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Abstract

Hydroxyapatite materials, due to their high biocompatibility, play a crucial role in ortho-
paedics and bone surgery as alternatives to autologous bone grafts. It was also found 
that coatings of metallic implants with hydroxyapatite layer improve significantly their 
osseointegration. Due to its bioactivity, osteoconductivity and non-toxicity, hydroxy-
apatite is also widely used as a component of hybrid biomaterials. The implantation 
of “foreign” materials brings one major concern that is the risk of potential bone tissue 
infections or chronic osteomyelitis. In turn, the main problem concerning bacterial infec-
tion treatment is to obtain an adequate, bactericidal drug concentration maintained for a 
sufficient period of time in the bone tissue. Therefore, recent developments of materials 
engineering are focused on delivery antibiotics directly into the affected bone. To achieve 
this goal, hydroxyapatite-based materials are frequently studied as carriers for antibacte-
rial drugs. For effective support of antibiotic therapy, the antibacterial activity of certain 
ions (including silver, zinc or copper) may be applied. In our work, we present recent 
developments on ceramic materials for bacterial bone infections: hydroxyapatite-based 
carriers for antibiotics and modifications of hydroxyapatite with antibacterial ions. In 
this review, state-of-the-art and current applications of such materials are presented and 
discussed. We want to also present our recent results.

Keywords: hydroxyapatite, drug delivery, antibiotics, ionic substitution, antibacterial 
properties

1. Introduction

Hydroxyapatite (HA) is a material widely used in regenerative medicine, bone and dental 

surgery, conservative dentistry as well as implantology [1, 2]. HA resembles the main 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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inorganic component of mineralized tissues (biological apatite), which in combination 

with its non-toxic and, most importantly, osseoconductive properties makes it an asset 

for biomaterial engineering [3]. HA is considered to be the gold standard in bone tissue 

regeneration. In clinical practice, it is used in the form of powders or granules as filler for 
bone replacement or for repair of post-resection defects [4, 5]. HA is also successfully used 

as a coating material for metallic implants due to its bioactivity and favourable effects on 
the osseointegration process [6]. Porous structures may be used as temporary scaffolds for 
newly formed osseous tissue. In dentistry, HA is a component of dental materials such 

as dental cements and toothpastes [7]. Moreover, it has further uses in polymer/ceramic 

bone composite materials, not only as a bioactive material but also as a provider of desir-

able mechanical properties [8, 9]. Current research on HA bioceramics is conducted with 

a view to achieve two main goals: (1) to improve the biocompatibility of synthetic HA 

and (2) to provide synthetic HA with additional biological properties. The first goal can 
be achieved using partial ionic modification of synthetic HA. It should be stressed at this 
point that biological apatite is not pure hydroxyapatite, it is carbonated hydroxyapatite 

with a considerably reduced content of calcium and structural hydroxyl groups [10]. It 

also contains a number of various ions, primarily magnesium (Mg2+), but also sodium 

(Na+), potassium (K+), zinc (Zn2+), manganese (Mn2+), silicate (SiO
4

4−) and hydrogen phos-

phate (HPO
4

2−). The “foreign ions” incorporated into the structure of HA contribute sig-

nificantly to its properties such as the size of single crystals, agglomeration tendency and 
solubility.

New biological properties of HA may also lead to its enrichment with additional ions. For 

example, the introduction of strontium ions (Sr2+) provides HA with antiresorptive proper-

ties, as the strontium ions have an inhibiting effect on the activity of osteoclasts, while also 
stimulating osteoblasts [11]. HA material containing selenites (SeO

3
2−) may be used in turn in 

bone tumour therapy [12]. Commercially available apatite material enriched with silicon ions 

(Actifuse®) contributes positively to osteogenesis by promoting the formation of bone and its 

natural remodelling [13].

Upgrading HA materials may be achieved using physical or chemical binding of drugs. 

Therefore, recent research on HA bioceramics focused on producing multifunctional materi-

als, which, in addition to being used as scaffolds for growing tissue, could also release drugs 
directly into the bone in the affected area [14]. The literature describes research on HA as a 

delivery system for antiresorptive (e.g., bisphosphonates) and anticancer drugs (e.g., doxo-

rubicin and cisplatin), as well as antibiotics mainly against perioperative and intraoperative 

infections [15–17].

This chapter presents so far achievements in the field of HA materials for bone tissue infec-

tions (see Figure 1). In addition to antibiotic delivery systems, herein the focus will be put on 

HA modified by ions with proved antibacterial activity. Further on, opportunities for devel-
oping multifunctional HA-based materials for applications related to prevention and treat-

ment of bone infections will be discussed.
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2. Hydroxyapatite-based antibiotic delivery systems

Bone tissue infections are one of the most frequently occurring side effects of bone surger-

ies. Such a complication may lead to severe bone loss, implant failure or even amputation 

[14]. Osteomyelitis, periodontitis and spondylodiscitis are important bone tissue infec-

tions [18, 19]. They are most commonly caused by infectious isolates of G-positive bacteria, 

such as Staphylococcus aureus and Streptococcus spp.; G-negative bacteria: Salmonella spp., 

Mycobacterium tuberculosis, Pseudomonas aeruginosa; and fungi: Candida spp. The treatment of 

bone infections meets several serious clinical problems. Usually, antibiotic therapy involves 

3 weeks of oral treatment followed by 3 weeks of intravenous therapy [19]. Bone tissue is 

poorly vascularized; thus, the antibiotic doses must be high enough to reach prolonged anti-

bacterial concentration at the infected site. This high dosage of antibiotics may cause systemic 

toxic effects like nephrotoxicity, ototoxicity, hepatotoxicity, allergy or gastrointestinal syn-

dromes [14].

Despite long, high-dose therapies, standard treatments of bone infections are still not effective 
enough. Due to the problems mentioned above, drug delivery systems targeting bones have 

been developed. The material frequently chosen as the system matrix is hydroxyapatite (HA).

Due to its porosity, HA may provide proper loading and long-term release of antibacterial 

agents, which is crucial for the antibacterial effectiveness of such a system. However, its poor 
mechanical properties (brittleness) have led scientists to combine pure HA with natural or 
synthetic polymers. Gelatine [20, 21], alginates [22–25], chitosan [25–27], collagen [28–30], 

polyvinyl alcohol (PVA) [31–33], polyacids [34–40] and cyclodextrins [41–43] are frequently 

Figure 1. Scheme illustrating the main applications of HA and the ways to obtain antibacterial properties.
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used to improve not only the properties mentioned above but also the stickiness of fabri-

cated composite scaffolds, microspheres, etc. Thus, investigations into drug delivery systems 
loaded with antibiotics include the use of HA alone [44–63] and HA accompanied by other 

substances [20–40, 42, 43, 64–66].

The most frequently used antibiotics in local drug delivery systems are vancomycin (VAN) 

[18, 20, 21, 27, 33, 42, 48, 53, 60–63, 65] and gentamicin (GT) [18, 23, 25, 27, 35, 46, 57–59, 65]. 

These are also the most ubiquitously applied antibacterial agents in systemic therapy of bone 

tissue infections. Herein, the examples of antibiotic delivery systems based on HA and loaded 

with VAN or GT will be presented.

2.1. Vancomycin

Vancomycin (VAN) is used to treat methicillin-resistant Staphylococcus aureus (MRSA) infec-

tions in bone. The drug is administered parenterally; however, poor vascularization of bone 

tissues may cause insufficient local concentration of the antibiotic. Furthermore, severe side 
effects, such as ototoxicity and nephrotoxicity, are driving investigations into local delivery 
systems for VAN.

In one study [62], different materials characterized by various pHs were used to incorporate 
VAN. Namely, the investigations were focused on brushite cement (pH = 2.4), HA cement 

(pH = 9.4) and apatite xerogel (pH = 7.4). The influence of pH on the antibiotic release mode 
was analysed. The outcomes of the experiment revealed that pH affected the release kinet-
ics. Despite the fact that the eluent from apatite cement exceeded the minimum inhibitory 

concentration (MIC), the system based on this material was ineffective against S. aureus. Yang 

et al. [27] covered metallic implants of bone with a chitosan/vancomycin composite. The 

composite’s components were interconnected with hydrogen bonding. The electrochemical 

deposition technique was employed to cover the implant with a layer of composite. Next, 

the additional, external HA layer was placed on the implant. The kinetics of the antibiotic 

release from both type coatings were then compared. The kinetics showed that chitosan coat-

ing resulted in an impressive initial burst of a drug compared with the chitosan/HA compos-

ite. It may be concluded that the addition of HA has a significant impact on the prolonged 
release of the antibiotic.

The antibacterial activity of HA-based VAN-loaded delivery systems is usually examined in 

vitro. However, some studies involve in vivo tests to investigate the antibacterial effectiveness 
of fabricated systems. Joosten et al. [61] tested the antibacterial activity of VAN-loaded HA 

cement in S. aureus–induced chronic osteomyelitis. The infection was induced in the tibia of 

New Zealand white rabbits. The HA cement was an effective VAN carrier even for the treat-
ment of MRSA.

Lian et al. [31] tested HA/collagen/calcium sulphate composites loaded with VAN also in rab-

bits. Bone infection was induced in the condyle lateralis femoris. After 12 weeks of implanta-

tion, micro-CT graphs have shown an excellent bone reconstruction with implants containing 

VAN (see Figure 2).
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Some commercial materials were also tested for their effectiveness as the matrices of antibiotic 
drug delivery systems [18, 53, 65]. Interesting outcomes were found by Rauschmann et al. [65] 

who compared PerOssal® and calcium sulphate (CS) as drug loading matrices. PerOssal® is a 

biodegradable composite consisting of nano-sized HA and CS. The pellets synthesized from 

Figure 2. Micro-CT graphs taken 12 weeks after focal debridement. (a) Cross-section position (red line), (b) normal bone, 

(c) nHAC/CSH group, and (d) VCM/nHAC/CSH group. Abbreviations: nHAC/CSH – nanohydroxyapatite/collagen/

calcium sulphate composite VCM/nHAC/CSH – nanohydroxyapatite/collagen/calcium sulphate composite loaded with 

vancomycin. Reprinted from Ref. [31], the open access article distributed under the Creative Commons Attribution 
License.
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both materials were soaked in two antibiotics: VAN and gentamicin. The release of the drugs 

from the materials was studied. Surprisingly, PerOssal® demonstrated a higher initial release 

and a lower release of VAN after approximately 5 days, while in the case of gentamicin, the 

release mode from the materials exhibited no significant difference.

2.2. Gentamicin

Gentamicin (GT) is a broad-spectrum antibiotic from the group of aminoglycosides. It is 

mainly used in infections involving Gram-negative bacteria (i.e. Pseudomonas and Enterobacter 

spp.). Due to poor oral absorption, GT is commonly administered by injection. GT is fre-

quently used as a model, antibacterial agent in HA-based drug delivery systems. Guo et al. 

[57] examined the influence of the HA’s porosity on GT’s loading. Mesoporous, carbonated 
HA microspheres exhibited a higher drug loading efficiency of 70–75% more than the conven-

tional HA particles. It is important to note that the hierarchical nanostructure with developed 

meso- and microporosity allowed for an efficient loading of drug and, at the same time, a slow 
and sustained release of GT.

The association between porosity and drug loading was also studied by other researchers. 

To synthesize porous HA microspheres, the ice-template spray drying (ITSD) technique was 

applied by Yu et al. [34]. Drug loading efficacy increased with the increase of the porosity 
of the HA microspheres. Additionally, the transformation of the structure of the pores from 

cellular and independent ones to three-dimensional interconnected pore networks had a sig-

nificant impact on the initial burst of the drug.

A hybrid material containing HA and covalently coated, hardly degradable keratin was 

described in Ref. [66] as an innovative system for GT delivery. The presence of keratin 

resulted in a greater immobilization of the antibiotic compared with HA/gelatine material. 

Moreover, the hybrid was non-toxic and stimulated osteoblast proliferation. It is important 

to note that the sustainable, prolonged GT release provided efficient antibacterial activity for 
at least 120 days.

2.3. Other antibiotics used in HA-based delivery systems

Among the other antibiotics applied as the model drugs in the systems targeting bones, peni-

cillins, mainly amoxicillin [22, 37, 38, 44–46], cephalosporins [44, 46, 47], fluoroquinolones 
[33, 42, 43, 48, 49], including ciprofloxacin [33, 42, 43, 48, 49] and tetracyclines [28, 36, 51, 52], 

should be mentioned. In some studies, aminoglycosides (tobramycin and amikacin) [44, 46, 

54], erythromycin (macrolides) [22, 32], tigecycline (glycylcyclines) [55, 56], linezolid (oxa-

zolidinones) [64], rifapentine (ansamycin-like antibiotic) [41], clindamycin (lincosamides) [39, 

40, 50], chloramphenicol [45] or chlorhexidine [67] (a bactericidal and bacteriostatic agent, 

not classified as an antibiotic) were used. The most interesting investigations concern loading 
more than one antibiotic into the same material [22, 42, 44–46, 48, 49].

Stigter et al. [44] compared the efficacy of the incorporation of different antibiotics into car-

bonated HA coatings on titanium implants. The outcomes showed that the incorporation rate 
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depends on the chemical structure of the drug. Antibiotics that contained a carboxylic group, 

such as cefalotin, carbenicillin or cefamandole, were better incorporated than the others. In 
addition, these drugs exhibited a slower release from HA coatings.

In turn, Ferraz et al. [22] loaded nanohydroxyapatite microspheres with amoxicillin, amoxi-

cillin + clavulanic acid and erythromycin. Two types of microspheres, with varied porosity, 

were tested. The release profile from both types of microspheres consisted of a fast initial 
release followed by long-term sustained release. The microspheres with higher porosity and 

a greater surface area released more antibiotic during the first days. The antibacterial activ-

ity was tested against S. aureus and Escherichia coli. The obtained results have shown that the 

materials exhibited good, long-term antimicrobial activity.

Detailed study focused on HAs with controlled porosity and loaded with three antimicro-

bial agents (vancomycin, ciprofloxacin and gentamicin) were described in Ref. [48]. It was 

concluded that the adsorption of antibiotics was significantly higher in microporous HA 
than in crude dense discs. Moreover, the amount of adsorbed VAN was significantly higher 
than ciprofloxacin and gentamicin. Exposure to different bacteria species such as S. aureus, 

Staphylococcus epidermidis and E. coli demonstrated efficient antibacterial activity for all the 
materials. However, the microporosity of HA disc significantly prolonged the release of anti-
bacterial agents.

A very interesting research was presented by Ghosh et al. [49]. HA cements were prepared 

with two types of nanohydroxyapatites and loaded with ciprofloxacin or VAN. Self-setting 
time reactions were controlled using the different weight ratios of the nanohydroxyapa-

tites and had an impact on the release rate of antibiotics. The results have shown that, with 

modification of cement components, tuneable antibiotic release rates may be obtained. The 
biological tests presented good biocompatibility and non-toxicity to osteoblastic and osteo-

clastic cells.

The possibility of efficient fast loading of antibiotics in HA was studied by Brohede et al. [46]. 

The HA coatings on titanium implants were loaded with tobramycin, gentamicin, amoxicillin 

or cefalotin via soaking for varying periods of time (15 mins to 24 h). The results of antibacte-

rial tests have shown that even the shortest loading time was sufficient to release enough drug 
for the next 24 h and inhibit bacterial growth.

3. Hydroxyapatite materials doped with antibacterial ions

The antibiotic resistance demonstrated by many bacterial species has stimulated attempts 
to produce new materials with efficient antibacterial properties. It is also important to note 
that implant-related/bone infections are caused by bacterial adhesion and biofilm formation. 
Biofilms are difficult to treat with standard antibiotic therapy. Thus, searching for new anti-
bacterial strategies seems to be justifiable. As was mentioned above, HA doped with func-

tional ions (i.e. Ag+, Zn2+, Cu2+, SeO
3
2−) may be applied for perioperative and intraoperative 

prevention and treatment of bone infections.

Hydroxyapatite-Based Materials for Potential Use in Bone Tissue Infections
http://dx.doi.org/10.5772/intechopen.71604

115



3.1. Silver-substituted hydroxyapatite

Silver exhibits a wide spectrum of actions against bacteria, viruses and fungi with a relatively 

low risk of resistance developing [68]. Silver compounds are effective against some common 
pathogens such as E. coli, S. aureus and S. epidermidis and, more importantly, methicillin- and 

vancomycin-resistant S. aureus (MRSA and VRSA) [69–72]. Other susceptible microorgan-

isms include Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii, Micrococcus luteus, 

P. aeruginosa, Pneumococcus spp., Streptococcus mutans, Aggregatibacter actinomycetemcomitans, 

Porphyromonas gingivalis as well as yeasts Issatchenkia orientalis and C. albicans [73–76].

The main mechanism of action consists of the inactivation of microbial proteins through 

interactions with thiol groups (−SH) and the formation of inactive S-Ag bonding. Silver also 
affects bacterial DNA, precluding its replication. Another mechanism includes increased 
reactive oxygen species (ROS) production, leading to abnormally high permeability of 

microbial cells [68].

Silver-substituted HA (Ag-HA) can be obtained using several main synthesis methods, such 

as wet precipitation (using salts [74] or the neutralization reaction [77]), sol-gel technique [71, 

78], hydrothermal method [79], electrochemical deposition [80] and magnetron sputtering 
[73]. Additional treatment includes sintering [81] or microwave assistance [72]. A wide range 

of silver substitutions have been investigated-from ultra-trace amounts such as 0.04 ppm [79] 

or 0.002 mole Ag per 1 mole HA [77] up to 10 wt.% [82, 83]. To better evaluate the relationship 
between silver concentration and physicochemical properties and the biological activity of 

Ag-HA samples, studies usually include a series of samples with various Ag contents.

The antibacterial activity of silver is dose-dependent and increases with higher silver concen-

trations. However, higher doses of silver increase the risk of severe cytotoxic effects to mam-

malian cells. HA with 10 wt% of silver was synthesized by Nath et al. [82] via the sintering of 

mechanically mixed powders at 1200°C. Biocompatibility was confirmed on mouse fibroblast 
(L929) and human osteosarcoma (MG-63) cells. Rajendran et al. [83] also confirmed >80% 
viability of NIH3T3 cells cultured on HA with 10 wt% Ag, but even 3 wt% Ag was sufficiently 
effective against S. aureus. However, Ag-HA nanocomposite coatings on Ti implants with 

5 wt% content of metallic Ag exhibited cytotoxic effect on mice osteoblasts, while 2 wt% of Ag 
was both cytocompatible and inhibited growth of S. aureus [84]. These results are consistent 

with research by Yan et al. [80], where Ag+-substituted HA coatings with 2.03 wt% of silver 
exhibited optimal osteogenic and antimicrobial properties. According to Shi et al. [79], the 

optimal doping concentration of Ag ranges from 0.27 to 2.2 ppm. Lu et al. [85] also empha-

sized the importance of incorporating an adequate amount of the element to balance antibac-

terial activity and biocompatibility. Interestingly, heat treatment enhanced biocompatibility 

without decreasing antimicrobial properties. Another study indicated improved antibacterial 

activity against S. aureus, K. pneumoniae and C. albicans after thermal treatment at 600 and 

1000°C [81].

Lee et al. [86] prepared nanocomposite fibres composed of Ag-doped HA and polyamide 6. 
Ag+ ions were loaded through the ion-exchange mechanism. HA was synthesized in agarose 

and ethanol medium to obtain the desired properties. Such composites exhibited  excellent 
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antimicrobial activity against K. pneumoniae and E. coli while being slightly less effective 
against S. aureus. Further modification of the antibacterial fibre could extend the application 
field of Ag-HA, so far predominantly used in hard tissue injuries, to the treatment of skin 
diseases.

In Ref. [75], HA powders enriched in silver ions were used as coatings on a silicon previ-

ously covered with an elastomer, polydimethylsiloxane (PDMS). The antimicrobial activity 

was measured against E. coli, S. aureus and C. albicans strains. The obtained layers success-

fully inhibited microbial growth after 24 h of test (see Figure 3). Other polymer-based com-

posites with polyvinyl alcohol [71], polyethylene glycol [78] and chitosan [87] were also 

examined.

Novel nanoscaffold biomaterials, based on porous HA, polyamide 66, titanium dioxide (TiO
2
) 

and various concentrations of Ag+ ions, were developed and thoroughly examined by Lu et al. 

[88]. Therapeutic effects of the biomaterial were tested in vivo on a large cohort of rabbits with 

osteomyelitis for 12 weeks. The treatment was successful, scaffolds exhibited both antimicro-

bial and anti-inflammatory effects and, in addition, stimulation of osteogenesis was observed. 
In vivo silver concentrations following implantation were under toxic levels and no failure of 

liver or kidney functions occurred.

Titanium discs coated with thermal sprayed Ag-HA (0.5–3.0 wt%) were tested in vitro, reveal-

ing a reduced ability of biofilm formation by a methicillin-resistant S. aureus strain. The effect 
was confirmed in vivo on rats with an MRSA-inoculated 3% Ag-HA disc implanted hypo-

dermic for 7 days. No skin disorder (such as argyria) or wound healing complications were 

observed [89]. The reduction of viable MRSA by Ag-based coating on tibia implants was also 

Figure 3. The graphic representation of the microbial activity of S. aureus 0364, E. coli ATCC 25922 and C. albicans 

10,231 on Ag:HAp-PDMS layers on Si substrate, PDMS layers on Si substrate (Si-PDMS), and Si substrate (Si) at 48 h. 
*silicon substrate, **silicon substrate previously coated with PDMS, and ***Ag:HAp nanoparticles on a silicon substrate 

previously coated with a PDMS layer. Reprinted from Ref. [75], the open access article distributed under the Creative 

Commons Attribution License.
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indicated in vivo on rat models [70]. An interesting study by Xie et al. [87] concerned the suc-

cessful doping of bone morphogenetic protein 2 (BMP-2) into a nanosilver/hydroxyapatite/

chitosan composite, which was then implanted into the femurs of rabbits. Favourable bone 

formation and antibacterial properties were demonstrated in vivo.

In 2016, the first clinical study was conducted on 20 human patients with total hip arthroplasty, 
in which a silver oxide (Ag

2
O)-HA implant coating was used. The highest reported silver blood 

level following the surgery was far below the toxic level. For 1 year after surgery, no significant 
adverse reactions were observed and the coating prevented postoperative infection [90].

A popular strategy to further improve the properties of Ag-HA is to co-substitute additional 

ions. The most frequently studied combinations concern the addition of silicate SiO
4
4− ions (to 

improve osteogenic properties) [91] and strontium (Sr2+) ions (to reduce silver cytotoxicity and 

boost antibacterial properties) [92]. Recently, Aksakal et al. [93] examined multiple HA substi-

tutions with silver, zirconia and yttria, while Kolmas et al. [94] indicated that co-substitution 

of Ag-HA with carbonate (CO
3
2−) ions increased the solubility of samples, thus exhibiting 

greater antibacterial effect.

3.2. Zinc-substituted hydroxyapatite

Zinc (Zn2+) ion substitution in biomaterials has been thoroughly investigated, for both its 

osteogenic [95] and antibacterial activities [96–104]. The mechanism of inhibition of micro-

bial growth by zinc ions includes several aspects. Zn2+ ions cause damage to cell membranes 

by bonding with functional groups and increasing the permeability of cells. Moreover, zinc 

interacts with bacterial enzymes (such as ATPase, glycolytic enzymes or pyruvate kinase), 

disturbing their correct functionality [98, 103].

Recently, researchers have conducted in-depth investigations into the antibacterial action 

of zinc-substituted hydroxyapatites (Zn-HA). Samples with various levels of Zn2+ substitu-

tion were synthesized via the most common methods, namely co-precipitation [100, 102], ion 

exchange [99], sol-gel [104] and hydrothermal synthesis [101]. Anwar et al. [98] proposed a 

novel technique: continuous plastic flow synthesis (CPFS), which enables rapid production of 
HA nanocrystals with a high surface area. Electrospinning of fibres [96] and synthesis medi-

ated by surfactant addition TritonX-100 [103] were also examined.

Common human pathogens used for testing antimicrobial activity were S. aureus, E. coli and 

P. aeruginosa [98, 100–102]. Individual works concerned the impact of Zn-HA on the growth 

of Bacillus subtilis, Enterobacter aerogenes, Aggregatibacter actinomycetemcomitans, Fusobacterium 

nucleatum, S. mutans, Shigella flexneri, M. luteus, Bacillus cereus, Porphyromonas gingivalis and 

yeast C. albicans [97–99, 101–104]. Biocompatibility of Zn-HA biomaterials was demonstrated in 

vitro on human osteoblast-like cells MG-63 [104], human adipose-derived mesenchymal stem 

cells (MSCs) [102], rat primary osteoprogenitor cells and fibroblast cells MRC-5 [101]. In some 

studies, the viability rate was better for Zn-containing samples than for pure HA [101, 102].

Thian et al. [102] proved that the addition of Zn2+ ions stimulated the bioactivity of HA, since the 

increased growth of MSC cells, as well as elevated expression of collagen type I and osteocalcin, 
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was observed in case of Zn-HA (1.6 wt% of Zn). Moreover, Tank et al. [103] indicated no signifi-

cant haemolytic activity of Zn-HA on human blood. Bioactivity in vitro was proved by the abil-

ity of Zn-HA to form apatite crystals on samples soaked in simulated body fluid (SBF), which 
increased as the concentration of Zn raised.

Some research provides a comparison of antimicrobial activity against several pathogens. 

Radovanović et al. [101] investigated the inhibition of growth of E. coli, S. aureus, P. aeru-

ginosa and C. albicans caused by Zn-HA samples (0.2 and 0.4 mol%) and undoped HA. It 
was found that sintering the apatites at 1200°C, which led to partial decomposition to more 

soluble α-TCP, improved antibacterial activity of samples. All tested microorganisms were 
susceptible to Zn-HA and the degree of reduction increased with higher content of zinc ions.

Slightly different results were reported by Tank et al. [103] who focused on P. aeruginosa, S. flex-

neri, M. luteus, S. aureus and B. cereus. Zn substitution ranged from 1.3 wt% to 4.8 wt%. S. aureus 

was the most sensitive strain, even to undoped HA. M. luteus was also highly susceptible to 

Zn-HA samples, while both B. cereus and S. flexneri exhibited a moderate reduction in the num-

ber of colonies. In contrast, Zn-HA samples were ineffective against P. aeruginosa.

Several studies indicated that Zn-HA–based materials could also be suitable for the treat-

ment of oral cavity bacterial infections. Zn-HA was effective in inhibiting the growth of com-

mon oral pathogenic strains, namely Aggregatibacter actinomycetemcomitans, Fusobacterium 

nucleatum and S. mutans [99]. Zn-HA coating on titanium implants demonstrated antibacterial 

properties against Porphyromonas gingivalis, a major cause of chronic periodontitis [104]. An 

additional advantage of Zn-HA used as an additive to toothpaste is protection against acid 

enamel erosion [105].

It should be noted that zinc is a popular dopant in multiple substituted HAs. Commonly 

examined combinations include Zn-HA with Ag+ [106] or Cu2+ [107] ions used to boost antibac-

terial activity, and Mg2+ [108], SiO
4
4− [109], Sr2+ [108] or F− ions [110] for additional stimulation 

of the mineralization process.

3.3. Copper-substituted hydroxyapatite

The antimicrobial activity of copper is linked to its interaction with bacterial proteins, mem-

branes and nucleic acids. An extensive review of antimicrobial applications of copper in the 

environment was provided by Vincent et al. [111].

Li et al. [112] synthesized copper-substituted HA (molar rate of Cu2+/Ca2+ up to 0.15) via ion 

exchange wet chemical reaction. Obtained materials exhibited a high antibacterial effect 
against E. coli, which increased with the concentration of Cu2+ ions. Unfortunately, all Cu-HA 

samples were cytotoxic to human foetal osteoblast (hFOB) cell lines.

Sahithi et al. [113] combined copper-soaked HA with polyethylene glycol 400 (PEG 400) to fur-

ther extend its antimicrobial activity. Cu-HA exhibited antibacterial activity against E. coli and 

S. aureus, the effect of which increased against S. aureus after combination with PEG 400. MTT 
assay carried out on rat primary osteoprogenitor cells indicated cytocompatibility of the samples.
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Antimicrobial activity of Cu-HA as well as Cu-FA (copper-substituted fluorapatite) was tested 
against E. coli, S. aureus and C. albicans [114]. The increase of copper substitution in hydroxy-

apatite enhanced activity against S. aureus and C. albicans, but Cu-HAs were not active enough 

against E. coli. Cu-FA was effective against all tested microorganisms with increasing activity 
in the following order: C. albicans < S. aureus < E. coli. Cu-FA may be more effective due to the 
release of fluoride ions. The same pathogen strains were used in Ref. [115], where the antibac-

terial activity of Cu-HA was compared with results for Zn-HA.

Radovanović et al. [116] compared Ag+- and Cu2+-substituted biphasic materials, based on 

ion-doped HA and α-TCP, obtained after annealing monophasic-substituted HA samples at 
1200°C. For antimicrobial tests in vitro, S. aureus, E. coli, P. aeruginosa and C. albicans were 

used. Antimicrobial activity increased with the increase of ionic concentration. The activities 

of biphasic materials were very high and comparable in the case of Ag+ and Cu2+ substitution. 

The only difference was observed in monophasic Cu-HA against C. albicans, which was much 

less effective, especially with the smaller concentration of Cu2+ ions. In vitro biocompatibility 

was demonstrated on MRC-5 human fibroblast cells, but it should be noted that the addition 
of Cu2+ ions slightly reduced the viability of cells.

3.4. Selenium-substituted hydroxyapatite

Tran et al. [117] confirmed antibacterial properties of cellulose discs coated with organose-

lenium-methacrylate polymer against P. aeruginosa and S. aureus. 0.2 wt% of selenium com-

pletely inhibited bacterial attachment, growth and formation of a biofilm. Strong activity of 
selenium nanoparticles against S. aureus was confirmed by Tran and Webster [118]. These 

studies led to more research concerning the antimicrobial activity of selenium-based hydroxy-

apatite (Se-HA) [119–121]. Rodriguez-Valencia et al. [119] fabricated selenium-substituted car-

bonated HA coatings by the pulsed laser deposition method. Samples contained selenium in 

the form of selenite ion SeO
3
2−. Coatings prevented the formation of biofilms by P. aeruginosa 

and S. aureus strains and reduced the number of colony-forming units (CFUs). Uskoković 
et al. [120] compared Se-HA obtained by co-precipitation and ion-exchange sorption meth-

ods. Selenite contents ranged from 0.3 to 3 wt% and the precipitation synthesis was about 10 
times more effective in introducing selenium. Se-HA samples were strongly effective against 
E. coli and S. aureus, while being less effective against Salmonella enteritidis and ineffective 
against P. aeruginosa. Similar results were obtained by Kolmas et al. [121]. Figure 4 illustrates 

significant bacterial growth inhibition caused by selenite anions. Moreover, selenium content 
was in correlation with the reduction of the viability of mouse osteosarcoma cells, and the 

induction of apoptosis was selective, without reducing the viability of fibroblast cells. Se-HA 
also exhibited osteoinductive effect by increasing the gene expression of pre-osteoblastic 
MC3T3-E1 cells. These promising results mean that selenium substitution in hydroxyapatite 
will probably get more popular in upcoming years.

In addition to the well-known elements with well-established antibacterial activity, some less 

popular elements for such a combination, like cerium, gallium, cobalt and strontium, should 

be mentioned [122].
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4. Hydroxyapatite with antibacterial ions and loaded antibiotics

Some hydroxyapatites enriched with antibacterial ions have been used to create systems con-

taining antibiotics. Most of these systems have been developed using silver ions because of 

their strong antibacterial properties.

Ivashenko et al. [123] investigated the effect of silver ions in HA structure on the adsorp-

tion rates of ciprofloxacin. The research was carried out using commercially available materi-
als such as Biomin G® (HA) and Biomin GIS® (HA enriched in an Ag+ amount of <0.1 wt%). 
Interestingly, the presence of silver ions in HA led to lowered specific surface area and signifi-

cantly decreased adsorption rates of ciprofloxacin when compared with undoped material. 
Unfortunately, no research was done to test the antibacterial activity or release of silver ions 

or ciprofloxacin.

Another work [124] proposes long HA nanowires enriched with Ag+ ions and ciprofloxacin. 
The material performed high and long-termed effectiveness against E. coli and S. aureus.

Ciprofloxacin and tetracycline were also adsorbed on a thin film made of Ag-HA [125]. In vitro 

microbiological tests have shown that thin films containing Ag-HA and selected antibiotics may 
become an effective solution in the prevention and treatment of bone infections (see Figure 5).

Figure 4. Antibacterials activity of the materials on S. aureus. Reprinted from Ref. [121], the open access article distributed 

under the Creative Commons Attribution License.
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Hydroxyapatite with an additional phase of sphere-shaped silver phosphate molecules and 

enriched with vancomycin or gentamicin has been developed by Suvannapruk et al. [126]. 

The authors have proved that such a combination of silver phosphate nanoparticles and anti-

biotic prolongs the antibacterial activity and increases the efficiency of the material.

An interesting experiment was proposed by Sampath Kumar [127], resulting in the creation of 

HA enriched with Ag+, Sr2+ or Zn2+ ions. These materials were used as doxycycline-releasing 

media. Of all the materials under investigation, Ag-HA had the lowest doxycycline loading. 

The most optimal system was the Zn-HA, because it produced a sufficiently effective level of 
antibacterial activity and, at the same time, contained an adequate quantity of loaded antibiotic.

Recently, Yu et al. [128] synthesized Cu-HA microspheres using a microwave-hydrothermal 

method. Interestingly, the phosphorous source for the synthesis was creatine phosphate – a 

substrate for ATP production. Chitosan-based scaffolds were created by freeze drying and 

Figure 5. Antibacterial activity against S. aureus 0364 and E. coli ATCC 25922 cultures of (A) HAp, T-HAp and C-HAp, 

ciprofloxacin, tetracycline thin films and (B) Ag:HAp, T-Ag:HAp, C-Ag:HAp thin films. Reprinted from Ref. [125], the 

open access article distributed under the Creative Commons Attribution License.
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loaded with doxorubicin to examine drug loading and release. Osteogenic and angiogenic 

properties were evaluated both in vitro and in vivo. Samples were bioactive and non-toxic. The 

authors claim that the release of Cu2+ ions, by stabilizing HIF-1α, induced hypoxia in the bone 
tissue, which significantly stimulated neovascularization and improved bone regeneration.

5. Conclusions

Sophisticated porous hydroxyapatite structures and hydroxyapatite/polymer structures seem 

to offer potential as systems for the delivery of antibacterial agents directly into the bone. 
Thus, rather than delivering a single medicine, it would be possible to conduct combined 

therapy with various antibacterial agents with different dissolution profiles. The simulta-

neous application of antibiotics and HA modified by ions with antibacterial activity may 
contribute to development of the effective prevention and treatment methodology for post-
surgical osseous inflammations. A therapy designed to directly target the affected area may 
significantly reduce general side effects of using antibiotics, improving therapeutic efficiency, 
while also allowing a reduction in dosage, which seems to be beneficial in both medical and 
economic terms.
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