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Abstract

Gravity data interpretation is useful in exploring regions that have different geological 
structures, which contain minerals, ores and oil deposits. There are different numerical 
methods for the model parameters (depth (z), origin location (x

o
), shape parameter (q) 

and amplitude coefficient (A)) evaluation of a covered structure such as gradient method, 
particle swarm optimization technique and Werner deconvolution method. In this study, 
application of these methods is utilized to appraise the model parametric quantity of 
the covered structures. The application of these methods was demonstrated by different 
engineered data without and with various range of noise (5%, 10%) and applied for a real 
example from Egypt. The result values of each method were compared together and with 
those published and drilling information.

Keywords: gravity anomaly, depth, werner deconvolution, PSO, gradient method

1. Introduction

Gravity method is a non-ruinous geophysical procedure that measures contrasts in the 
 gravitational field of the earth at many various areas. It has much beneficial utilization in 
hydrocarbon exploration, mineral prospecting, archeological investigations, environmental 
applications and crustal imaging [1–11]. The main objective of the gravity interpretation is 
evaluating the model parameters (depth, amplitude coefficient, origin location, and shape 

parameter) of gravity oddities delivered by basic geometrical formed structures (spheres, cyl-
inders). Clarification of gravity data is constantly connected with the ill-posed and non-unique 
problems. To overcome these issues, we find a preferred geometry to subsurface structures 
with a known density followed by the inversion processes [12, 13]. Understanding of gravity 
data can be performed utilizing basic geometrical models, forward modeling and inversion. 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Analytical formula for basic geometrical shapes and many approaches have been produced 
to translate the gravity anomaly expecting the body of basic geometry (sphere, horizontal cyl-
inder and vertical cylinder). These techniques have varying complexity in the interpretation.

All different simple models may not be found in real subsurface geological situations, they 
usually are preferred in practical inversion of many isolated sources. The target of an inver-
sion process is to recover the converse parameters of the model (depth, amplitude coefficient, 
origin location and shape factor). Many scientists showed and discussed several graphical 
and numerical approaches developed in past and significantly in the present time [10, 11, 
14–32]. However, the disadvantages of these methods that depend on characteristic points 
and curves subject to person errors in calculating the inverted parameters of the subsurface 
structures which can prompt significant errors in assessing the inverse parameters of the 
covered structure [10, 11]. Thus, the outcomes from these techniques need the accessibility 
of density information as a noteworthy aspect of the commitment, alongside similar depth 
information got from geology and/or geophysics. Consequently, the resultant model can shift 
comprehensively relying upon these factors since the inverse problems are not well-postured 
and are along these lines unsteady and non-unique [33].

The interpretation of the gravity data is attempted here using three methods: the gradi-
ent method [34], the particle swarm optimization and Werner deconvolution method [21]. 
Analysis of the gravity anomalies can allow obtaining more detailed information on the geo-
logical structures that partially outcrops or covered totally in depth. In overall, these different 
methods are utilized in this work to searching the sources nature of gravity anomalies. The 
results of applied three different methods are compared together. A synthetic example with-
out and with various level of noise (5% and 10%) used to show the stability of these methods. 
The proposed techniques are additionally tested on a gravity data from Egypt. To judge satis-
faction and fulfillment of these approaches is finished by contrasting the acquired results with 
other accessible geological or geophysical information in the published literatures.

2. The methods

Different three algorithms used to interpret the gravity anomaly (mGal) produced by most 
common three shapes (spheres, horizontal cylinders and vertical cylinders) (Figure 1) repre-
sented by:
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In the above equation, z is the depth (m), A is the amplitude coefficient (mGal × m2q) that 
depends on the shape parameter, q is the parameter related to the shape of the body (dimen-
sionless), x

i
 is the position coordinate (m), x

o
 is the origin location (m), σ is the density contrast 

between the target and the surroundings, G is the gravitational constant parameter which 
equal 6.67 × 10−11 SI units, and R is the radius of the covered body (m), as follow:

2.1. The gradient method

The gradient algorithm [34] depends on the utilizing the numerical fourth horizontal gradient 
registered from the measured gravity anomaly utilizing filter of successive window lengths 
to evaluate the depth and shape of covered structures. The numerical fourth gradient gravity 
value at point x

i
 is figured from measured gravity data g(x

i
) by:

  Δ  g  
xxxx

   ( x  i  )  =   
 {∆g ( x  i   + 4s)  − 4∆g ( x  i   + 2s)  + 6∆g ( x  i  )  − 4∆g ( x  i   − 2s)  + ∆g ( x  i   − 4s) } 

     _________________________________________   16 s   4 
  ,  (2)

where s is a window length or graticule spacing.

Figure 1. Sketch diagram for different simple geometrical structures: (a) sphere model, (b) horizontal cylinder model 
and (c) vertical cylinder model.
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Also, the depth computed using the following form derived from the above equation:
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2.2. The particle swarm optimization (PSO)

PSO-algorithm was created by [35]. It’s relying upon the reenactment of the apparent con-
ducts of birds, fishes and insects in food searching. PSO-algorithm is applied in many issues, 
like model construction [36], biomedical images [37], electromagnetic optimizations [38] and 

hydrological problems [39]. In this calculation, the birds representing the particles or models, 
every molecule has a location vector which speak to the parameters esteem and a velocity 
vector. So, for a four-dimensional improvement issue, each molecule or individual will have 
a location in four-dimensional spaces which speak to a solution [40]. Each molecule changes 
its location at every movement of the operation of the algorithm, this location refreshed amid 
the iteration procedure considering the best location reached by the molecule which is called 
the Tbest model and the best location obtained by any particle in the community called the Jbest 

model, this refreshment is clarified in Eqs. (4) and (5) [41]
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where   v  
i
  k   is the speed of the molecule i at the kth cycle,   P  

i
  k   is the current I modeling at the kth 

cycle, rand() is an arbitrary number in the vicinity of 0 and 1, c1 and c2 are positive constant 
numbers which ascendency the person and the sociable behavior, they are typically taken 
as 2 [41] yet some recent researches give that picking c1 more prominent than c2 however 
c1 + c2 ≤ 4 may give better outcomes [42], c3 is the inertial coefficient which control the velocity 
of the molecule, since the substantial esteems may shuffle the molecules to miss up the great 
arrangements and the small esteems may bring about insufficient place for exploration [41], 
it’s usually taken less than 1,   x  

i
  k   is the positioning of the molecule i at the kth cycle.

The four model parameters (z, A, x
o
, and q) can be evaluated by using the PSO-algorithm to 

reach the misfit by using the following objective function:
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where N is the number of data points,   T  
i
  m   is the observed gravity anomaly,   T  

i
  c   is the evaluated 

gravity anomaly.
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2.3. Werner deconvolution method

Werner deconvolution method [21, 43] was also originally developed for magnetic interpreta-
tion. Also, Werner deconvolution has been used for gravity interpretation. The method is par-
ticularly useful when the profile anomaly of interest can be expressed as a rational function 
of the form of Eq. (1). As identified by [43], Eq. (1) can be rewritten in linear form as follow:

    [g ( x  
i
  ) ]     e  1      ( x  

i
   −  e  4  )    

2  +   [g ( x  
i
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Eq. (7) is linear form in the four variables e1, e2, e3 and e4, so that a numerically remarkable 
arrangement can be found for them from evaluating the equation at four points.

The Root Mean Square error (RMS) between the data and model responses is evaluated as 
follows
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This is considered as a rule in evaluating the best-fitted model parameters (z, A, x
o
, q) of the 

covered structure.

3. Synthetic example

Noisy-free gravity anomaly for a horizontal cylinder with A = 400 mGal m2, z = 5 m, q = 1, 
m = 1 and profile length of 120 m. Our analysis begins by applying the fourth horizontal 
gradient separation technique (Eq. (2)) to the gravity anomaly utilizing distinctive s-values 
(s = 2, 3, 4 and 5 m) (Figure 2). By applying this inversion technique, we evaluated z and A 

values at different q for every s-value and after that ascertained the average depth and RMS 
(Table 1). Table 1 exhibits the estimation consequences of the interpretation of noise free data. 
The assessed parameters from the proposed technique are in a decent concurrence with the 
model of the horizontal cylinder where z = 5 m, A = 400 mGal m2 and q = 1. At long last, we can 
watch that the minimum RMS (RMS = 0 m) occurs at the true model parameters.

Because of the real data are tainted with random noise, random noise of 5 and 10% imposed 
on the gravity anomaly to see the effect of these noises on the inversion method. The fourth 
horizontal gradients were evaluated using the same s-values mentioned above (Figures 3 

and 4). Table 1 also demonstrates the computational outcomes of the interpretation of noisy 
gravity data. The average depth of 5 m and the solution with minimum RMS (0.65 mGal) 
gives in case of 5% noise and depth 4.9 m and RMS of 4.4 mGal in case of 10% noise. This 
shows that this method is useful when applied to noisy gravity data. In addition, we use 
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s (m)
Vertical cylinder model, q = 0.5 Horizontal cylinder model, q = 1 Sphere model, q = 1.5

z (m) A (mGal m) z (m) A (mGal m2) z (m) A (mGal m3)

2 3.9 465.8 5 400 4.0 2753.37

3 3.8 461.2 5 400 3.9 3447.5

4 4.1 447.2 5 400 3.9 3916.2

5 4.2 433.1 5 400 4.2 4230.3

Average 4.0 451.9 5 400 4.0 3586.8

RMS (mGal) 17.57 0 25.71

With 5% random noise

2 4.2 465.8 5.1 400.0 4.1 2753.3

3 3.7 461.2 4.9 410.5 3.8 3447.5

4 3.8 447.2 5.2 417.7 3.7 3916.2

5 3.9 433.1 4.9 424.6 4.3 4230.2

Figure 2. Data analysis of the horizontal cylinder model using the gradient method.
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s (m)
Vertical cylinder model, q = 0.5 Horizontal cylinder model, q = 1 Sphere model, q = 1.5

z (m) A (mGal m) z (m) A (mGal m2) z (m) A (mGal m3)

Average 3.9 451.8 5.0 413.2 3.9 3586.8

RMS (mGal) 17.87 0.65 27.23

With 10% random noise

2 4.0 351.7 5.0 479.4 3.9 2079.0

3 4.0 410.5 4.8 481.1 4.0 3068.7

4 4.0 406.3 4.7 432.9 3.9 3557.9

5 3.9 404.2 5.1 422.83 4.0 3947.8

Average 3.9 393.2 4.9 479.4 3.9 3163.4

RMS (mGal) 13.65 4.4 22.29

Table 1. Numerical results for a gravity model due to horizontal cylinder without and with two levels of 5% and 10% of 
random noise (A = 400 mGal m2, z = 5 m, q = 1, and profile length = 120 m) using the gradient method.

Figure 3. Data analysis of the horizontal cylinder model using the gradient method when the data contain 5% random 
errors.
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Werner deconvolution method to the same gravity anomaly utilizing the same window size 
every 2 m. we used 11 clustered solutions to calculate the average estimated depth is 5 m, 
A = 400 mGal m2, and q = 1 with RMS = 0 mGal. Also, as mentioned above we use the same 
Werner deconvolution method for the noisy gravity anomalies. The average estimated depth 
of the cluster solutions is 5.3 m, A = 410.1 mGal m2 and q = 1 with RMS = 0.82 mGal in case 
of adding 5% random noise. Also, the average estimated depth of the cluster solutions is 
5.6 m, A = 425.3 mGal m2 and q = 1 with RMS = 1.20 mGal in case of adding 10% random 
noise (Table 2).

The PSO-algorithm was connected to the same synthetic gravity anomaly. In this circum-
stance, it is noise free data, so we start testing our technique using 100 models. The best 
model came after 700 cycles, the used extent of the parameters are showed up in Table 3. 
The assessed model parameters which control the body measurements are in good correla-
tion with the proposed values (Table 3) corresponding to zero RMS. Since, the uproarious 
data considered as a basic part in geophysics, thusly, we applied our method to 5% arbitrary 
random noise gravity data caused by horizontal cylinder model appear with a particular true 
objective to inquire about the effect of noise corrupted data. The assessed indicate parameters 
(z, A, x

o
, q) are presented in Table 3. Table 3 exhibits that the RMS error is 0.32 mGal. Plus, we 

forced 10% of subjective random noise on the comparable synthetic anomaly. Also, Table 3 

demonstrates the inverted parameters and shows that the RMS error is 0.64 mGal.

Figure 4. Data analysis of the horizontal cylinder model using the gradient method when the data contain 10% random 
errors.
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4. Field example

So as to inspect the pertinence and effectiveness of the three showed methods on the real data, 
we have connected the three techniques to a gravity anomaly profile of Abu Roash dome area, 

Type of body Parameters Used ranges Result RMS (mGal)

Horizontal cylinder model

Without random Gaussian noise

A (mGal m2) 100–700 400 0

z (m) 2–12 5

q 0–3 1

x
o
 (m) −20 to 50 0

With 5% random Gaussian noise

A (mGal m2) 100–700 395 0.32

z (m) 2–12 5

q 0–3 1

x
o
 (m) −20 to 50 −0.01

With 10% random Gaussian noise

A (mGal m2) 100–700 411 0.64

z (m) 2–12 4.9

q 0–3 1

x
o
 (m) −20 to 50 0.02

Table 3. Numerical results for a gravity model due to a horizontal cylinder without and with two levels of 5% and 10% 
of random noise (A = 400 mGal m2, z = 5 m, q = 1, x

o
 = 0 m and profile length = 120 m) using the PSO-technique.

Vertical cylinder model, q = 0.5 Horizontal cylinder model, q = 1 Sphere model, q = 1.5

z (m) A (mGal m) x
o
 (m) z (m) A (mGal m2) x

o
 (m) z (m) A (mGal m3) x

o
 (m)

Average 4 458.37 0 5 400 0 3 3875.3 0

RMS (mGal) 18.04 0 55.96

With 5% random noise

Average 4.3 465.51 0 5.3 410.1 0 3.4 3884.4 0

RMS (mGal) 17.60 0.82 42.82

With 10% random noise

Average 4.5 468.26 0 5.6 425.3 0 3.6 3910.1 0

RMS (mGal) 17.28 1.20 38.25

Table 2. Numerical results for a gravity model due to horizontal cylinder without and with two levels of 5% and 10% of 
random noise (A = 400 mGal m2, z = 5 m, q = 1, and profile length = 120 m) using Werner deconvolution method.
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the Northern Western Desert, Egypt (Figure 5). The Bouguer gravity map is situated in the 
West of Cairo ([44]; his Figure 11) and was mapped in 1980 by the Egyptian General Petroleum 
Corporation (EGPC) utilizing a density of 2.3 g cm−3. The structure information is accessible 
from the surface geology and drilled hole data [45]. From the geology information of the area, 
we observe that the basement rocks (with greater prominent thickness than the above sedi-
mentary layers) are elevated because of the high pressure in the SW direction [45]. At the Abu 
Roash dome, there are exposures of Cenomanian clastics at its core took after by Turonian and 
Senonian strata. This Cretaceous succession separated from the above Eocene sediments by an 
angular unconformity [45–47]. Figure 5 shows the Bouguer anomaly profile which are opposite 
to the heading of compression striking NW–SE, this profile was digitized at an interim of 300 m. 
The Bouguer anomaly accordingly acquired has been subjected to the three various methods 
(the fourth horizontal gradient method, Werner deconvolution method, and the PSO-technique).

Firstly, we used the fourth horizontal gradient method to four progressive windows (s = 600, 
900, 1200 and 1500 m) to obtain the inverted model parameters. The four fourth horizontal 
gradient anomaly profiles were gotten (Figure 6). Table 4 summarized the results obtained 
from this method. Secondly, by applying Werner deconvolution method to the same observed 
gravity data, the outcomes are summarized in Table 5. Thirdly, a PSO-algorithm utilized to 
assess the interpretive model parameters of gravity anomaly profile. Table 6 displays the 

ranges and results of the evaluated parameters.

Figure 5. Observed gravity anomaly profile of Abu Roash field example, Egypt.
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Figure 6. Data analysis of the Abu Roash field example using the present gradient method.

Vertical cylinder model, q = 0.5 Horizontal cylinder model, q = 1.0 Sphere model, q = 1.5

z (m) A (mGal m) x
o
 (m) z (m) A (mGal m2) x

o
 (m) z (m) A (mGal m3) x

o
 (m)

Average 1870 −5230 0 2320 −6503 0 2750 −17,253,450 0

RMS 
(mGal) 10.06 10.39 246.99

Table 5. Numerical results of Abu Roash dome field example using Werner deconvolution method.

s (m)
Vertical cylinder model, q = 0.5 Horizontal cylinder model, q = 1.0 Sphere model, q = 1.5

z (m) A (mGal m) z (m) A (mGal m2) z (m) A (mGal m3)

600 1870 −5236 2200 −6160 2520 −13,552,000

900 1890 −5292 2250 −6300 2600 −14,175,000

1200 1920 −5376 2510 −7028 2830 −17,640,280

1500 2050 −5740 2630 −7364 3290 −19,367,320

Average 1932.5 −5411 2397.5 −6713 2810 −16,183,650

RMS (mGal) 10.04 10.38 224

Table 4. Numerical results of Abu Roash dome field example using the gradient method.
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Finally, the three inversion techniques give a full picture of the model parameters instead 
of various techniques which did not give a totally elucidation. The results are outlined in 
Table 7.

5. Conclusions

In this chapter, three various methods were used for modeling gravity anomaly due to sim-
ple geometrical shaped. The viability of the proposed methods (the gradient method, par-
ticle swarm optimization method and Werner deconvolution method) is used on a synthetic 
example including noisy-free data, contaminated data with various level of noise (5 and 10%), 
and a real field data from Egypt. The three approaches can enhance the quality solution and 
convergence traits and computational adequacy. The examination of the results with drilling 
information and published information detailed in the literature demonstrated the preva-
lence of the three methods and its potential for dealing gravity issue. Later on work, we will 
attempt to suggest some enhanced variant of these methods to deal with issue.
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Parameters
Method Present methods

[45] [48] Fourth gradient Werner PSO

A (mGal m) 1900 1620 −5411 −5230 −5200

z (m) – – 1932.5 1870 1860

q (dimensionless) – 0.5 0.5 0.5 0.45

x
o
 (m) – – – 0 0

Table 7. Comparison between the present three used method and different methods for Abu Roash field example, Egypt.

Parameters Used ranges Result RMS (mGal)

A (mGal m) −2000 to −6000 −5200 0.17

z (m) 500–2500 1860

q 0–2.5 0.45

x
o
 (m) −100 to 100 0

Table 6. Numerical results of Abu Roash dome field example using the PSO-technique.
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