 

embryonic segment number and cell fate [122], is a HopTum−l enhancer [123]. Krueppel muta-

tions caused increased DNA methylation in the fushi-tarazu promoter region. This effect was 
transmitted across generations in the presence of HopTum−l [114]. Therefore, DNA methyla-

tion may be altered by Krueppel mutations, functioning as heritable epigenetic markings in 

Drosophila. JAK hyper-activation may then interfere with epigenetic reprogramming, allowing 

the changed DNA methylation (epimutation) to propagate across generations and influence 
tumor susceptibility.

4. Polycomb repressive complex 2 (PRC2) mediates H3K27me3 as 

a conserved epigenetic mechanism underlying transgenerational 

inheritance

Despite decades of intense studies linking all key types of epigenetic regulation (i.e., DNA meth-

ylation, histone modifications and non-coding RNAs) to TEI, direct and convincing experimen-

tal evidence in support of underlying mechanisms and governing principles is rare [2–8, 37–39]. 

The difficulties lie in the time-consuming nature of such studies, and lack of well-established epi-

mutations, clearly-defined phenotypic contributions and stably-inherited epigenetic markings 
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across multiple generations. Here we highlight two recent persuasive studies in Drosophila that 

have characterized one particular histone modification (H3K27me3) as part of an evolutionarily 
conserved epigenetic mechanism underling transgenerational inheritance [77, 112].

H3K27me3 is a repressive methylation mark on histone H3 established by PRC2 through its core 

catalytic subunit, the H3K27-specific methyltransferase encoded by the E(z) gene in flies [124] 

and EZH2 in mammals [125]. PRC2 is evolutionarily conserved across species, including uni-

cellular alga (Chlamydomonas reinhardtii) and budding yeast (Cryptococcus neoformans) [124–127]. 

Genes marked with higher-than-normal levels of H3K27me3 in human and mouse spermato-

zoa continue to show repression during gametogenesis, embryogenesis, and development, sug-

gestive of a role of this histone modification during TEI [128–130]. Furthermore, paternal diet 

affects H3K27me3 marks at specific loci in their offspring, implying that such nutrition-induced 
epigenetic modifications may be selectively retained across generations in mice [131]. Finally, 

TEI of longevity has been reported for H3K4me3 in worm (Caenorhabditis elegans) [132], and the 

bivalent chromatin domains covered by H3K27me3 and H3K4me3 marks have been implicated 

in aging and ARDs in humans [133, 134]. These results collectively suggest that H3K27me3 may 

function as an evolutionarily conserved epigenetic mechanism underlying transgenerational 

inheritance. Our recent work and that of Ciabrelli et al. have directly validated the concept in 

the context of nutrition-mediated longevity programming, transgene expression, and endog-

enous genetic variation [77, 112]. Further strengthening the idea, H3K27me3 markings have 

been found to propagate across generations from the maternal (and likely paternal) germline 

and survive reprogramming events during early embryogenesis in flies [115].

Our most recent study examined E(z)-mediated H3K27me3 as one potential epigenetic mecha-

nism underlying transgenerational inheritance of longevity [77]. It was prompted by our earlier 

work to establish nutritional programming of longevity and its transgenerational inheritance 

[74], and by recent studies supporting the notion that PRC2-mediated H3K27me3 may regu-

late aging across species. H3K27me3 repressive markings and an epigenomic PRC2 signature 

marked by EZH2 and SUZ12 (another core component of PRC2) binding have been found 

to be associated with age-associated differentially methylated regions and aging-associated 
genes in human embryonic stem cells and various other cell lines, implicating this repressive 

epigenetic marker as a common mechanism of aging in humans [135]. Consistently, Polycomb 

repression is associated with healthy aging in humans [136], and replicative senescence of 

stem cells, an in vitro aging model [137, 138]. H3K27me3 and H3K4me3 are also the frequent 

antagonistic partners found on the bivalent chromatin domains which may be implicated in 

aging and ARDs in humans [133, 134]. In addition, heterozygous mutations of E(z) increase 

longevity while also reducing H3K27me3 levels in adult flies, suggesting that PRC2-dependent 
H3K27me3 may regulate aging in Drosophila [139]. Interestingly, E(z)-mediated H3K27me3 is 

required for paternal transmission of obesity through reprogramming of metabolic genes in 

flies [140], supporting its potential role in transgenerational reprogramming. Finally, UTX-1 

(an H3K27-specific histone demethylase) has been shown to regulate aging, and H3K4me3-
mediated TEI of longevity has been reported in C. elegans [132, 141].

E(z) protein level was significantly upregulated in F0 flies, and back to normal in F2 flies, 
after post-eclosion treatment of F0 flies with the LP diet [77]. In contrast, the resulting 
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increase of E(z)-dependent H3K27me3 was seen in the F0 parents and their F2 offspring. 
Correspondingly, longevity was reduced in both F0 and F2 flies. These results suggest that 
early-life dietary insults may trigger E(z)-mediated H3K27me3 changes via misregulation of 

E(z), and consequently nutrition-induced H3K27me3 dysfunction may be transmitted across 
generations and underlie TEI of nutritional programming of longevity. First, E(z)-mediated 

H3K27me3 was found to be necessary for TEI of longevity programming, as early-life RNAi-

mediated specific knockdown of E(z) only in the F0 parents extended longevity while reduc-

ing H3K27me3 activity, and early-life specific inhibition of E(z) enzymatic function with 
EPZ-6438 (a highly EZH2-selective inhibitor) also extended lifespan while rendering the 

H3K27me3 level low across generations. Importantly, the effects of RNAi-mediated knock-

down on H3K27me3 and longevity were specific, as (I) similar effects were observed with 
two independent RNAi transgenes, (II) the E(z) protein level was normal in the F2 generation 

after its knockdown in the F0 parents, and (III) longevity, E(z), and H3K27me3 levels were 

not affected without heat shock to induce RNAi transgenes. Similarly, the EPZ-6438-induced 
effects were specific, as (I) EPZ-6438, as a phase II clinical drug, is highly EZH2 selective and 
considered safe [142], and (II) E(z) protein was unaffected by EPZ-6438 even in the F0 parents. 
In addition, H3K27me3 was found to be sufficient for TEI of longevity programming, as EPZ-
6438 greatly alleviated the longevity-reducing effect of the LP diet, while counterbalancing 
its upregulation of H3K27me3 across the F0 to F2 generations. Our data have convincingly 

demonstrated that E(z)-mediated H3K27me3 activity may play a critical role in the general 

health of an organism and function as one epigenetic mechanism underlying TEI of early-life 

nutrition-mediated longevity programming. Our findings have also provided the first proof-
of-concept for an epigenetic therapy to confer transgenerational health benefits in a model 
system, manifested through improved longevity.

Another important aspect of our study was early-life rather than adult-oriented interventions. 

The critical period refers to a time frame in which an organism’s nervous system is espe-

cially susceptible to environmental modification. This phenomenon is common to nearly all 
multicellular model organisms as it primes the organism to environmental stimuli and pro-

grams physiological pathways responsible for maintaining general health. Studies have linked 

abnormalities in the critical period to the development of autism spectrum disorder [143], 

attention deficit hyperactivity disorder [144], schizophrenia [145, 146], obesity [147], and other 

ARDs [148]. Indeed, the Developmental Origins of Health and Disease hypothesis (DOHaD) 

postulates that the current mainstream adult-oriented therapies may be less efficacious than 
those delivered during the developmental phases of life [149, 150]. Our study has provided 

direct validation of this concept through the delivery of EPZ-6438 at various time points 

throughout adult life to alleviate LP-induced longevity reduction. The alleviation effect was 
found to be greatest, intermediate, or very mild when the drug was delivered within the first 
7 days, from day 3–10, or from day 10–17 after eclosion, respectively. The effect was even seen 
in the F2 generation when the inhibitor was delivered within the first 7 days post-eclosion. 
These data support the DOHaD approach for studying ARDs in Drosophila and the use of a 

developmentally appropriate time period for intervention. Our follow-up experiments indi-

cated that early-life administration of EPZ-6438 can also prevent multiple LP-induced ARDs 

(i.e., cardiomyopathy, type 2 diabetes, and aging-related memory loss) throughout adult life. 
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This represents a novel proof-of-concept of an early-life multi-disease therapy, leveraging epi-

genetic reprogramming to provide life-long protection against multiple – possibly all – ARDs 

(Xia et al., unpublished results).

To study epigenetic phenomena in flies, Ciabrelli et al. employed a transgene inserted in chro-

mosome arm 2 L (Fab2L) to establish stable and isogenic epilines that carried distinct epialleles 

as defined by differential levels of PRC2-dependent H3K27me3 [112]. The Fab2L transgene 

contains the reporter gene mini-white, whose expression determines red pigmentation in 

the eye, under the control of Fab-7, a 3.6-kb genomic region that includes a PRE (Polycomb 

response element). Despite being located on a different chromosome (3R), the endogenous 

Fab-7 region can affect PRE-responsive repression of the Fab2L transgene through long-range 

3D chromatin interactions [151, 152], producing variable mini-white expression-dependent eye 

colors among individual flies. These epigenetic differences were somatic and not transgenera-

tionally heritable, but enhancing long-range interactions between Fab2L and the endogenous 

Fab-7 through removal of one copy of Fab-7 induced a plastic epigenetic state, allowing the 

authors to establish the stable and isogenic epilines with the most repressed (white) or the 

most derepressed (red) eye phenotypes through 15 generations of selection for eye color.

Their subsequent characterization indicated that (I) these epilines carried either silent or active 

epialleles of Fab2L, as determined by high or low levels of PRC2-responsive H2K27me3; (II) 
these epialleles could be stably and dominantly transmitted to naïve flies, with acquired epi-
genetic states stably maintained at least until the F10 generations through self-crossing; (III) 
epiallele maintenance required 3D chromatin interactions, with both epialleles fully and spe-

cifically reversed to a non-selective state after complete removal of the endogenous Fab-7; (IV) 
epiallele inheritance also followed the rules of paramutation under natural environment con-

ditions, with environmental factors (e.g., temperature and humidity) affecting the phenotypes 
of the epialleles; and (V) the paradigm could apply to a naturally occurring phenotype (i.e., 
antenna-to-leg homeotic transformation [153]) of a spontaneous neomorphic mutation of the 

homeotic Antennapedia gene. This important work, with well-established stable and isogenic 

epialleles as defined by distinct levels of H3K27me3 markings, has overcome many short-
comings of earlier studies of transgenerational inheritance, such as weak effects fading away 
within a few generations, ill-defined contributions to the observed phenotypes, and unclear 
epigenetic markings (cf. [114, 154]). The results have convincingly demonstrated stable trans-

generational H3K27me3-mediated inheritance of transgene expression and endogenous 

genetic variation in fruit flies [112], corroborating our study of establishing the same epigenetic 

mechanism underlying transgenerational inheritance of nutrition-programmed longevity [77].

In this mode of TEI, PRC2 functions through H3K27me3 repressive markers to acquire specific 
epigenetic states in response to environmental stimuli or triggers. Alternative states are defined 
by different levels of H3K27me3 to affect gene expression and epigenetic phenotypes [77, 112, 

131]. Polycomb-mediated repression at specific loci and/or long-range chromatin interactions 
act together to maintain acquired states in cis [112], and distinct levels of H3K27me3, as depos-

ited in the maternal oocytes [155], resist epigenetic reprogramming during early embryogen-

esis and are transmitted across generations, enabling transgenerational inheritance of acquired 
states and phenotypes [115]. The acquisition and establishment of epigenetic states may occur 
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rapidly during developmentally appropriate time periods [77, 131] or gradually through phe-

notypic selection [112]. Deposit of H3K27me3 appears to be locus-specific in response to envi-
ronmental factors (cf. [131]). The extent and robustness of its inheritance may be environmental 

factor- and trait-dependent, with the transgenerational effects upon acquired complex traits 
(e.g., aging) quickly adapting to further environmental changes and decaying away in a few 

generations (cf. [77]), or upon simple traits (e.g., transgene expression) being relatively resistant 

to further environmental modifications and transmitting across many generations (cf. [112]).

5. Conclusion

Drosophila as a versatile model organism is profoundly advancing our understanding of TEI and 

its underlying mechanisms. Short lifespan, well-conserved epigenetic mechanisms, and powerful 

genetic tools have facilitated TEI studies at molecular, genomic, and organismal levels after vari-

ous environmental and genetic manipulations (Table 1). Many studies have employed dietary 

interventions at the larval or early-adult life stages, or throughout adulthood, similar to those in 

mammals [48, 156]. Early-life nutrition in particular has been linked to adult health and diseases, 

prompting the increasingly-recognized DOHaD approach for studying various ARDs includ-

ing CVD, obesity, diabetes, dementia, and certain cancers [4, 150, 156]. Importantly, these exist-

ing TEI models have enabled exciting investigations of the underlying molecular and epigenetic 

mechanisms. Here, we have highlighted PRC2-mediated H3K27me3 markings as an evolution-

arily conserved epigenetic mechanism underlying transgenerational inheritance [77, 112, 115].

6. Recommendations

TEI research is a relatively new science. H3K27me3-mediated inheritance is providing a plat-

form to address many important questions about TEI in future studies. What are the signals and 

underlying molecular mechanisms responding to the initial environmental stimuli? How do 

these signals trigger an epigenetic process and establish corresponding epigenetic states? How 

can such specific epigenetic states, likely originating in somatic cells, be transmitted to germ 
cells to enable transgenerational inheritance? What are the molecular mechanisms that maintain 

transgenerational inheritance? Is H3K27me3 unique in that it may resist epigenetic reprogram-

ming [115]? Is H3K27me3 a common epigenetic mechanism responsible for non-genetic trans-

generational inheritance across species? We anticipate that the Drosophila model will continue to 

broaden our understanding of TEI biology and related human diseases in particular.
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