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Abstract

Biomimetic and bioinspired membranes are those membranes that are fabricated with 
natural or natural-like (inorganic, organic, or hybrid) materials via biomimetic and bioin-
spired approaches (bio-mineralization, bio-adhesion, self-assembly, etc.) to tailor-specific 
properties (sophisticated structures, hierarchical organizations, controlled selectivity, 
antifouling or self-cleaning properties, etc.). With the support of knowledge on mecha-
nisms, models and functions from many scientific disciplines, research activity on biomi-
metic and bioinspired membrane during the last decade has increased rapidly.

Keywords: biomimetic, bioinspired, natural prototypes, membrane proteins, fabrication

1. Natural prototypes for bioinspired membranes

1.1. Cell membranes

Figure 1 illustrates the state-of-the-art examples that has shown great diversity of biomimetic 

and bioinspired membranes based on imitation of compositions (zwitterion and glycosyl), 
structures (biological channel), formations (biomineralization, bioadhesion, and self-assembly), 

and functions (self-cleaning) of the natural prototypes.

Among the natural prototypes, cell membranes are the most important due to their excellent 

abilities in mass transfer, energy transformation, and signal transduction. Cell membranes 

separate the cell interior from the outside environment and play a crucial role in almost all 

cellular phenomena. Each cell consists of ∼63,000 μm2 membrane area and a human body 

with 1014 cells that total to 107 m2 of membrane area [1]. Cell membranes have a high degree 

of sophistication, miniaturization, and multi-functionalization. The present understand-

ing of the cell membrane functions and complex membrane structures is primarily depen-

dent on the fluid lipid bilayer and the proteins embedded within it (Figure 2). As such, cell  

© 2017 The Author(s). Licensee InTech. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



membranes are created using amphipathic lipids (phospholipids, cholesterols, glycolipids, 

and cholesterol esters), carbohydrates (oligosaccharides and polysaccharide), and membrane 

proteins (lipid anchored proteins, peripheral proteins, and integral proteins).

Figure 1. Overview of biomimetic and bioinspired membranes prepared by the imitation of natural prototypes.

Figure 2. The fluid mosaic model with different lipid species shown in different colors. Source: Ref. [2], Copyright 2003; 

reproduced with permission from the Nature Publishing Group.
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1.1.1. Lipid bilayer

The lipid bilayer is a universal component of all cell membranes. Its role is critical because its 

structural components provide the barrier that marks the boundaries of a cell. The structure is 

called a “lipid bilayer” because it is composed of two layers of fat cells organized in two sheets. 

The lipid bilayer is typically about five nanometers thick and surrounds all cells, providing 
the cell membrane structure.

Framed by the amphipathic nature of phospholipid molecules, the development of cell 

membranes occurs as a self-assembly type process. The phospholipids’ nonpolar groups are 

included into planar bilayers with the aid of the hydrophobic effect. For instance, in a planar 
lipid bilayer, the nonpolar groups are mostly submerged into the bilayer’s hydrophobic inte-

rior, while the polar head regions are positioned with respect to the external aqueous phase. 

Generally, the lipid bilayer is very fluidic and features assemblies of amphiphilic proteins (or 
lipoproteins) and lipids within the lipid’s matrix. Furthermore, the interactions between the 

membrane lipids and exogenous proteins and peptides can incite a number of key biological 

processes at the level of the cell membrane [3]. As the primary phospholipid on the exterior 

surface, zwitterionic phosphatidylcholine shows superior nonfouling and nonthrombogenic 
qualities [3, 4]. This effective array of cell membranes offers excellent as well as rare instances 
of antifouling membranes’ rational design.

1.1.2. Membrane proteins

Membrane proteins are proteins that interact with, or are part of, biological membranes. They 

include integral membrane proteins that are permanently anchored or part of the membrane 

and peripheral membrane proteins that are only temporarily attached to the lipid bilayer or 
to other integral proteins.

Cell membranes exhibit outstanding selectivity that allows certain substances permeating 

through them. Water as well as various smaller size molecules may move in and out of cells 

through active transport, facilitated diffusion, and direct diffusion. Small types of molecules, 
such as oxygen, water, ethanol, urea, and carbon dioxide, may easily move through cell mem-

branes using simple diffusion mechanisms because of their higher solubility properties in the 
lipid bilayers’ oily interior phase. These types of molecules move straight through the lipid 

bilayer or through the pores produced by essential membrane proteins. Alternatively, sub-

stances such as small organic molecules or ions move through cell membranes with the help 

of facilitated diffusion or active transport featuring protein-mediated carriers.

The facilitated or active diffusion is a diffusion using a carrier or channel proteins in the 
cell membrane that assists in the movement of molecules across a concentration gradient. 

All these processes play a crucial role in regulating the movement of solutes and water. The 

major intrinsic protein (MIP) is an important type of integral membrane proteins. MIPs are 

primarily divided as either aquaporins (AQPs) that can be only permeable to water or aqua-

glyceroporins (GLPs) that assist the diffusion of solutes like urea and glycerol [5]. As part of 

this, water channels have become the focus of a more rigorous research due to their effec-

tive transport mechanism. Specifically, there are several distinct water channel varieties. The 
AQP1 water channels permit water to travel bidirectionally and easily using osmosis across 
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Figure 3. Schematic diagram of the water molecules transports in AQP1. (a) How partial charges from the helix dipoles 
restrict the orientation of the water molecules passing through the constriction of the pore. (b and c) The interactions and 

the hydrogen bonding of a water molecule with Asn 76 and/or Asn 192. Source: Ref. [9], Copyright 2000; reproduced 

with permission from the Nature Publishing Group.

cell membranes; however, this is not the case with other small inorganic and organic mol-

ecules as well as ions [6]. The overall rate of water transport through AQP1 (3 × 109 water 

molecules per sub-unit per second) is substantially higher than that of the channels [7]. The 

dynamic and crystallographic structures of AQP1 allow for a rapid water transport process. 

Experimental runs show that the AQP1 selectivity filter is relatively hydrophobic and covered 
with hydrophilic nodes, a series of six completely spanning α-helices and a junction of two 
shorter helices from the channel [8]. Figure 3a indicates the way in which partial charges 

from the helix dipoles constrain the positioning of the water molecules moving through the 

restricted area of the pore. The interactions between Asn 192 and Asn 76 amino acids hold 

this junction together and create a hydrophilic water gate that allows for the AQP1 selectivity. 

In this case, the water molecule’s oxygen atoms construct hydrogen bonds with the amide 

groups (Figure 3b), while the assembling of the water’s molecular orbital produces well-

tuned water dipole rotation (Figure 3c). Furthermore, the overall diameter of the narrowest 
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point present is around 0.28 nm, and this likewise poses a steric obstacle for other molecules. 

The hydrophilic nodes, narrow size of the constriction region, and hydrophobic channel wall 

in combination contribute to the quick and accurate water molecule transport process [6].

The ion channels are a succession of pore-forming proteins that help control the voltage gradi-

ent throughout the membranes of living cells. Gating and selective ion conduction are two of 

the essential features attributed to ion channels. The selective ion conduction controls the per-

formance of the channel, and how well it can choose specific ionic species among the available 
species in the cellular environment and then catalyze them using a prompt flow through [10]. 

Alternatively, the gating process controls the ion channel activity by being turned on and off. 
For instance, potassium (K+) channels feature a selective filter close to the pore’s extracellular 
side as well as a gate close to the intracellular side (Figure 4) [11, 12]. Whenever K+ ion arrives 

into the selective filter, it is completely dehydrated. Such an unusual selectivity in K+ channels 

is caused by the main chain atoms that have a stack of modified polar oxygen cages, which in 
turn allow for a series of closely spaced sites of appropriate dimensions to carefully arrange 

the process of K+ ion dehydration. The hydrogen bonding and extensive van der Waals inter-

actions ensure that the protein packing around the selective filter expands outward radially 
so as to keep the pore open at its appropriate diameter. Four helix dipoles and their electro-

static influence guarantee the cation selectivity by creating a negative electrostatic, or cation 
attractive, potentially close to the entry into the narrow selectivity filter [11]. The amino acid 

sequence preservation offers a frequent structural basis for the gating of K+ channels, and 

the gating stimulus itself is caused by the membrane electric field and ligand binding [12]. 

Figure 4. Cross-section of K+ channels. (a) Wide open intracellular vestibule and pore helix dipoles; (b) high resolution 

structure for a closed channel. Source: Ref. [11], Copyright 2002; reproduced with permission from the Nature Publishing 

Group.
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These delicate K+ channel structures guarantee that K+ ion is capable of diffusing from one 
site to the next within a relatively short distance. Moreover, it also restricts the accommoda-

tion of other ions or the rapid conduction within the high-selectivity dynamic. In nature, ion 

transport likewise happens with the aid of ion pumps. In terms of structure, the ion pumps 

are the large protein complexes that have their central channel portion spanning into the 

cell membrane [13]. Ion pumps are active transporters that are responsible for fulfilling a 
range of functions, unlike the ion channels that solely encourage the downhill movement of 

ions. The pumps effectively transport ions against their electrochemical gradient by coupling 
the “uphill” transport process with an energy source. An example of such a source can be 

found in the form of adenosine triphosphate (ATP) hydrolysis or the “downhill” movement 

of a substrate molecule or another ion [14]. A cell membrane and its functionality are one of 

the most effective designs available in nature. Cell design has inspired the creation of artifi-

cial as well as synthetic membranes with tailored structures, designed components, targeted 

performance, and specialized functions that offer a variety of applications in many fields. 
Applications like the complex lipid components and structures, multisubunit assemblies in 

cell membranes, and membrane proteins provide innovative solutions using new chemically 

and physically controlled mechanisms for artificial membrane designs requiring particular 
hierarchical structures and components. Uniquely advantageous cell membrane character-

istics like self-healing, controllable permeability, and antifouling may offer promising direc-

tions in the use and exploration of artificial membranes [14].

1.2. Biomineralization

The concept of biomineralization shows how organisms can make hard materials in green 

and mild conditions. In particular, biomineralization stands for the mineral-formation pro-

cess in organisms during which the inorganic elements collect on specific organics from the 
external surroundings and then form minerals under the modulating and inducing organics. 

The key feature of biomineralization is that biomolecules, such as polysaccharide protein and 

peptide, secreted by cells dictate the creation of minerals with a defined size, orientation, 
structure, and shape. This occurs because of the ordered collections of biomolecules and the 

interactions between inorganic and organic phases [15]. Living organisms are well known 

for utilizing minerals’ material properties, when developing organic-inorganic hybrid mate-

rials for a range of applications [16]. In fact, in nature, biomineralization phenomena exist 

in each of the five major organism groups. So far, around 70 different types of biominerals 
have been classified, for example, calcium carbonate in the invertebrate skeletons, calcium 
phosphate in the bones and teeth of the vertebrate, iron oxide and iron sulfide in the magneto-

tactic bacteria, and the silica in diatoms [17]. Of these, the silicon-based and calcium-based 

minerals exist in the largest quantities, especially since calcium-based mineral accounts for 

about half of the biominerals [18]. If they are created under diverse circumstances, materials 

featuring identical chemical compositions may offer different morphologies. For example, 
calcium carbonate created in the leaves of plants is identified as amorphous, and the same 
calcium carbonate is calcite in the mollusk’s shell [18]. Figure 5 provides a rough overview 

of the roles that the organic and inorganic constituents have during the biomineral formation 

process. In most cases, insoluble organic matrix and inorganic mineral reactants are the key 
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factors, since the latter provides the necessary inorganic elements, and the former offers the 
substrate and functions as a template and an inducer of the mineral deposition. Furthermore, 

the crystallographic control can be regulated through the inclusion of organic additives and/or  

inorganic impurities. Although it is difficult to assess the intricate mechanisms leading to the 
formation of each biomineral, there are certain common strategies for manipulating miner-

alization. These strategies include spatial control, morphological control, structural control, 

constructional control, and chemical control [18]. Materials created using biomineralization 

in most cases have a substantially more complex structure and hierarchical organization than 

artificially synthesized materials. This ensures that they have improved physicochemical 
properties necessary for the molecular level control of organisms over the microstructure and 

nanobiominerals [20, 21]. For example, the ordered brick-and-mortar organization of CaCO
3
 

tablets and proteins in seashell nacre combines the strength of CaCO
3
 together with the elas-

ticity of proteins, thus ensuring that the seashell nacre exhibits strength, toughness, and hard-

ness that exceed most manmade ceramics [22]. Furthermore, the physiological environment 

of the living organisms guarantees that the biominerals may be effectively synthesized in 
conditions that are environmentally friendly and mild, with almost neutral pH, aqueous envi-
ronment, atmospheric pressure, and room temperature [23]. As a process, biomineralization 

joins superior properties, environmentally friendly conditions, and unique morphology, all of 

which are appealing features, when it comes to material synthesis. As a consequence, the idea 

of simulating biomineralization processes has remained an effective and promising meth-

odology for synthesis and design of sophisticated organic-inorganic hybrid and inorganic 

materials using low energy and green approaches [24].

1.3. Bioadhesion

The area of bioadhesion stands for the ways in which natural materials adhere to a range 

of solid surfaces in a strong and quick manner. When it comes to natural phenomena, there 

are numerous examples of rare and exciting bioadhesion phenomena. This is particularly 

Figure 5. A simplistic view of the roles the inorganic and organic constituents played in biomineral formation process. 

Source: Ref. [19], Copyright 2008; reproduced with permission from the American Chemical Society.
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applicable to marine organisms such as sandcastle worms, limpets, starfish, tube worms, 
giant clams, sea cucumbers, barnacles, kelp, and mussels. For example, marine mussels are 

capable of secreting adhesive proteins all along the ample threads fanning out from the sides 

of the shells and then terminating each thread from the external coating of the thread and the 

adhesive plaques [25]. Adhesive proteins can stick to solid surfaces and then harden during 

short periods of time in order to create a solidified layer in water. This process of solidifica-

tion ensures that mussels may be firmly attached to almost any type of substrates, like rocks, 
ship hulls, and even wave prompt habitats [26, 27]. Figure 6b shows the attachment of mus-

sels to glass using an adhesive system based on plaques and threads and called “beard” or 

“byssus.” Another relevant example is the sandcastle worm (Phragmatopoma californica) and 

its related species of marine polychaetes. These marine organisms can secrete cement from 

their “building organ” located on their thoraces, which allow them to glue particles such as 

shell fragments and sand grains together and then build a tube-like shelter [28, 29]. Figure 6a 

reflects the community of mussels fixed to rocks, and Figure 6c outlines the chemical formula 

embodying the byssus of mussel.

As Figure 7 indicates that whenever a part of the worm’s tube is removed and if the building 

blocks like glass beads are available in abundance, the worm will carefully go through the 

gluing process in order to repair its tube section. Adhesive systems listed earlier have sev-

eral key similarities, when it comes to composition. Research studies show that the mussels’ 
adhesive capabilities may be caused by the proteins located close to the plaque-substrate inter-

face, like Mytilu edulisfoot protein 3 (Mefp-3) and Mefp-5, both of which contain sufficient 
3,4-dihydroxy-l-phenylalanine (DOPA), with 21 and 27 mole%, respectively [26, 30, 31]. DOPA 

has a critical role in adhesive proteins, since it participates in the reactions that bring about 

the bulk adhesive proteins’ hardening. DOPA also helps to form durable noncovalent and 

covalent connections with substrates because of the chemically multifunctional characteristics 

of catechol groups in relation to DOPA [26]. Furthermore, metal ions in nonmineral forms 

are necessary for a range of bioadhesive processes. The iron-DOPA complexes are created 

in the byssus of the mussel (Figure 6c) and feature at least two important functions [25]. The 

first function allows to simultaneously enhance extensibility and solidity of the threads using 
the reversible formation of iron-DOPA bonds. The second, key function permits inducing the 

Figure 6. (a) A community of mussels affixed to rocks. (b) Mussels adhering to glass. The picture shows their byssus 
adhesive system consisting of threads and plaques. (c) An [Fe(DOPA)3] complex. Source: Ref. [25], Copyright 2010; 

reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.
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oxidation and the following DOPA reactions, which in turn helps to achieve the creation of 

the adhesive plaques and outer coating of threads. When comparing them to various synthetic 

adhesives, bioadhesives offer substantially more gains, such as durability, superior strength, 
quicker formation process, nontoxicity, milder formation conditions, and universality [25, 30]. 

In addition, all the bioadhesion processes occurring in living organisms happen in the pres-

ence of water, while underwater adhesion has been a constant roadblock for the majority of 

man-made types of adhesives. As a result, bioadhesion phenomena and the mechanisms they 

use have drawn a lot of attention in the last decade. Some researchers have tried to synthe-

size or screen models analogous to bioadhesives by simulating their properties and consti-

tutions, since substantial difficulties arise in relation to the costs and processes of obtaining 
purified natural bioadhesives. For example, dopamine (DA) has been commonly used as an 
adhesive because of its similar properties and structure resembling DOPA [32, 33]. The grow-

ing research area of bioadhesion mechanisms has been exploring new innovative directions, 

including biomimetic adhesion strategies that can have extensive applications in the develop-

ment and design of composite membranes with robust interfaces and uses [34].

1.4. Self-assembly

The phenomenon of self-assembly conveys the way in which organisms can create a wide 

range of complex structures featuring a high level of intricacy and precision. The definition 
of self-assembly is that it is a process of spontaneous organization of molecules in specific 
thermodynamic equilibrium conditions and into well-defined structural arrangements. In 
nature, there are a number of ingenious designs for structurally compatible and chemically 

complementary constituents capable of molecular self-assembly. Examples of these include 

deoxyribonucleic acid/ribonucleic acid DNA/RNA, polysaccharides, and peptide/proteins. 
The degree of ubiquity of the self-assembly phenomenon which occurs in nature, at either 

macroscopic or microscopic scales, reflects the capacity to spontaneously combine different 
individual entities into well-defined structures and cohesive organizations using nonspecific 
as well as specific intra/intermolecular relations [35, 36]. The cell membrane and its structure 

is one such characteristic example of molecular self-assembly occurring in nature. The lipid 

bilayer configuration has the capacity to show complex morphological changes using the 

Figure 7. Sandcastle glue. (a) A tube rebuilt on top of the natural tube with 0.5 mm glass beads in the laboratory. (b) Close 
up of the rebuilt tube. Source: Ref. [29], Copyright 2011; reproduced with permission from Elsevier Ltd.
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Figure 8. High oligomeric assemblies from silk proteins. Source: Ref. [39], Copyright 2010; reproduced with permission 

from the Nature Publishing Group.

phospholipids assembly. For instance, primitive cells can sustain the basic cellular functions 

such as division and growth with the help of lipid assembly [37]. The lipid bilayer likewise 

has a key role in the organization and assembly of amphiphilic transmembrane proteins, since 

they are guided by hydrophobic, or hydrophilic, interactions. Natural proteins and peptides 

may self-assemble into ordered molecules due to their evolutionarily fine-tuned functions 
and unique structures. A widely known instance of this occurs in the spider silk, which is 

famous for remarkable flexibility and strength [38]. Spiders are capable of manufacturing 
different types of spider silks using amphiphilic silk proteins, or spidroins, that have repeti-
tive hydrophobic and hydrophilic amino acid stretches bordered by carboxy terminal and 

conserving nonrepetitive (NR) amino-terminal regions [39–41]. In this case, the assembling 

of charged N-terminal domain may be controlled with the aid of pH, since the pH gradient 
of spider silk glands can help to regulate the silk formation process. Next, the C-terminal 

domain, which is indifferent to pH changes, can regulate silk formation process by order-

ing the assembly of repetitive segments into actual fibers [39, 40]. The larger hydrophilic NR 
terminal regions make these silk protein molecules surfactant-like and make sure that they 

have the capacity to form micelles or hexagonal columns. This is followed by larger globular 

structures that are elongated due to the changes in their shear forces and extensional flow, 
thus creating the precursors to the subsequently produced spider silk fibers (Figure 8) [42]. 

As a common characteristic of extracellular organic matrix macromolecules, self-assembly 

depends on specific intermolecular interactions. In fact, the formation process of natural 
inorganic-organic composites begins with the careful assembly of extracellular matrix, then 

followed by selective transportation of inorganic ions to the organized compartments, subse-

quent mineral nucleation, and, finally, to the mineral growth defined by the confined cellular 
compartments [43–45]. As a consequence, the process of self-assembly in protein scaffolds 
has a vital role when it comes to the composite seashells’ rich diversity [46]. Self-assembly 
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has been proposed as an intelligent and bioinspired strategy for producing membranes with 

controlled architecture and composition and highlighted for incorporating a variety of build-

ing blocks into artificial/synthetic membranes.

1.5. Self-cleaning

The phenomenon of self-cleaning reflects how the surfaces of an organism can show a low-
adhesion potential for a wide range of foulants occurring during the fluid flow. The qualities 
of biological surfaces, ranging from interplay between chemistries to surface morphologies, 

have a key role when it comes in defining specific wettability of biological materials. For exam-

ple, superhydrophobic nonwetting quality is an essential property of standard self-cleaning 
biological surfaces. In the case of plants, this self-cleaning phenomenon is generally referred 

to as the “Lotus effect”. Drops of water accumulated on the lotus leaves bead up when expe-

riencing a high contact angle and then roll off, collecting dirt along the way in a mechanism 
of self-cleaning [47]. Plant surface nanostructures and microstructures play an intrinsic role in 

self-cleaning processes. Certain plant surfaces become hyper self-cleaning and hydrophobic 

because of the hydrophobic epicuticular waxes and hierarchical roughness. As one of the 

typical biological objects, the lotus leaf is well known for the combinatory use of hydrophobic 

epicuticular wax and the micro/nanoscale hierarchical architectures on its surface [48, 49]. In 

this case, the first structure is made out of microlevel mound-like protrusions featuring papil-
lose epidermal cells, while the second structure is made out of nanoscale branch-like growths 

happening in the epidermal cells (Figure 9a and b) [50, 52]. This hierarchical roughness pro-

duced by randomly oriented hydrophobic wax tubules and convex cell papillae is essential 

for the preservation of the lotus leaf’s self-cleaning characteristics (Figure 9c) [51, 53]. Particles 

contaminating the lotus leaves are picked up by the water droplets and then removed as the 

droplets slide off [54]. Plant surfaces tend to appear as rather diversified types of surface 
structures, as indicated in Figure 10. Distinct structures in two scales are helpful for lower-

ing surface energy, forming the self-cleaning surfaces, and trapping air [57]. Furthermore, 

the physical adhesion forces that exist between the structured surfaces and contaminating 

particles can be significantly reduced. Within the realm of nature, self-cleaning processes and 

Figure 9. (a) Large-area SEM image of the lotus leaf’s surface. Every epidermal cell creates a papilla and has a dense 
layer of epicuticular waxes superimposed on it. (b) Enlarged overview of a single papilla from panel [50]. (c) SEM image 
of 3D epicuticular wax tubules on lotus leaf surfaces, which create nanostructures [51]. Source: Refs. [50, 51], Copyright 

2002 and 2009; reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA and the American Chemical 
Society, respectively.
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mechanisms are not limited only to plant surfaces. A wide range of self-cleaning surfaces have 

likewise been identified in water strider legs, insect eyes, insect wings, shark skin, gecko feet, 
spider silks, bird feathers, fish scales, and other types of surfaces [49, 58].

In the case of the Morpho butterfly wings, multiscale as well as ordered photonic structures 
improve self-cleaning and superhydrophobicity characteristics (Figure 11) [59, 60]. This direc-

tional easy-cleaning quality of the Morpho butterfly wings can be explained by its unique 
direction-dependent alignment of flexible nanotips on top of the lamella-stacked nanostripes 
and microscales overlapped on top of the wings [61]. Another example is found in gecko’s 

feet, as they can engage in the process of self-cleaning, while the walking occurs with sticky 

toes. This exciting self-cleaning quality can be caused by the nanostructure, or single seta 

with a branched structure terminating in hundreds of spatula tips, and microstructure, that is 

setae on overlapping lamellar pads in uniform arrays. It seems that nonadhered lamellar sur-

faces can be quite nonwettable, and the particles contacting unloaded surface would be easily 
washed away when water becomes present. Furthermore, gecko feet that have been contami-

nated with microspheres may likewise retrieve their capacity to cling after a few steps on a dry 

Figure 10. SEM images of the surface of (a) hierarchically structured papillae arranged in quasi-one-dimensional order 
parallel to the leaf edge [55], (b) periodic array of close-packed hexagons and strips on Chinese Kafir lily petal [56], 

(c) periodic array of parallel lines and helices on sunflower petal [56], and (d) unitary web of micro-fibers on ramee 
rear face [57]. Source: Refs. [55–57], Copyright 2010, 2008, and 2007; reproduced with permission from the American 

Chemical Society and Elsevier Ltd., respectively.
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surface, such as the one offered by clean glass. The process of self-cleaning is a consequence of 
the energetic disequilibrium that occurs between the adhesive forces that attract a dirt particle 
to the substrate, and those that attract the same particle to one or more spatula [62, 63].

In addition to the superior hydrophobic surfaces that occur in the air, nature likewise pro-

duces low adhesive surfaces in water environments. Examples of these adhesive surfaces that 

act as an inspiration for developing underwater self-cleaning surfaces are the surfaces of fish 
made up of tough scales and hydrophilic flexible mucus. The sector-like carp scales are cre-

ated by orienting micropapillae with nanostructures of 30–40 μm in width and 100–300 μm 

in length and assembled in a radial direction (Figure 12) [63]. Whenever such fish scales come 

Figure 11. Hierarchical microstructures and nanostructures on the surface of the Morpho butterfly wings. (a) Secondary 
electron image of overlapping scales possesses an overall rectangular shape with pointed tips. (b) Secondary electron 
image of the porous architecture of the scale with parallel microscale ridges aligning along the scale length and nanoscale 

ribs lying on each ridge. Source: Ref. [59], Copyright 2008; reproduced with permission from Wiley-VCH Verlag GmbH 
& Co. KGaA.

Figure 12. Surface structures of fish scales: (a) Optical image of the fish scales. (b) SEM image of fish scales. Source: Ref. 
[64], Copyright 2009; reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.
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in contact with something like oil droplets in water, their fine-scale hierarchical structures 
can secure water molecules and then create an oil/water/solid interface. Further illustration of 

the underwater self-cleaning surface can be found in shark skin, which is protected by rather 

small separate tooth-like dermal denticles ribbed with longitudinal grooves. When these 

grooved scales are aligned parallel to the local water’s flow direction, they can significantly 
reduce the creation of vortices over the smooth skin surface, thus enchasing water movement 

and flow efficiency [65]. To sum up, both, the microstructures and nanostructures, and the 

chemical properties of biological surfaces are capable of deterring contaminant matter from 
the surface and may offer an innovative direction for the construction of bioinspired and bio-

mimetic self-cleaning membrane surfaces.

2. Synthesis of bioinspired and biomimetic membranes

Nature has always found a way to evolve common materials with functions that stand out 

as desirable. In fact, nature’s sophisticated methods of selection have inspired advanced 

research directions in membrane materials and production. Biological structures, functions, 

formations, and compositions tend to take their forms on multiple scales ranging from molec-

ular to microscale, macroscale, and nanoscale and in a manner that is strategically hierarchical 

and makes up a range of key functional elements. This exciting bioinspired and biomimetic 

trait has been especially appealing when it comes to designing and producing new synthetic 

membranes with superior structures, formations, functions, and compositions. The concise 

overviews of the six types of bioinspired and biomimetic membranes and their corresponding 

natural prototypes are covered in this review and are outlined in Table 1.

2.1. Fabrication of biomimetic and bioinspired membranes based on compositions of 

natural prototypes

2.1.1. Based on zwitterion and glycosyl

2.1.1.1. Fabrication of membranes via surface zwitterionization

Zwitterions are based on compounds that have an equal number of negatively and positively 
charged groups and, as a result, show an apparent neutral state. Research shows that there are 
biological zwitterionic phospholipids on the external lipid layer of the cell membrane. They are 
there to enhance biocompatibility with the surrounding tissues and stop the adhesion of exte-

rior matters in biological fluids [4]. When it comes to bioinspired and biomimetic membranes, a 

variety of zwitterionic compounds have been used for the process of membrane surface zwitter-

ionization. Because of the enhanced zwitterionic head group’s fouling resistant qualities in cell 
membranes, the aim of surface zwitterionization is to stop foulants from attaching themselves 
to the membrane’s surface. Research has shown that a number of typical zwitterionic moieties 
have been effectively introduced onto the surface of the membrane. A robust hydration of the 
zwitterionic moieties can create a sturdy hydration layer on the membrane’s surfaces with the 
aid of electrostatic interactions that provide membranes with good fouling resistant abilities 
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and superior hydrophilicity [66]. The process of grafting zwitterionic moieties onto the surface 
of the membrane allows for an effectual method of realizing surface zwitterionization using 
covalent bonding. This method has received a lot of attention because of its potential applica-

tions. Different types of chemical reactions were engaged so as to fixate the zwitterionic moieties 
onto membrane’s surface after it was formed. Graft polymerization offers an appealing route for 
membrane surface modification processes because of the monomer species’ diverse range. The 
high-energy radiation-initiated graft polymerization process has gained considerable attention 
as one of the conventional methods for grafting functional polymer brushes from membrane 

surfaces and with the aid of which radiation-grafted zwitterionic brushes can be obtained using 
straightforward control. With the aid of the UV-irradiated technique and plasma pre-treatment, 

surface zwitterionization applied using graft polymerization of the zwitterionic monomer on 
the hydrophobic surface of poly(vinylidene fluoride) (PVDF) microfiltration (MF) membrane, 
polypropylene MF or nonwoven fabric membrane [67–70], polytetrafluoroethylene (PTFE) MF 
membrane, and polyethersulfone (PES) ultrafiltration (UF) membranes and polysulfone (PSf) 
UF membranes [71–74]. It should be noted that the high-energy types of excitation could likewise  

Classifications Natural prototypes Biomimetic and bioinspired membranes

Based on 

composition

Zwitterion and glycosyl: the functional groups 
on the outside of cell membrane which 

renders antifouling properties

Antifouling membranes with functionalized 

surfaces resembling the composition of cell 

membrane through surface zwitterionization 
and glycosylation

Based on 

structure

Biological channel: the transmembrane proteins 
or protein assemblies which provide the 

fastest and specific transport channels for ions 
and small molecules via passive transport

Nanoporous membranes with ordered transport 

channels for ions and small molecules through 

incorporating biological channel proteins and/or 

artificial nanochannels

Based on 

formation

Biomineralization: the formation process of 
biominerals in organisms through precise 

hierarchical assembly of nanoscale building 

blocks under regulation of biomolecules

Bioadhesion: the high-strength conglutination 
of organisms (especially marine organisms) 

onto solid surfaces under mild condition 

and aqueous environment through the 

combination of multiple interactions

Self-assembly: the spontaneous organization 
of molecules under thermodynamic 

equilibrium conditions into structurally well-

defined arrangements based on numerous 
specific and nonspecific intermolecular/
intramolecular interactions

Organic-inorganic hybrid membranes with 

inorganic nanoparticles formed within 

polymeric matrix through the in situ 

mineralization reaction of inorganic precursors 

under the inducing and modulating of organics

Composite membranes with high interfacial 

strength between different layers or different 
moieties through incorporating biomimetic 

adhesion strategy to form multiple interactions 

on interfaces

Nanoporous membranes with ordered channels 

through self-assembly of block copolymers; 

nanoporous membranes with hydrophilic 

surface through self-assembly and spontaneous 

segregation of amphiphilic copolymer (surface 

segregation)

Based on function Self-cleaning: the capacity of some 
biological surfaces to clear dirt away 

and keep themselves clean due to their 

superhydrophobic and nonwetting attributes

Self-cleaning membranes with 
superhydrophobic or superhydrophilic/

oleophobicity surfaces through incorporating 

low surface energy moieties or high hydration 

energy moieties

Table 1. Introduction of natural prototypes and the corresponding biomimetic and bioinspired membranes [65].
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create unwanted branched, or cross-linked brush structure, as well as photo degradation of the 

substrate membrane [75]. Alternatively, chemically initiated graft polymerization is moderate 

and does not need special equipment. Zwitterionic SBMA and CBMA monomers were grafted 
using the surface of PVDF membranes and physisorbed free radical grafting methods that rely 

on azo-bis-isobutyrylnitrile (AIBN) as the initiator [76, 77]. In addition, the process of grafting 

the zwitterionic MPC and MPDSAH monomers from hydroxyl-containing membrane surface 
was similarly conducted with the aid of ceric ammonium nitrate, which was applied as a redox 

initiator in an aqueous medium [78, 79]. Numerous challenges still exist for the uniform zwit-

terionic brushes and high-grafting densities because of the steric effect of the monomers that 
have been already grafted. In the last decade, surface-initiated controlled radical polymeriza-

tion, such as the surface-initiated reversible addition-fragmentation chain transfer polymeriza-

tion (SI-RAFT) and surface-initiated atom-transfer radical polymerization (SI-ATRP), has been 
frequently used to create well-defined zwitterionic brushes on the membranes’ surfaces. The 
process of surface zwitterionization based on surface-initiated controlled radical polymeriza-

tion was applied extensively, and a mixture of various anionic and cationic pairs (N+(CH
3
)

2
/SO

3
−, 

N+(CH
3
)

2
/COO−, N+(CH

3
)

2
/PO

4
−) has been created so as to ensure the overall charge neutrality 

and high-membrane hydrophilicity [80]. In recent projects, the application of click chemistry, or 

the generation of products that follows nature’s examples, for specific surface modification pro-

cesses has offered a new route for membrane surface zwitterionization. This innovative direc-

tion features good control, high yield, and mild reaction dynamic. The surface attachment of 
long-chain and short-chain zwitterionic moieties has been obtained with the help of azide-alkyne 
cycloaddition reactions and surface-initiated thiolene coupling chemistry [81, 82]. The physi-

cal adsorbing and blending of zwitterionic copolymers with membrane-forming polymers are 
easier approaches to surface zwitterionization. Although zwitterionic brushes possess the high 
water affinity qualities, a number of amphiphilic zwitterionic copolymers were first synthesized 
and then implemented so as to augment the overall stability of zwitterionic brushes with the 
mediation of hydrophobic interaction occurring between the membrane’s matrix and hydro-

phobic chains. While the membrane preparation process by in situ blending was occurring, the 

amphiphilic zwitterionic copolymers may stimulate surface separation of zwitterionic brushes 
onto the membrane’s surface with hydrophobic chains fastened in the membrane’s matrix [83]. 

Throughout the membrane’s process of modification, the amphiphilic zwitterionic copolymers 
may be adsorbed on the membrane’s surfaces and with hydrophobic chains fastened to them 

[84]. Once the expansion of surface modification methods has begun, new exciting chemical 
reactions and techniques are being used for the construction of composite zwitterionic mem-

brane surfaces. These techniques include oxidative polymerization of zwitterionic amino acid 
3,4-dihydroxy-l-phenylalanine (DOPA) and initiated chemical vapor deposition of zwitterionic 
polymers, chemical crosslinking of zwitterionic colloid particles, and interfacial polymerization of 
zwitterionic amide monomer [85]. The process of membrane surface zwitterionization may like-

wise result from membranes that include pyridine or N,N-dimethylamino-2-ethylmethacrylate 

(DMAEMA) moieties, featuring tertiary amine reactive sites [86].

2.1.1.2. Fabrication of membranes using surface glycosylation

A sufficiently hydrated glycocalyx (glycoprotein-polysaccharide) is located on the outside 
of the cell membrane and helps to manage specific interactions, like cell-cell recognition, as 
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well as stop unwelcome nonspecific protein adhesion through a mixture of hydrogen bond 
indicated hydration and steric repulsion effects. When it comes to bioinspired and biomimetic 
membranes, certain glycolmonomers or glycopolymers are implemented as biomimetic mate-

rials for the process of membrane surface glycosylation. Due to the fouling resistant quality 

of glycocalyx on the membrane’s surfaces and the glycoside cluster effect, the aims of sur-

face glycosylation are the identification of proteins or the deterrence of nonspecific interac-

tions between proteins and membrane surfaces through the production of extended hydroxyl 

group rich chains enclosed by molecules of water.

2.1.2. Shortcomings and challenges

While in-depth research has been conducted on glycosylation and membrane surface zwitterion-

ization, the majority of the tests were limited to the lab scale. First of all, the scale-up of complex 

polymer modification and synthesis strategies is problematized by reaction conditions’ precision 
control, including the control of temperature, residence-time, velocity, and catalyst distribution 

in the reactor. Second, zwitterionic moieties are frequently too costly to implement in larger 
quantities. In addition, glucosyl moieties may be susceptible to microbial degradation during the 

repeated and long-term application. Finally, the comprehensive knowledge of the membrane’s 

structural evolution under varying condition has not been fully investigated. However, glycosyl-
ation and membrane surface zwitterionization offer the most encouraging directions in environ-

mental, engineering, and biotechnical applications of innovative membrane technologies [87].

2.2. Fabrication of bioinspired and biomimetic membranes based on structures of  

natural prototypes

2.2.1. Biological channel structure

There is a substantial number of channels formed by proteins, as well as protein assemblies, 

within the cell’s membrane and that effectively contribute to the transmembrane transport 
of water, nutrients, and ions [6, 87]. The rapid and relatively controllable transport of water, 

ions, and other nutrients through biological channels ensures the success of their essential 

movements within the organisms [6, 9, 88, 89]. Currently, the process of simulating the biolog-

ical channels’ structure of in cell membranes with the aim of producing artificial membranes, 
offering high performance and a range of useful functions, has been of enormous technologi-
cal and scientific interest.

2.2.1.1. Fabrication of membranes with incorporated biological channel proteins

The direct way of producing biomimetic channels is to simulate the structure and composite 

of the cell membrane. This entails integrating biological channel proteins into the bilayer lipid 

membranes (BLM), as it is a basic model of the phosphor lipid bilayer for cell membrane 

[88, 89]. However, the key problem with BLM is the low stability potential. To solve this draw-

back, the supported BLM on different porous substrates can be implemented [88, 89]. Some of 
the most popular substrates used include gold, as well as silicon, glass, other metallic thin lay-

ers, polymers, and Si3N4 [90]. When compared to the organic substrates, the inorganic porous 

substrates offer a higher number of advantages with regard to the chemical, mechanical,  
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thermal stability, and lifetime properties [91–94]. Moreover, the block copolymers’ self-

assembly provides another method for creating a bilayer that can function as an alternative 

to BLM. This is mostly due to its controllability, greater stability, and the capacity to stop the 

direct contact of protein to solid substrate, since this can inactivate and immobilize proteins 

[95]. These biomimetic membranes can be produced using a variety of approaches such as 

Langmuir-Blodgett/Langmuir-Schaefer monolayer transfer methods, spin-coating, and vesi-
cle rupture. Within these methods, the vesicles rupture approach is one of the easiest to apply 

and most frequently implement [95]. Figure 13 outlines the schematic process of producing 

biomimetic membrane using vesicles rupture method. In the first step, the vesicle incorpo-

rated channel proteins are produced using the film rehydration approach (Figure 13a). Next, 

the solution of vesicles is made and then released directly onto the substrates (Figure 13b 

and c). Finally, the vesicles proceed to rupture with the aid of covalent interaction or inter-

facial adsorption, as a result forming the planar bilayer membranes (Figure 13d) [92, 94]. To 

facilitate the suitable interactions with solid substrates, polymers forming the bilayers need to 

be used in a way that does not alter their self-assembly functionality and structure [92]. The 

substrates likewise must be functionalized if they are to remain chemically active. Various 

triblock copolymers end-functionalized with methacrylate, disulfide, and acrylate groups 
were created so as to react with silanization-modified substrate, gold-coated substrate, and 
amine using covalent interaction [92]. Gold is frequently selected as the surface modifier for 

Figure 13. Schematic diagram of pore-spanning membrane design and synthesis. Source: Ref. [94], Copyright 2012; 

reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.
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substrates, since it is not cytotoxic, stable, and very active, the latter allowing it to react with 
polymers and offer new reaction sites for membrane further modifications. Figure 13b shows 

polycarbonate tracked-etched membranes covered with a gold layer so as to attain the sub-

sequent chemisorption of cysteamine monolayer and the later conversion to acrylate. The 

improved overall stability of biomimetic membranes may be achieved using the process of 

forming covalent interactions between the acrylate groups on the substrate and the methacry-

late groups on triblock copolymer.

Recently, layer-by-layer (LbL) self-assembly and interfacial polymerization were used to 
develop strong and defect-free AQP-containing membranes that lend themselves to easier 

scaled up [96, 97]. First, the AQP-containing proteoliposomes were created and then embed-

ded into the membrane’s matrix. This helped to create a compatible and stable environment 

for AQP. These research studies generated valuable new methods for fabrication of biological 

channel proteins-containing membranes offering improved efficiency. The primary change 
from the earlier experimental studies is that in this case, AQPs functioned as the dispersed 

phase within the membrane rather than infiltrate the entire membrane.

2.2.1.2. Membrane fabrication by method of constructing artificial nanopores/nanochannels

Artificially created nanopores/nanochannels featuring functional groups may behave as 
equivalents of biological channel proteins, due to their great flexibility in terms of shape and 
size, high stability, chemically and mechanically robust properties, and the various tunable 

surface qualities [98]. Membranes that possess artificially created nanopores/nanochannels 
can be produced using bottom-up and top-down routes. What these routes entail is the cre-

ation of engineered solid-state nanopores/nanochannels on nonporous substrates using micro-

machining and then producing nanopores/nanochannels with the aid of self-organization of 

molecules and atoms, respective of the directions [98]. Specifically, the top-down route is pri-
marily based on electron beam, ion-track-etching, laser, and electrochemical etching technolo-

gies, using which the nanopores/nanochannels of varying sizes and shapes on organic and 

inorganic substrates can be produced [99]. The nanopores/nanochannels developed made 

with bottom-up route incorporate hexagonally packed cylindrical block copolymer, carbon 
nanotube (CNT) by chemical vapor deposition (CVD), organic nanotubes by self-assembly, 

anodic aluminum oxide (AAO) and titania nanotube (TNT) by anodic oxidation, and other 

using respective methods [100]. If compared with the top-down route, the bottom-up route 
can help develop membranes with higher pore/channel density potential, a highly benefi-

cial characteristic for molecular separations, as well as other research areas that require a 

greater channel array area [88, 89]. For example, the AAO porous template may feature a 

pore/channel density of 1015 m−2, while the TNT membrane has a density of 5–10 × 1013 m−2 

pore/channel, a rate that is greater than the natural cells’ ion-channel density of nearly 1012 m−2 

[88, 89]. The nanopore/nanochannel entails the channel or pore with a diameter value in the 

range of 1–100 nm, a number that is bigger than the sizes of most molecules and ions. As a 

result, the process of entrance or inner surface functionalization is required in order to lower 

the operational nanopore/nanochannel size or act as the “gate” ion channels located in cell 

membranes, effectually helping to achieve selective permeation ultimate. Furthermore, for 
the use of nanoporous membranes in bio-recognition and energy conversion, the process of 
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Figure 14. (a) Simplified description of the brush-modified cylindrical nanochannel. (b) pH-dependent pyridine-
pyridinium equilibrium occurring in the brush environment. (c) Illustration indicating the conformational changes 

happening in the brush layer upon variations in the environmental pH. Source: Ref. [98], Copyright 2009; reproduced 

with permission from the American Chemical Society.

inner modification is frequently needed to recognize and immobilize bio-molecules. A com-

mon method used for this is the immobilization of functional molecules on the nanopores/

nanochannels’ interior surface with the help of diversified chemical covalent reactions [101]. 

For example, gold nanopores/nanochannels can be modified with molecules carrying S-S or 
SH groups so as to create S-Au bonds, while the oxide surface can be altered using a range of 
silane derivatives [102]. Alternative approaches to the modification of nanopores/nanochan-

nels are plasma modification, electro-static self-assembly, and the deposition of metals using 
ion sputtering deposition, electron beam evaporator, or electroless deposition [103]. Figure 14 

outlines an instance of inner surface–modified nanochannel with pH-responsive and employ-

ing the chemical covalent type of reaction. In this case, the cylindrical nanochannels with a 

15 nm diameter on poly (ethylene terephthalate) (PET) membrane were first produced with 
ion-tracked technology. Next, the nanochannels were modified with 4,4′ azobis (4-cyano-

pentanoic acid), as a surface-confined polymerization initiator, and a 4-vinyl pyridine as the 
monomer for forming pH-responsive polymer brushes [98]. These types of brushes can alter 

their form from the charged hydrophilic state, collapsed, swollen, and neutral hydrophobic 

state, when an environmental pH alternates between 2 and 10.

Synergistic coassembly of block copolymers (BCPs) and nanotube subunits (cyclic peptide, 
8CP) was used to produce thin membranes that include subnanometer organic [104]. First, 

polymers were tethered onto 8CP so as to augment solubility and help mediate interactions 

between one part of BCP and 8CP, as shown in Figure 15. Once blended with BCPs, the 

8CP-polymer conjugates were restricted in the BCP cylindrical microdomains, which have an 

affinity with polymers, and then formed into nanotubes in the nanoscopic domains once heated 
by the hydrogen bonding occurring between amino acid residues located on neighboring  
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peptides. Finally, the membranes with sub-nanometer channels, that are oriented in a normal 

way toward the surface, were successfully created. The shape and size of the nanotubes be 

tailored through the process of changing the nanotube subunits’ molecular structure beyond 

the restrictions imposed by block copolymer self-assembly. As a result, selective and swift 

molecular transport can be obtained. Within the artificial nanopore/nanochannel types, the 
CNT stands out since it functions as an alternative to water channels and biological ion chan-

nels due its propensity for narrow diameter, inherent smoothness of the inner surface, and 

hydrophobicity [105]. Molecular dynamics (MD) simulations have been used to research the 

transport mechanisms of water and ions in CNT, as well as the possible uses of CNT in mem-

brane processes and applications [106]. Research suggests that water molecules indicate single-
file transport in CNT because of the creation of a robust hydrogen bond chain, similar to the 

Figure 15. Schematic illustration of the process generating subnanometerporous films using direct coassembly. Source: 
Ref. [104], Copyright 2011; reproduced with permission from the American Chemical Society.
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water transport detected in AQP [107]. As a consequence, the CNT’s water transport rate is 

analogous to the one occurring in AQP. To gain higher selectivity values, CNTs are frequently 

modified at the entrance using organic groups that can help achieve a lower diameter and a 
more selective ion interaction [108]. While the hands-on applications of CNT-containing mem-

branes, implementing nanochannels in CNT, is rather limited, the possibilities it promises has 

attracted attention and incited new research directions. Because of its enhanced controllability, 
high channel density, and superior mechanical robustness, the biomimetic membranes featur-

ing artificial nanopores/nanochannels can be highly relevant to processes that require advanced 
size-selective separations.

2.2.1.3. Fabrication of membranes via incorporation of artificial nanopores/nanochannels and 
biological channel proteins

When it comes to this type of biomimetic membranes, the biological channels can guarantee 

the advantages of intelligence and an atomically precise structure that resembles living cells. 

Alternatively, the artificial nanopores/nanochannels offer qualities like durability, size, shape 
control, and robustness. The ion channel protein Gramicidin-A, in the track-etched nanopores 

with a diameter of 15 nm, was filled on the polycarbonate thin film, while the ion diffusion 
coefficient of Na+, K+, Ca2+, and Mg2+ ions was measured in order to calculate the nanoporous 

membrane’s selectivity and permeability values [87]. The Gramicidin-A’s adsorption into the 

nanopores was preferred by the surface hydrophilic treatment featuring ethanol and contrib-

uted to a greater affinity of Gramicidin-A toward hydrophobic pores rather than toward the 
hydrophilic surface. It should be noted that although the effective ion diffusion coefficients 
were amplified after Gramicidin-A inclusion, the increase in values was not as substantial as 
was expected. This can be due to the fact that the nanopores were not completely filled up 
with Gramicidin-A, and as a result, the ions likewise diffused within the “free” electrolyte 
inside the nanopores. Thus, additional experimental research is necessary so as to achieve 

cases where the entire nanopores are filled out.

2.2.2. Challenges and shortcomings

The overall performance of a biomimetic nanoporous membrane primarily relies on the 

membrane’s channel density, and membrane integrity [91]. Extensive research initiatives 

have been established with the specific purpose of developing bioinspired and biomimetic 
membranes that include biological channel proteins. There are still multiple challenges that 

problematize practical applications of bioinspired and biomimetic membranes: (1) The first 
challenge is that the membrane channel density is difficult to control [91], determine, and 

limit, since it needs to make the self-assembly structure unaffected [93]; (2) the second prob-

lem is that the channel protein activity needs to be maintained and that limits the prepara-

tion process environment [94]; (3) third, it is challenging to make a defect-free bi-layer in 

large-scale type of production [94]; (4) the fourth challenge is that the costs of production 

become excessively high because of how complicated the process of extracting proteins can 

be. Nanoporous membranes featuring artificial nanopores/nanochannels can offer an exiting 
range of separation applications due to their superior stability; however, they also have to 

confront a number of common challenges. When it comes to membranes using  top-down 
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routes, the process of the homogeneous modification of interior surfaces through the 
nanoscale channels, as well as the large-scale modification, is hard to perform successfully on 
consistent basis. Furthermore, their applications are limited by their lower channel density 

and the need to use costly equipment. Of all the membranes employing bottom-up routes, 
the CNT-containing membranes have gained the most attention due to their theoretically 
superior water permeability. However, the fabrication of large-scale membranes with low 
selectivity and aligned CNTs is extremely difficult, and this limits their advancement from 
the theoretical research stages into practical application testing.

2.3. Fabrication of biomimetic and bioinspired membranes based on formations of 

natural prototypes

2.3.1. Based on biomineralization

Production of bioinspired and biomimetic membranes based on biomineralization is a 

method that stimulates the creation of inorganic nanoparticles in the polymeric matrix using 

mineralization reaction that resembles biomineralization that occurs under somewhat milder 

circumstances. During the last several decades, organic-inorganic hybrid membranes have 

gained a lot of interest and became widely applicable, since they offer the benefits of stability 
and rigidity of inorganic moiety, together with the improved adaptability and efficient mem-

brane-forming property in polymeric moiety [109]. At the same time, organic-inorganic hybrid 

membranes allowed for new properties due to their hybrid structures. The most direct way of 

producing a hybrid membrane is the process of physical blending of inorganic nanoparticle 

and polymer. This process is relatively easy to undertake and regulate. One of the drawbacks 

is the creation of nonselective voids due to collection of inorganic nanoparticles and their 

lack of proper compatibility with polymeric matrices [110]. The in-situ sol-gel process is an 

alternative method of producing these types of membranes and may be capable of overcom-

ing this limitation. During the in-situ sol-gel process, the polycondensation and hydrolysis of 

the inorganic precursors happen under the catalysis of an acid or a base that creates inorganic 

nanoparticles in a polymeric casting solution [111]. If compared with the physical blending, 

inorganic nanoparticles can disperse more homogeneously and offer improved compatibility 
with the polymeric matrix. The sol-gel method likewise has a number of inherent problems, 

such severe conditions like strong acidic or alkaline environment, and a relatively low con-

trollability [112]. Biomineralization process mixes organic materials with inorganic as it pro-

duces materials with hierarchically sophisticated structures and improved physicochemical 

qualities at normal pressure and temperature values and an almost neutral pH value in an 
aqueous environment featuring straightforward chemical compositions [15, 113]. These types 

of materials are much better than many of the artificially synthesized materials because of the 
critical control that can be exercised over their size, shape, structure, and assembly of con-

stituent parts [15]. The process of biomineralization in nature offers a uniquely rich source of 
inspiration, when it comes to the design and production of hybrid membranes.

2.3.1.1. Biomimetic mineralization

The process of biomimetic mineralization mimics the biomineralization method during the 

material-synthesizing using organic inducer to incite the creation of inorganic nanoparticles 
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from inorganic precursor and as a result producing materials with distinct properties and 

microstructures [20]. In this case, the inorganic precursor can take the form of metal alkoxide 

or metal salt. The organic inducer can take the shape of macromolecules, or smaller sized 

molecules, and have the necessary functional groups and would help activate the inorganic 

precursor reaction. The macromolecules can be in the form of the amino group for silica and 

titania or phosphate, sulfate, and carboxylate groups for calcium phosphate and calcium car-

bonate [114]. For example, the inducers frequently implemented for the creation of silica are 

macromolecules, such as protein and small molecules comprised of amines and amino acids 

[115]. The in situ biomimetic mineralization process is an appealing method for the production 

of hybrid membranes. It prevents the inhomogeneous filler distribution and filler agglomera-

tion that has happened during the physical blending approach, which suffers from harsh con-

ditions like alkaline or strong acidic environment or poor controllability that can occur during 

in-situ sol-gel method [112]. In order to produce hybrid membranes using the in-situ biomi-

metic mineralization, two methods have been created. The first method requires the addition 
of organic inducer and inorganic precursor into the solution that includes membrane-forming 

polymer. This allows the mineralization process to transpire at the same time as the mem-

brane formation. The second method requires the immersion of the membrane with induc-

ers into precursor-containing solution. For both these approaches, the inorganic precursors 

interact with organic inducers through metal-organic chelation or electrostatic attraction. As 
a consequence, the inorganic precursors become enriched in the microdomains near organic 

inducers, and this in turn creates the necessary conditions and locations for the mineralization 

reaction to occur and then homogeneously generate inorganic nanoparticles. Recent research 
has applied both approaches, and varying types of membrane-forming polymers, inorganic 

precursors, and organic inducers produce diversified hybrid membranes [112].

2.3.1.2. Membrane fabrication using biomimetic mineralization during membrane formation

The process of mixing raw materials is a relatively easy method for producing hybrid mem-

branes using in-situ biomimetic mineralization. In this case, the gelatin-silica hybrid mem-

branes were created by dissolving sodium silicate and gelatin in water, followed by the 

solidification of the casting solution [112]. As part of this solution, the positively charged amino 

groups on gelatin molecules absorbed silicic acid oligomers created by sodium silicate through 

electrostatic attractions that augmented the local oligomer concentration and quickened the 
polycondensation progression. As a consequence, silica nanoparticles featuring a diameter 

smaller than 100 nm were created homogeneously in the gelatin matrix. Chitosan (CS) was 
used as an inducer and was meant to regulate the production of CdS nanoparticles, since it 
offers superior metal ion adsorption potential [116]. Once the CdCl

2
 solution was combined 

with chitosan, the CS-Cd2+ complexes were produced using the adsorption and chelation of 

the hydroxyl and amino groups on chitosan with Cd2+ ions [116]. Once the adsorption and che-

lation balance were obtained, the fresh sulfocarbamide solution was gradually dropped. After 

that, the S2− ions were discharged from the sulfocarbamide and then prompted a reaction with 

the Cd2+ ions in CS/Cd2+ complexes so as to generate chitosan/nano-CdS (CS/n-CdS). During 
this process of membrane production, chitosan or gelatin showcased a minimum of four key 

roles, that is, creating an especially thin membrane scaffold, inciting in-situ  production of 
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inorganic nanoparticles, restricting the growth of inorganic nanoparticles to the polymeric 

network, and lowering the particles’ accumulation. There are two frequently applied meth-

ods for biomimetic mineralization in the case of membrane-forming polymers that do not 

have mineralization-inducing groups. Specifically, these methods entail adding other organic 
inducers into the casting solution or grafting functional groups onto the polymers. Although 

the former approach may appear easier, the organic inducer has to be selected correctly. A 

problem could occur if the inducer’s catalytic activity was too elevated, implying that the 

inorganic nanoparticles are forming too rapidly, and the nanoparticles will grow and collect 

in a shorter time period, thus precipitating before the actual membrane casting. Furthermore, 

the inducers added must be compatible with the membrane-forming polymers within the 

required range of compositions. During the process of creating silica-containing hybrid mem-

branes, amino group as well as analogous cationic groups can be crucial. In this case, the 

quaternized modification was applied to poly(vinyl alcohol) (PVA) and poly(2,6-dimethyl-
1,4-phenylene oxide) (BPPO) [117]. The polymers’ quaternary ammonium groups incited the 

production of silica using a variety of silica sources, while the network created by polymers 

and silica during the reaction caused the hybrid membranes to be more compact. Moreover, 

the addition of other organic inducers to the membrane casting solution allowed to form a 

silica-containing hybrid membrane [118]. While it is a commonly applied membrane-forming 

polymer, the PVA cannot incite silica formation. Alternatively, gelatin is a popular silification 
inducer that can be compatible with PVA at low content values. As a consequence, gelatin was 

selected as the inducer and then added into the PVA solution with the 9/1 (PVA/gelatin) mass 

ratio. In the next stage, membrane casting solution was created by mixing the PVA-gelatin 

solution with the precursor silicate solution. Finally, the silica nanoparticles were produced 

homogeneously within the network of PVA chains.

The process of functionalizing polymers with proper negatively charged groups offers 
a method for inciting as well as controlling the development of CaCO

3
 nanoparticles. For 

instance, hyperbranched polyglycidol (hb-PG) functionalized using a variety of groups, such 

as phosphate monoester, sulfate, and carboxylate groups, was implemented during the prep-

aration of CaCO
3
 hybrid membranes with the spray technique. The application of this method 

indicated that the functional group type had a substantial effect on the structure and mor-

phology of CaCO
3
. Figure 16 shows how phosphate-ester-functionalized hb-PG, sulfate, and 

carboxylate helped to form calcite composite, vaterite composite, and vaterite-calcite compos-

ite, respectively.

Biomimetic mineralization is a water-demanding process because of the implicit need for 

water during the reactions and water solubility of inducers. As a result, hybrid membranes 

cannot be developed with the methods mentioned above for water-insoluble polymers, since 

they require organic solvents in order to dissolve polymers. As a solution for this require-

ment, the process of water in oil W/O reverse microemulsion was developed. This process is 

based on the addition of surfactant and the tracing of water inorganic casting solution [119]. 

In this instance, the water-soluble inducer contacts the oil-soluble inorganic precursor at the 

interface of two phases and then encourages the hydrolysis-condensation reaction. Once this 

occurs, the silica nanoparticles are produced in this narrowed space, as outlined in Figure 17, 

and the creation of hydrophobic/oleophilic polymer-silica hybrid membrane is completed. 
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Figure 17. The formation mechanism of silica mediated by macromolecule inducer in reverse microemulsion. Source: 
Ref. [119], Copyright 2012; reproduced with permission from Elsevier Ltd.

The development of W/O microemulsion was a critical step toward a successful biomimetic 

mineralization process in hydrophobic/oleophilic polymer solution. In this process, the water 

in microemulsion has the capacity to dissolve inducers. Water likewise is essential for the 

hydrolysis reaction of silica precursors, and the water/oil interface guarantees the presence of 

reaction sites where the mineralization process can occur.

2.3.1.3. Membrane fabrication using biomimetic mineralization after membrane formation

The process if immersing the membrane with inducers into a precursor-containing solution 

offers a post-treatment method for developing hybrid membranes using the in-situ biomimetic 

Figure 16. The molecular structure of hb-PG and SEM micrographs of CaCO
3
 hybrid membranes formed in the presence 

of differently functionalized hb-PGs. Source: Ref. [114], Copyright 2012; reproduced with permission from Elsevier Ltd.
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mineralization. These types of inducers may exist either on the surface or within the mem-

brane’s matrix and cause a variety of inorganic nanoparticles’ distributions. Recent research 
suggests that smaller sized molecular inducers, such as amino acids, are seldom applied 

because of their weaker interactions with membranes and smaller size, since that makes them 

susceptible to leaking in aqueous solutions [120]. Whenever the inducers are adsorbed solely 

on the membrane’s surface, they can have contact with inorganic precursors once the mem-

brane is immersed into the solution and as a result lead to the creation of inorganic layer on 

the surface [120]. Microcapsule type membranes were produced with the aid of this approach. 

In this instance, the sacrificial templates were distributed in protamine aqueous solution for 
the duration of several minutes, after which they were suspended in titanium-source or silica-

source solutions and once the residual protamine was washed away [120]. During this process, 

the titania or inorganic silica layer was created on the external surface. Whenever the induc-

ers occur within the membrane’s matrix and when the membrane-forming polymers have 

the mineralization-inducing ones, functional groups are mixed and then situated within the 

membrane, and the inorganic nanoparticles can develop in the membrane’s matrix, once it is 

immersed in the precursor-containing solution [121]. Notably, the process of mineralization 

happens only if the precursors are diffused into the membrane’s matrix and then interact with 
the inducers, since this ensures that both reaction and diffusion occur simultaneously. The dis-

tribution of inorganic nanoparticles is directly connected to the membrane matrix’s structure, 

as well as the rate at which mineralization reaction happens. In most instances, the amount 

of inorganic components within the membrane slowly lowers as one moves away from the 

external surface and toward the interior. In a research report, CS membrane was immersed 
into a simulated body fluid (SBF) for the duration of 3 weeks so as to try and produce hydroxy-

apatite (HA) [122]. During this experiment, the cationic groups in the CS membrane helped 
the adsorption of (PO

4
)3− and the subsequent nucleation. The inducer protamine was secured 

within the confined spaces created by cross-linked PVA molecular chains. During the immer-

sion of the PVA-protamine membrane into the precursor-containing solution, the inorganic 

precursor first diffused into the membrane’s matrix and then generated silica nanoparticles 
through the templating and catalysis of protamine (Figure 18). The silica nanoparticles’ sizes 

could be easily regulated through the controlled alteration of the precursor solution’s concen-

tration and pH values. The production of silica nanoparticles may be manipulated by adjust-
ing the membrane matrix structure and altering the annealing temperature so as to control 

the bulk polymer network and cross-linking of PVA (Figure 19). To sum up, biomimetic min-

eralization method offers an innovative as well as applicable approach for the development 
of hybrid membranes with homogeneous dispersion, advantageous interfacial interactions 

under mild conditions, and nanoscale filler sizing. As more research emerges on the miner-

alization mechanism of biominerals, the process of biomimetic mineralization will gain more 

ground when it comes to production of diversified hybrid membranes.

2.3.2. Based on bioadhesion

In addition to the separation performance, stability is a key parameter when it comes to 

the practical aspects of producing a functioning membrane. For those composite type mem-

branes that are made of two distinct layers, the varying surface properties of the two layers 
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can cause adverse interface compatibility as well as weakened interfacial interaction between 

the layers. Whenever the swelling amounts of the two layers are different, a significant stress 
will appear at the interface. This stress can force the two layers to peel off relatively eas-

ily, if the stress surpasses the interfacial interaction. Improving interfacial interaction and 

interface compatibility between the two layers is an effective and straightforward method 
for obtaining high stability in composite membranes [123]. When it comes to the surface-

functionalized membranes, preserving functional groups during long-time operations is a 

crucial prerequisite. For membranes with weak interactions between molecular chains and 

flexible molecular chains, the membrane structure can decline if it is in contact with sol-
vent, water, or other plasticizers during use, since this interaction can significantly decrease 
selectivity. Enhancing the membrane’s cohesive energy will help improve the membrane’s 

stability and maintain its structure. Bioadhesives have served as an inspiration because of 

Figure 19. Transmission electron microscopy (TEM) images of silica in the nanohybrid skin layer after it is annealed at 

(a) 293 K, (b) 333 K, and (c) 373 K. Source: Ref. [122], Copyright 2010; reproduced with permission from Elsevier Ltd.

Figure 18. The formation process of silica nanoparticles within PVA matrix. Source: Ref. [122], Copyright 2010; reproduced 

with permission from Elsevier Ltd.
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their controllable adhesive/cohesive capacity, greater strength, and broader applicability. In 

fact, biomimetic adhesion strategies that use bioadhesives, or their analogs like biomimetic 

adhesives, have been implemented so as to better deal with the challenges listed above.

2.3.2.1. Fabrication of membranes via incorporation of bioadhesives

The addition of bioadhesives as an intermediate layer during the composite membrane produc-

tion is a relatively easy and efficient way to improve the interfacial interaction between the two 
layers [124]. Furthermore, bioadhesives that have been derived from natural sources, includ-

ing dextrin, shellac, and gelatin, are complying with the basic requirement listed as part of the 

environmental protection. The bioadhesive carbopol (CP) was used for the first time as an inter-

mediate layer for connecting the polyacrylonitrile (PAN) support layer and the CS separation 
layer. Specifically, CP is a mucoadhesive polymer that features many of the carboxylic groups 
(COOH) that partially dissociate when in water and offer high viscosity and flexible structure 
at low concentration values. The schematic depiction of the interface interaction for CS/CP/PAN 
composite membrane is shown in Figure 20. In addition to the carboxy group (COOH) of CP, 
the hydroxyl group (OH), the amino group (NH

2
) of CS, and the van der Waals force, the cyano 

group (CN) of PAN may generate a multiplicity electrostatic interactions or hydrogen bonds. 

Once the CP layer is incorporated, the peak peeling strength value was found to be four times 

greater than that of the CS/PAN membrane. Furthermore, the absolute values of interfacial 
energy for CP/PAN and CS/CP interfaces were greater than those present in CS/PAN interface 
based on molecular dynamic MD simulation. The SEM images available in Figure 21 showcase 

that the composite membrane features a three-layered structure made up of the support layer, 

Figure 20. Schematic representation of the interfacial interaction in CS/CP/PAN composite membrane. Source: Ref. [124], 

Copyright 2010; reproduced with permission from Elsevier Ltd.
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Figure 21. SEM images of cross-section: (a) GCCS(30)/CP(0.5)/PAN membrane, (b) GCCS(30)/CP(0.05)/PAN membrane. 
Source: Ref. [124], Copyright 2010; reproduced with permission from Elsevier Ltd.

intermediate layer, and separation layer. The fact that there is an intermediate layer has a num-

ber of effects on the composite membranes’ overall properties and structure. In particular, the 
additional layer can augment the mass transfer resistance for permeating molecules. The inter-

actions occurring between the intermediate layer and the other layers can affect the stability 
and structure of interfaces. Moreover, the intermediate layer can function as a defensive coating 

when it generates a more compatible surface and in turn allows for the casting of polymer solu-

tion with low concentration, thus helping to produce a much thinner separation layer.

Cases discussed above focus on bioadhesives that functioned only as the binding agent between 

the support layer and the separation layer. An argument can be made that if a bioadhesive can 

generate a thin membrane with selective separation functions, that act as a separation layer 

while bound tightly to the support layer, then a composite membrane with high structural sta-

bility, desirable separation performance, and simple fabrication procedure can be developed 

[125]. In this case, the bioadhesive that acts as the separation layer needs to possess dual func-

tions of separation and adhesion. These dual functions have varying demands for its chemical 

and physical properties. The bioadhesive must have a number of specific characteristics so as 
to provide durable binding to the support layer. These properties can be summed up as fol-

lows: (1) numerous polar groups, like OH and COOH; (2) electro negativity; (3) larger molecular 
weight; (4) flexible chain; and (5)relatively moderate surface tension [126]. Bioadhesive likewise 

needs to offer advantageous free volume distribution, selective adsorption for one of the perme-

ating molecules, and suitable molecular chain rigidity that can help obtain higher selectivity and 

permeability. A bioadhesive hyaluronic acid, or a type of acidic polysaccharide, was used for the 

separation layer of the composite membrane and intended for dehydration of organic solvents 

because of its excellent chain flexibility, higher molecular weight, elevated negative charge den-

sity, favorable membrane-forming properties, and strong affinity to water. MD simulations as 
well as experimental inquiries were conducted with the aim to corroborate the strong interfacial 

interaction and promising interface compatibility of this as-prepared composite membrane.
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2.3.2.2. Fabrication of membranes via incorporation of biomimetic adhesives

In addition to the bioadhesives obtained from organisms, biomimetic adhesives featuring com-

parable functional groups and structure can be used as possible alternatives, if the matching 

bioadhesives are very costly and difficult to extract. As noted earlier, the cement secreted by 
the sandcastle worm and the adhesive proteins found in mussel byssus contain DOPA that 

plays an essential role in the bioadhesion process [26]. Dopamine, as an analog of DOPA, has 

almost identical properties and structural arrangement. Dopamine and DOPA are able to con-

duct self-polymerization and oxidation under mild conditions in an aqueous environment so 

as to generate an exceptionally thin coating with favorable biocompatibility, robust interface 

binding force with diverse substrates, and higher hydrophilicity potential, similar to the opera-

tional characteristics of adhesive proteins found in marine organisms [26]. Such an adhesive 
capacity and enhanced structural stability of the as-prepared coating may be obtained using a 

range of chemical and physical interactions, for instance, metal chelation, hydrogen-bonding, 

covalent interaction, and π − π interaction [34]. Polydopamine (PDA) was added onto various 

support layers, including PES, PTFE, PSf, and ceramic, before the creation of the separation layer. 
A number of interactions occurring between the intermediate PDA layer and the other two lay-

ers facilitated an enhanced interfacial compatibility between the two contrasting layers, as well 

as the improved membrane structure’s stability for the long-time operation. In a recent experi-

mental setting, PDA layer was used to form a more suitable surface for the interfacial polymer-

ization reaction by actively manipulating the surface roughness, support layer’s pore structure, 

and hydrophilicity. In addition to functioning as the intermediate layer, poly (DOPA)/PDA was 

likewise used as the membrane’s skin layer, like the surface modification coating [127] or the 

composite membrane’s separation layer [34]. If compared to the frequently employed methods, 

the deposition of poly (DOPA)/PDA is more efficient and green-conscious, as well as advanta-

geous in terms of durability. As illustrated in Figure 22, the composite membrane was produced 

Figure 22. SEM image of the cross-section area of the PDA/PSf composite membranes: (a) single coating (inset: the 
uncoated PS membrane), (b) double coating. Source: Ref. [34], Copyright 2009; reproduced with permission from the 

American Chemical Society.
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Figure 23. Schematic illustration of the structure and fouling resistance of the doubly coating of biomimetic copolymers. 
Source: Ref. [130], Copyright 2012; reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.

using defect-free and ultrathin PDA separation layer and by immersing the support layer into 

dopamine aqueous solutions, thus allowing the self-polymerization reaction to happen on the 

surface [34]. The separation layer’s structure and thickness may be controlled through alteration 

of coating time, number of coats, and the pH and concentration values of dopamine solution. Up 
until now, the poly (DOPA)/PDA coating has been implemented in membranes that are made 

out of different materials and feature a variety of pore sizes [127]. In every experimental case, 

the membrane’s hydrophilicity gained visible improvement. However, when it comes to the sur-

face roughness, the values changed depending on the pore sizes found on the membrane’s sur-

face. Research also indicated that poly(DOPA)/PDA-coated layer is comprised of accumulated 
nanoparticles [127]. In the case of MF membrane, pore sizes are bigger than in the case of poly 

(DOPA)/PDA nanoparticles, which in turn suggests that they are made inside the pores and lead 

to surface smoothing [128]. In membranes with similar or smaller pore sizes, including reverse 

osmosis (RO), UF, and nanofiltration (NF) membranes, the process of pore blocking occurs as 
well as dominates at beginning, thus causing an escalation in roughness [129]. When compared 

to dopamine, DOPA offers advantageous quality in the form of zwitterionic, as it can help con-

struct a surface with higher hydrophilicity potential.

The poly(DOPA)/PDA derivatives with DOPA/dopamine grafted with other  molecules embody 

an innovative surface modification method that can improve stability, diversity, and opera-

tion. The anchoring abilities of mussel adhesive proteins and cell membrane’s fouling resis-

tance were integrated through the fabrication of doubly biomimetic copolymer as antifouling 

coating, which contains both catechol groups and phosphorylcholine (PC) side groups. 

Figure 23 showcases that the doubly biomimetic copolymer may be successfully adsorbed 

onto a range of substrates using the robust anchoring force created by catechol groups, 
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and the PC groups are oriented toward the external side and are creating the antifouling sur-

face resembling cell membrane. As a result, the antifouling surfaces can be generated on dif-

ferent devices and materials with the help of dip-coating in the doubly biomimetic polymer 

solution. In addition to the enhanced adhesive capacity, Poly(DOPA)/PDA’s other advantage 

is its high reactivity, as it offers reaction sites that help perform additional modifications for 
the membrane’s surface.

Moreover, polyethylene (PE) porous membranes were modified with PDA coating and 
then immobilized with heparin and bovine serum albumin (BSA), respectively, using cova-

lent bonds in aqueous environment with the aim of gaining improved biocompatibility 

and higher hydrophilicity. The schematic of the PDA deposition on the PE porous mem-

branes and the subsequent heparin immobilization are shown in Figure 24. High numbers 
of o-benzoquinonyl groups, occurring on the PDA layer’s surface after the oxidation and 

self-polymerization of dopamine, had reacted with the amino/imino groups on heparin, 

once the membrane was immersed into a heparin solution. As a consequence, the deposi-

tion of poly (DOPA)/PDA and their derivatives offers an approach with added versatility 
and long-time durability that can modify the membrane’s surface and help to integrate 

diverse functions, the latter being particularly valuable for membranes suffering from 

chemical inertness.

To help increase cohesive energy, as well as membrane’s structural stability, dopamine was 

added into the membrane’s matrix as a potential modifier. The polymerization and oxidation 
of dopamine can happen prior to, during, and after the process of membrane production 

[132]. A variety of oxidizing agents, such as iron ions, sodium periodate, and oxygen, have 

been applied in order to encourage the reaction. Multiple interactions between the mem-

brane’s matrix and PDA can help make the membrane significantly more stable. Moreover, 
the adhesive and cohesive balance of PDA, together with the produced membrane structure, 

may be efficiently regulated through the process of fluctuating the oxidation condition, for 
example, the ratio of dopamine to oxidizing agent if the production of PDA was during or 

after membrane’s creation, as illustrated in Figure 25.

Figure 24. The schematic of the PDA deposition on PE porous membranes and subsequent heparin immobilization. 

Source: Ref. [131], Copyright 2010; reproduced with permission from Elsevier Ltd.
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2.3.3. Based on self-assembly

Self-assembly can offer an efficient method for duplication of natural manufacturing processes 
from bioinspired and biomimetic pathways, as both of these share a key characteristic in the form 

of spontaneous organization, namely biomacropolymer and phospholipids self-assembly. These 

comparable structures and interaction mechanisms suggest that the self-assembly process offers a 
distinct nanoscale approach for regulating the membrane’s chemistries and structures. The follow-

ing section provides an outline of various self-assembly processes that are presently used in the 

production of ordering nanoporous membranes, as well as modification of polymer membranes.

2.3.3.1. Fabrication of membranes via block copolymer self-assembly

The synthetic block copolymers containing two or more thermodynamically conflicting 

blocks may experience microphase separation into aggregates of multiple morphologies with 

extremely ordered structures. Microdomain morphologies of diblock copolymers, including 

cylinders or spheres, are composed of a one phase in a matrix of another, in addition to  lamellar 

and gyroids (Figure 26) [134]. Membranes exhibiting improved selectivity and higher flux can 
be produced using self-assembled block copolymers. Several dense type membranes based on 
self-assembly of block copolymer were produced with the aim of offering useful applications 
in pervaporation, fuel cells, and CO

2
 membrane separation processes. However, the majority 

of researchers are turning to the development of nanoporous membranes offering proper-

ties such as narrow pore size distributions, tunable chemical and mechanical characteristics, 

higher porosity, and enhanced ordered and oriented nanopores. For instance, if the com-

position of block copolymers and the molecular weight happen within specific restrictions, 
then the spontaneous self-assembly progression can help facilitate ordered cylinders that are 

aligned perpendicularly with respect to the surfaces and successfully converted into properly 

ordered nanoporous membranes.

Figure 25. Schematic illustration of the possible nanoscale structures of hybrid membranes with different Fe3+/DA. (a) 

DA monomers bearing abundant phenyl groups indicate high adhesion ability but weak cohesive ability. (b) Low Fe3+/

DA leads to aggregated Fe3+-DA complexes with enhanced cohesive interaction and adequate adhesion ability. (c) High 
Fe3+/DA leads to robust Fe3+-DA nano aggregates with few available phenyl groups and poor adhesion ability. Source: 
Ref. [133], Copyright 2012; reproduced with permission from the Royal Society of Chemistry.
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Innovative research work has been conducted with the aim of producing nanoporous membranes 

based on the self-assembly of PS block copolymers with poly (ethylene oxide) (PEO) or hydro-

philic poly (methyl methacrylate) (PMMA) blocks. These two approaches were established spe-

cifically in order to achieve nanoporous membranes. The first approach relies on the elimination 
of minor PMMA component that can lead to the creation of cylindrical microdomains oriented 

in a normal manner with respect to the membrane’s surface [135]. The method’s representative 

extremely ordered nanoporous thin films developed using self-assembled PEO-b-PMMA-b-PS 
were created through initial solvent annealing that is followed by ultraviolet (UV) irradiation 

that degrades the PMMA block [136]. The terminal PEO block and the central PMMA block 

degradability ensure the long-range order within the overall system. Nanoporous type mem-

branes, featuring narrow pore size distribution, have the capacity to provide improved selec-

tivity values as well as enhanced filtration flux potential. The second approach is based on the 
removal of homopolymer from the block copolymer/homopolymer blends where the homo-

polymer is more constricted to the cylindrical microdomains’ center [136]. Moreover, a double-

layered nanoporous membrane was created using a combination of PS-b-PMMA together with 
cylindrical microdomains of homopolymer PMMA. In this case, the film was first constructed 
on top of the sacrificial silicon oxide layer, after which it was released into the HF solution and 
then relocated onto the PS membrane’s surface. Finally, it was treated by selectively eliminat-
ing the PMMA homopolymer from the cylindrical PMMA microdomains using acetic acid 

(Figure 27). As a result of this experimental run, an 80-nm thick membrane was produced with 

cylindrical 15-nm diameter pores for virus filtration applications.

Polylactide (PLA) is an innovative type of degradable blocks, as well as a multipurpose moiety 

for developing efficiently ordered nanoporous block copolymer membranes. An approach for 
making monodisperse nanoporous membranes was designed based on the block polymer 

PS-b-PLA self-assembly [138]. In this instance, a cautious regulation of the copolymer film’s 
solvent evaporation rate can facilitate a perpendicular orientation. Furthermore, the exposure 

of the composite membrane to a dilute aqueous base can selectively etch the PLA block, thus 

fabricating a porous structure. The nanoporous membranes were likewise created based on 

cylinder-forming triblock copolymer polystyrene-b-poly (dimethylacrylamide)-b-polylactide 

(PS-b-PDMA-b-PLA) and PS-b-PI-b-PLA and the etching of the PLA block. An effective new 
method was shown to generate strong bicontinuous nanoporous block copolymer self-assembled  

membranes using the process of ring-opening metathesis polymerization of norbornene-

functional PS-b-PLA and dicyclopentadiene (DCPD) additive (polymerization induced phase 
separation), which was then followed by the selective elimination of PLA block [139, 140]. 

Figure 26. Diagram of the microdomain morphologies of diblock copolymers. Source: Ref. [134], Copyright 2005; 

reproduced with permission from the Materials Research Society.
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Figure 27. Schematic depiction of the procedure for the production of asymmetric nanoporous membranes through 
the removal of homopolymer from block copolymer/homopolymer blend films. Source: Ref. [137], Copyright 2006; 

reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.

The application of this method has resulted in the cross-linked nanoporous membranes featuring 

narrow pore size distributions. Furthermore, PS-based block copolymer composites (PS-b-PLA 
and PS-b-PEO) were implemented for the production of ordered nanoporous membranes 
featuring hydrophilic pore surfaces. The pegylated pore type surfaces were created through 

the process of degradative elimination of the PLA block from the self-assembled PLA/PEO 

microdomains. The bicontinuous gyroid morphology together with the hexagonally packed 

cylindrical morphology was implemented based on the specific annealing circumstances 
[141]. The PE-based block copolymer composites can likewise be applied during the process 

of nanoporous membranes’ production with hydrophilic pore surfaces and using crystalli-

zation-induced self-assembly followed by the PLA removal. Block copolymer composites of 

PLA-b-PE-b-PLA and poly (2-(2-methoxyethoxy) ethyl methacrylate)-b-polyethylene-poly(2-

(2-methoxyethoxy) ethyl methacrylate) (PMe(OE)xMA-b-PE-b-PMe(OE)xMA) were respon-

sible for producing a disorderly bicontinuous structure with semicrystalline PE domains and 

a mixed PLA/PMe(OE)xMA domains. An adequately selective PLA etching from the PLA/

PMe(OE)xMA domains using mild base treatment can effectively manufacture a nanoporous 
PE with pore walls covered with PMe(OE)xMA polymer chains (Figure 28) [141].

The uniquely self-assembled block copolymer featuring a cleavable covalent linking unit in 

the middle of the block copolymer has the capacity to successfully remove small component 

domains without the application of tough chemicals. An innovative method for producing 
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nanoporous PS films was established with the help of a selectively photocleavable PS-b-PEO 
block copolymer (ONB-(PS-b-PEO)), where a photochemically sensitive orthonitrobenzyl 
(ONB) group was fitted in as a type of photocleavable linking unit [143]. In this case, the 

cylindrical PEO domains can be taken out following the UV light irradiation and the selective 

solvent rinse. This approach was likewise used to create nanoporous thin films based on PS-b-
PEO block copolymer carrying a photo-cleavable o-nitrobenzyl ester junction. Furthermore, 

the nanoporous films from the connected poly(styrene-ss-ethylene oxide) (PS-ss-PEO) were 
shown through the redox cleavable disulfide bond [144]. Once the annealing in a benzene/

water vapor environment had occurred, the PS-ss-PEO films had reoriented the PEO cylin-

drical microdomains in a manner normal with respect to the film’s surface. Next, the PEO 
block could be effortlessly cleaved through the immersion of PS-ss-PEO thin films into a d, 
l-dithiothreitol-containing ethanol solution, thus forming nanoporous thin films (Figure 29). 

The films accumulated, due to the PS-b-PEO acquiring cleavable triphenylmethyl ether junc-

ture between PEO and PS, can likewise generate nanopores through the process of selective 
PEO removal and using trifluoroacetic acid etching [146].

Figure 28. Preparation strategy of the nanoporous PE membrane with pore wall lined with PMe(OE)xMA by the 

PLA selective etching from the reactive block copolymer blends. Source: Ref. [142], Copyright 2012; reproduced with 

permission from the American Chemical Society.
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Figure 29. Structure of the PS-ss-PEO block polymer connected by a disulfide bond and schematic representation of the 
nanoporous thin film preparation. Source: Ref. [145], Copyright 2009; reproduced with permission from the American 

Chemical Society.

An approach developed with the help of block copolymer supramolecular assemblies together 

with hydrogen bond donors and acceptors was implemented for the production of ordered 

nanoporous membranes using the process of removal of minor component enriched nanodo-

mains. Another method relied on hydrogen bonding between 3-pentadecyl phenol(PDP) and 

4-vinylpyridine monomer units in order to form a comb-like molecular architecture and effec-

tively alter the gyroid/cylinder morphology of polystyrene-b-poly(4-vinylpyridine) (PS-b-
P4VP). The two-dimensional films fabricated using such supramolecular assemblies can 
produce nanoporous membranes through the removal of amphiphilic PDP domains, which 

occurs when washed with a selective type solvent (Figure 30) [147]. Moreover, PS-b-P4VP/
PDP comb-like block copolymer systems was applied so as to acquire a lamellae-within-cylin-

ders films with periodic and well-defined nanoporous structures. In order to obtain thin films 
with perpendicularly oriented hexagonally ordered cylinders of P4VP, the 2-(4′-hydroxy 
benzeneazo) benzoic acid (HABA) was implemented as hydrogen bond donors. Made out 
of cylindrical nanodomains and generated by P4VP-HABA associates surrounded by PS, 
the supramolecular assemblies were likewise produced using the PS-b-P4VP/HABA system 
[148]. As part of this process, the HABA molecules made hydrogen bonds with the P4VP units 
and then uniformly spread within the domain of P4VP (HABA). The HABA could be taken 
out with relative ease from the P4VP (HABA) domain, once it is rinsed in a selective solvent, 
which renders a systematic array of nanochannels. Furthermore, substances that can engage 

with the poly (vinylpyrrolidone) (PVP) block like dodecyl benzene sulfonic acid (DBSA), poly 
(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA), PMMA, 

1,5-dihydroxynaphthalene (DHN), 1-pyrenebutyric acid (PBA), and phenolic resin were simi-
larly applied so as to produce ordered nanoporous films using the self-assembly of block 
copolymer supramolecules grounded in physical interactions [149].

Figure 31 outlines the two-step method established for the development of the nanoporous 

structure based on metallo-supramolecular block copolymers with amphiphilic blocks and 

connected together using metal-ligand complexes. This method’s initial stage involves the 
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self-assembly of block copolymer, which then yields cylindrical microdomains oriented in a 

normal manner with respect to the substrate. The next stage in the process requires opening 

metal-ligand complex with the aid of redox chemistry that releases minor PEO block and gen-

erates nanopores. The metallo-supramolecular block copolymers show superior characteris-

tics in so far as the supramolecular bond’s potential reversibility bestows “smart materials” 

with controllable properties [151].

The overall difficulty of up-scaling, time-consuming preparation steps, and a lack of adequate 
long-range order are all serious challenges for the process of block copolymer-based mem-

brane development. A new approach was designed for the fabrication of isoporous mem-

branes with nanometer-sized pores based on the idea of joining the self-assembly of block 

copolymer PS-b-P4VP with the nonsolvent-induced phase separation (NIPS), as shown in 

Figure 30. The schematics illustrate supramolecular self-assembly of PS-b-P4VP triblock copolymers. Source: Ref. [147], 

Copyright 2011; reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.

Figure 31. Schematic representation of the preparation of functionalized nanoporous thin films from metallo-
supramolecular block copolymers. Source: Ref. [150], Copyright 2005; reproduced with permission from Wiley-VCH 
Verlag GmbH & Co. KGaA.
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Figure 32. Schematic diagram of the asymmetric film formation process combining NIPS with the self-assembly of block 
copolymer PS-b-P4VP. Source: Ref. [152], Copyright 2007; reproduced with permission from the Nature Publishing 

Group.

Figure 32 [153]. This solvent evaporation caused a concentration gradient within the block 

copolymer solution, specifically between the interface turned toward the air section and the 
interface turned toward the bottom. The microphase separation took place and then moved 
along the gradient within the greater concentration region of the surface, as a consequence 

directing the progressive growth of the cylindrical domains into the swollen layer area. As 

part of the process of phase separation, the nonsolvent water initially moved into the swollen 

P4VP blocks’ cylindrical domains and then was switched with solvent. The solvent coming 

from the swollen PS matrix was primarily dispersed into the channels, since the interface area 
available for the solvent/nonsolvent exchange within the channels was significantly greater 
than the area available at the top surface. Research literature overviews likewise outline 
innovative methods for producing isoporous asymmetric membranes designer using solvent 

selectivity, supramolecular assembly of PS-b-P4VP block copolymer micelles, and complex-

ation-directed supramolecular chemistry [154]. The supra molecular assembling methods of 

block copolymer micelles offered a flexible, nondestructive, and relatively low effort way for 
forming mesoporous block copolymer films featuring well-defined pore size values. The PI-b-
PS-b-P4VP triblock copolymer-derived mesoporous films were produced with a joint appli-
cation of controlled solvent evaporation, which directed the self-assembly of the terpolymer 

micelles to structurally shape the mesoporous selective layer, and of NIPS, which shaped the 
basic macroporous support structure. Once developed, the mesoporous films showed distinc-

tive stimuli responsive permeation behavior.

A confined swelling-induced pore production approach has recently appeared as the latest 
method for the development of porous materials through the exposure of self-assembled 

block copolymers to solvents with highly selective minor phase. Some of the synergic ben-

efits of this approach are its higher pore regularity, lack of weight loss, pore forming process 
reversibility, relative simplicity, and absence of chemical reactions. [152].

A new methodology of collective osmotic shock was formulated with respect to the swelling-

induced expansion of the minor phase and the self-assembled block copolymer micelles [155]. 

At the core of this approach, a spherical block copolymer, or PS-b-PMMA, was applied so as 
to form materials receptive to the influences of collective osmotic shock (Figure 33a). In this 
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dynamic, the PS-b-PMMA film was created using multiple layers of close-packed PMMA 
spherical cores that were carefully spaced out and enclosed within a PS matrix. The exposure 
to UV light that followed cross-linked the PS phase and dismantled the PMMA into smaller 
oligomers. Next, the film was submerged into acetic acid, which is a solvent for PMMA oligo-

mers, and a substantially greater osmotic pressure was created within the PS matrix due to 
the solvation of degraded PMMA oligomers. This collective osmotic shock caused break-

ages among the spheres and formed a path for the complete release of PMMA oligomers. 

Synchronized and explosive fracture within the structured materials prompted the formation 
of nanoperforated multilayer constructions (Figure 33b) that can be applied in ultrafiltration 
as well as other diversified membrane processes [156].

This section’s overview of the ordered porous membranes’ production using self-assembly 

of block copolymers is quickly recapped in Table 2. This summary is a convenient reference 

guide for the production of ordered porous type membranes.

2.3.3.2. Fabrication of membranes via amphiphilic copolymer surface segregation

As an example of an in-situ method for modifying the membrane’s surface, the surface sepa-

ration of amphiphilic copolymers as part of the membrane surface development has shown 

distinct benefits, including the formation of effective brush layers on pore as well as membrane 
surfaces [186]. This self-assembly and surface segregation approach may be defined as a series 
of specific steps. First, the amphiphilic copolymers are mixed into the membrane’s casting solu-

tion. During the following phase inversion process, the hydrophilic sections of the copolymers 

close to the interface are separated from the membrane’s surface in a spontaneous manner, 

until the chemical potentials of the brush and bulk layers are balanced. Meanwhile, the hydro-

phobic sections are securely trapped within the membrane’s matrix with the help of hydro-

phobic interaction [187]. Until recently, the majority of porous membranes were created using 

surface segregation of amphiphilic copolymers together with the commercially applied mem-

brane production method called the wet phase inversion. In particular, PEO-based comb poly-

mer and methyl methacrylate (MMA) were applied as the surface-segregating additives that 

would enhance PVDF (polyvinylidene fluoride) membrane’s surface hydrophilicity potential.  

Figure 33. (a) Schematic of the osmotic shock process acting on layers of spheres and leading to the perforated multi 
layers. (b) Fracture cross-section of PS-b-PMMA multilayer structures (scale bar, 200 nm). Source: Ref. [155], Copyright 

2012; reproduced with permission from the Nature Publishing Group.
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Membranes Assemblies and assembly approaches Pore generation References

PS-b-PI PS-b-PI; coating PS-b-PI onto silicon 
substrates, followed by solvent evaporation

Degrading PI by O
3
 and methanol 

rinsing

[157]

PS PS-b-PMMA; coating PS-b-PMMA onto 
PS-r-PMMA neutral layer, followed by 
vacuum high temperature annealing and 

rapid quenching

Degrading PMMA by UV 

exposure and acetic acid rinsing

[137, 158, 

159]

PS PEO-b-PMMA-b-PS; coating PEO-b-PMMA-
b-PS onto silicon substrates, followed by 
solvent annealing; PEO block-permitting 
long-range ordering

Degrading PMMA by UV 

exposure and acetic acid rinsing

[136, 160]

PS (PS-r-BCB)-b-PMMA; coating (PS-r-BCB)-
b-PMMA onto P(S-r-BCB-r-MMA) neutral 
layer, followed by thermal annealing and 

cross-linking at elevated temperatures

Degrading PMMA by UV 

exposure and acetic acid rinsing

[161]

PS PS-b-PMMA; coating PS-b-PMMA onto 
glass substrates along with fast solvent 

evaporation

Degrading PMMA by UV 

exposure and acetic acid rinsing

[135, 162]

PS PS-b-PMMA/PEO; coating PS-b-PMMA/
PEO onto silicon substrates, followed by 

solvent annealing

Removing PMMA/PEO domains 
by UV exposure and acetic acid 

rinsing

[163]

PS-b-PEO PS-b-PEO/PAA; coating PS-b-PEO/PAA onto 
porous supports along with fast solvent 

evaporation

Removing PAA by soaking in 
water

[164]

PS-b-PMMA PS-b-PMMA/PMMA; coating PS-b-PMMA/
PMMA onto PS-r-PMMA neutral layer, 
followed by vacuum high-temperature 

annealing and rapid quenching

Degrading PMMA by acetic acid 

rinsing

[165, 166]

PS PS-b-PLA; coating PS-b-PLA porous 
support, followed by controlled solvent 

evaporation

Removing PLA by dilute aqueous 
base rinsing

[138]

PS-b-PI PS-b-PI-b-PLA; coating PS-b-PI-b-PLA 
onto hexamethyldisilazane neutral layer or 

porous supports, followed by vacuum high-

temperature annealing

Removing PLA by dilute aqueous 
base rinsing

[167]

PS-b-PDMA PS-b-PDMA-b-PLA; molding PS-b-PDMA-b-
PLA, followed by vacuum high-temperature 

annealing

Removing PLA by dilute aqueous 
base rinsing

[168]

PS NPS-b-PLA/DCPD; cross-linking NPS-
b-PLA/DCPD using the Grubbs catalyst, 

followed by controlled solvent evaporation

Removing PLA by dilute aqueous 
base rinsing

[139, 140]

PS/PS-b-PEO PS-b-PEO/PS-b-PLA; controlled solvent 
evaporation followed by vacuum high-

temperature annealing

Removing PLA by dilute base or 
concentrated HI solution rinsing

[141, 169]

PE PLA-b-PE-b-PLA; melt molding, followed 

by cooling induced PE crystallization

Removing PLA by dilute aqueous 
base rinsing

[170]

PE/PMe(OE)
X
MA-

b-PE-b-

PMe(OE)
X
MA

PMe(OE)
X
MA-b-PE-b-PMe(OE)

X
MA/PLA-

b-PE-b-PLA; melt molding, followed by 

cooling induced PE crystallization

Removing PLA by dilute aqueous 
base rinsing

[142]
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Membranes Assemblies and assembly approaches Pore generation References

PE PS-b-PE; melt molding, followed by cooling 
induced PE crystallization

Removing PS by fuming nitric acid [171]

PB PB-b-PDMS; coating PB-b-PDMS onto glass 
substrates along with controlled solvent 

evaporation

Removing PDMS by tetra-n-
butylammonium fluoride solution

[172]

PS (ONB-(PS-b-PEO); coating (ONB-(PS-b-PEO) 
onto silicon substrates, followed by solvent 

annealing

Removing PEO by UV cleavage of 
ONB and methanol rinsing

[143]

PS PS-ss-PEO with disulfide juncture; coating 
PS-ss-PEO onto silicon substrates, followed 
by solvent annealing

Removing PEO by DDT cleavage 
of disulfide juncture and ethanol 
rinsing

[145]

PS PS-b-PEO with triphenylmethyl ether 
juncture; coating PS-b-PEO onto silicon 
substrates, followed by solvent annealing

Removing PEO by trifluoroacetic 
acid cleavage of triphenylmethyl 

ether juncture and methanol 

rinsing

[146]

PS PS-b-PEO with o-nitrobenzyl juncture; 
coating PS-b-PEO onto silicon substrates, 
followed by solvent annealing

Removing PEO by UV cleavage of 
o-nitrobenzyl ester and methanol 

rinsing

[144]

PtBOS-b-PS-b-

P4VP

PtBOS-b-PS-b-P4VP/PDP; coating PtBOS-
b-PS-b-P4VP/PDP onto glass substrates, 
followed by solvent annealing

Removing PDP by ethanol rinsing [147]

PS-b-P4VP PS-b-P4VP/PDP; molding along with 
vacuum high-temperature annealing and 

rapid quenching

Removing PDP by ethanol rinsing [148]

PS-b-P4VP PS-b-P4VP/HABA; coating PS-b-P4VP/
HABA onto silicon substrates, followed by 
solvent annealing

Removing HABA by methanol 
rinsing

[173]

PS-b-P4VP PS-b-P4VP/HABA; casting PS-b-P4VP/
HABA on porous support followed by 
nonsolvent induced phase inversion

Removing HABA by ethanol 
rinsing

[86]

PS-b-P4VP PS-b-P4VP/PBA; coating PS-b-P4VP/PBA 
onto silicon substrates, followed by solvent 

annealing

Removing PBA by ethanol rinsing [174]

PS-b-P4VP/DBSA PS-b-P4VP/DBSA/PDP; coating PS-b-P4VP/
DBSA/PDP PBA onto silicon substrates, 
followed by controlled solvent evaporation

P4VP/DBSA domains collapsing 
upon annealing

[149]

PS-b-P4VP/

PMCMA

PS-b-P4VP/PMCMA; coating PS-b-P4VP/
PMCMA onto silicon substrates, followed by 

controlled solvent evaporation

P4VP/PMCMA domains collapsing 

upon annealing

[175]

PS-b-P4VP PS-b-P4VP/DHN; coating PS-b-P4VP/
DHN onto silicon substrates, followed by 
controlled solvent evaporation

Removing DHN by methanol 
rinsing

[176]

Phenolic resin PS-b-P4VP/phenolic resin; coating PS-b-
P4VP/phenolic resin onto silicon substrates, 

followed by controlled solvent evaporation

Removing PS-b-P4VP by pyrolysis [177]

PS PS-[Ru2+]-PEO; coating PS-[Ru2+]-PEO onto 

silicon substrates, followed by solvent 

annealing

Removing PEO by oxidizing the 
Ru(II) into Ru(III)

[150, 178]

Fabrication of Biomimetic and Bioinspired Membranes
http://dx.doi.org/10.5772/intechopen.71718

101



The PEO side chains can connect to the membrane’s surfaces because of their affinity to water. 
PEO side chains likewise display a long-lasting surface hydrophilicity property. PEO brushes, 

taken away from the surface during cleaning or operation, may be largely restored through 

additional segregation of the residual amphiphilic additives during the subsequent heat treat-

ment or when others are driven by the developing gradient in the additives’ chemical potential. 

In order to create porous membranes that follow the phase inversion method, amphiphilic 

copolymers were likewise applied as additives and include hyper-branched star polymers, 

comb-like copolymers, and block copolymers. Blended membranes had undergone testing in 

water at 60°C so as to assess the retentive stability of various amphiphilic polymers on the mem-

brane’s surface [188]. The testing showed a minor variation in water contact angles in blend 

membranes when they were continuously leached in hot water for the duration of 30 days, thus 

reflecting advanced membrane surface strength. Furthermore, a Pluronic block copolymer, 
poly (ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-b-PPO-b-PEO), 

was applied as a surface-segregating additive for the creation of improved fouling resistant 

PES type membranes. The hydrophobic PPO segments in Pluronic block copolymers became 
securely fastened in the PES matrix and resulted in the covering of Pluronic block copolymers 
on PES. Alternatively, the hydrophilic PEO segments slowly drifted to the membrane’s sur-

face and lead to a membrane surface featuring improved stability and enhanced hydrophilic-

ity (Figure 34) [190]. Moreover, high-performance PES/Pluronic membranes that show stable 
hydrophilic character and elevated flux values were developed using vapor-induced phase 
separation combined together with the nonsolvent-induced phase separation approach.

Membranes Assemblies and assembly approaches Pore generation References

PS PS-[Ni2+]-PEO; coating PS-[Ni2+]-PEO onto 

silicon substrates, followed by solvent 

annealing

Removing PEO by methanol 
rinsing

[179]

PS-b-P4VP PS-b-P4VP; casting PS-b-P4VP onto glass 
substrates, followed by initial solvent 

evaporation and nonsolvent-induced phase 

inversion

Solvent/nonsolvent exchange [153]

PS-b-PEO PS-b-PEO; casting PS-b-PEO onto glass 
substrates, followed by initial solvent 

evaporation and nonsolvent-induced phase 

inversion

Solvent/nonsolvent exchange [180]

PI-b-PS-b-P4VP PS-b-PS-b-P4VP; casting PS-b-PS-b-P4VP 
onto glass substrates, followed by initial 

solvent evaporation and nonsolvent-induced 

phase inversion

Solvent/nonsolvent exchange [181–183]

PS-b-P2VP PS-b-P2VP; coating PS-b-P2VP onto silicon 
substrates, followed by controlled solvent 

evaporation

Shrinkage of P2VP chains after 
ethanol swelling

[184, 185]

PS PS-b-PMMA; coating PS-b-PMMA onto 
silicon substrates, followed by high-

temperature annealing

Degrading PMMA by UV 

exposure and acetic acid initiated 

collective osmotic shock

[155]

Table 2. Membrane fabrication using the block copolymer self-assembly.
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The design strategies for zwitterionic membrane surfaces were developed with the help 
of alternative amphiphilic zwitterionic ligands used as surface-segregating additives and 
included sulfobetaine copolymer, phosphorylcholine copolymer, and soybean phosphati-

dyl-choline [191]. As part of the phase-inversion procedure during membrane production, 

the surface segregation of zwitterionic segments was conducted spontaneously. This gener-

ated zwitterionic brushes on the membrane as well as pore’s surface and lowered interfacial 
free energy value. Moreover, a forced surface segregation approach was applied to in-situ 

engineering process of a porous amphiphilic membrane’s surface, with hydrophilic foul-

ing resilient domains and lower surface free energy fouling release self-cleaning domains 

[192]. Lower surface energy segments, like silicone-segments or fluorine-containing seg-

ments, are not capable of spontaneous separation from the polymer-water interface, due to 

the unfavorable thermodynamics during NIPS process conducted through the free surface 
segregation [193]. As part of the NIPS procedure, hydrophilic segments were anticipated 
to separate at the membrane’s surface coordinated by the amphiphilic copolymers’ self-

assembly. Alternatively, the covalently binding nonpolar hydrophobic sections were pulled 

onto the membrane’s surfaces by hydrophilic segments using forced surface segregation 

(Figure 35). Due to the innate self-healing capacity of surface segregation methods, the 

long-term surface stability of the low surface energy sections located on the membrane 

surfaces was likewise anticipated.

2.3.4. Challenges and shortcomings

The prototypes inspired by nature considerably enhance the range of artificial material syn-

theses and their applications. The process of first extracting central principles at the core 
of natural material production and then imitating these processes is a rewarding method 

for replicating comparable physical and chemical structures. However, the complexity and  

Figure 34. Illustration of dual roles of Pluronic F127 in the membrane formation process. (a) The self-assembly polymers 

lead to three forms of Pluronic F127 existing in a homogeneous casting solution. (b) Immersing the film in a water 
bath leads to phase separation and formation of ordered structure and pores within the membrane. Source: Ref. [189], 

Copyright 2008; reproduced with permission from Elsevier Ltd.
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precision involved in the formation of materials is difficult to imitate or grasp in its entirety. 
Some of the shortcomings and challenges faced by membrane-fabrication approaches based 
on simulations of natural prototypes are provided in Table 3.

2.4. Fabrication of bioinspired and biomimetic membranes based on functions of natural 

prototypes

2.4.1. Based on self-cleaning

The classification of self-cleaning surfaces is divided into hydrophobic and hydrophilic, as 
underwater oleophobic, type of surfaces. When it comes to the hydrophobic or oleophobic 

self-cleaning type surfaces, the interactions between the hydrophobic epicuticular waxes and 

multiscale geometrical surface structures are directly inspired by the surface characteristics 

of lotus leaves or other epidermis and plant leaves with similar properties. In fact, this cor-

relation to the lotus leaves ensures that the hydrophobic self-cleaning type surfaces have an 

elevated water contact angle or a smaller sliding angle, which indicates low adhesion and 

superior hydrophobic or functionality. Alternatively, for the underwater oleophobic or 

hydrophilic self-cleaning surfaces, the correlation of elevated hydration energy moieties and 

physical heterogeneity, incited by the hydrated skin surfaces in marine organisms, suggests 

a greater underwater oil contact angle that helps to avert oil fouling [194]. Because of the 

distinct characteristics found in these self-cleaning surfaces, including nonwetting and anti-
contamination, they may be applicable in a range of situations. Collectively, these new found 

properties signal a new era in self-cleaning membrane production and application.

Figure 35. Forced surface segregation process during the membrane formation process.
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2.4.1.1. Fabrication of membranes via incorporation of low surface energy moieties

Lower surface energies and surface microscale and nanoscale geometrical structures are two 

of the primary dynamics when it comes to the efficacy of hydrophobic or oleophobic self-
cleaning type membranes [195]. The methodologies applied when developing self-cleaning 

membrane surfaces may be grounded in two specific tactics. The first one requires building 
a rough surface using low surface energy materials, whereas the other is based on altering 

the rough surface with materials with lower surface energy values. The process of design 

and production of the bioinspired superhydrophobic membranes using electrospinning has 

become a popular research direction. In particular, electrospinning is an adaptable approach 

for making rough surfaces using low surface energy materials, that depend on this roughness, 

as hierarchically textured surfaces with microstructures or nanostructures, and added during 

the process of spinning. Roughness’ length scale is credited to the smaller fiber diameters and 
hydrophobicity and is essential for the superhydrophobicity properties of fibrous membranes. 
Multiple methods have been noted for combining materials of lower surface energy together 

with higher surface roughness, including poly (3-phenyl-3,4-dihydro-2H-1,3-benzoxazine) 
blended with PAN, and electrospinning poly (styrene-b-dimethylsiloxane) block copolymers 

blended with homopolymer polystyrene (PS-b-PDMS/PS) [196]. A method based on in-situ 

was used to produce superhydrophobic fiber mats with the aid of electrospinning polystyrene 
that contains fluoroalkyl end-capped polymer additives [197]. Unrestricted surface segregation 

of these additives with respect to the polymer-air interface can generate fibers that have super-

hydrophobic properties, are fluorine-rich, and show lower surface energy values. Although it 
is inspired by biological superhydrophobic surfaces offering hierarchical surface roughness 
characteristics on at least two different length scales, there is a need for a much finer scale 
structure so as to create a second level of roughness. A number of artificial superhydropho-

bic microporous and nanoporous fibrous membranes have been produced using an approach 
that builds a second level hierarchical surface based on nanohybrid systems. Nanomaterials, 

Membrane fabrication 

methods

Challenges and shortcomings

Biomimetic mineralization Controlled regulation of nanoparticle morphology and surface composition within 

polymer matrix

In-depth analysis of mineralization reaction thermodynamics and kinetics with 

different inorganic precursors and organic inducers

Biomimetic adhesion Unambiguous elucidation of formation mechanism and structure of PDA with 

convincing experimental evidences

Long-term stability of PDA coating under extreme working environments

BCP self-assembly Facile synthesis of well-defined block copolymers for rationally controlling the phase 
separation process

Precise control of defect-free self-assembly process and pore size/morphology

Surface segregation Synergistic control of the thermodynamics, kinetics, for selective surface segregation
Manipulating multiple interactions for hierarchical structure creation

Table 3. Challenges and shortcomings of membrane fabrication methods that imitate the formations found in natural 

prototypes.
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like Al
2
O

3
 nanoparticles, TiO

2
 nanoparticles, SiO

2
 nanoparticles, and graphene nanoflakes, col-

lect within the polymeric fibers and as a result alter the surface chemistry and morphology, 
eventually allowing for superhydrophobicity with improved self-cleaning characteristics [198]. 

For example, an artificial composite fibrous membrane was created with the help of polyani-
line (PANI) doped with azobenzenesulfonic acid blended with PS and using electrospinning 
(Figure 36). In this instance, a network of nanofibers with multiple sub-microspheres was span-

ning over the entire substrate connected with nanoknots, as well as nanoscale protuberances 

sheltering every sub-microsphere. The hierarchical roughness of microparticles and nanofi-

bers has the capacity to improve the temperature-responsive wettability by switching between 
superhydrophobicity and superhydrophilicity activated by temperature.

Chemical vapor deposition process is a single-step solvent-free deposition method for sur-

face modifications that may help add lower surface energy properties to nanoscale rough 
surfaces that can then generate improved hydrophobic self-cleaning membrane surfaces. 

Superoleophobic as well as super-hydrophobic self-cleaning nanocellulose aerogel type mem-

branes were created with the aid of cellulose nanofibers that have been treated with fluorosi-
lanes through CVD. The superoleophobic and superhydrophobic characteristics were due to 

the fluorinated fibrillar networks and aggregates with structures occurring at varying length 
scales. A noticeable improvement in fibrous membranes’ hydrophobicity was observed, when 
CVD was combined with electrospinning [200]. Both, first level of roughness related to the 
fibers and second level of roughness related to the beads, were present in the poly caprolac-

tone (PCL) fibrous membranes. The substantially lower surface energy in the coating layer 
produced using CVD allowed for a constant superhydrophobicity with a contact angle of 

175°. This double-roughened highly hydrophobic fibrous type membrane was developed 
through the process of improving micrometer-scale electrospun fibers with nanometer-scale 
particles or pores [201]. The combination of chemical composition,  roughened texture, and 

 re-entrant surface curvature was likewise examined so as to design an oleophobic self-cleaning 

fabric membrane. Specifically, this membrane relies on the  exceedingly low surface energy 

Figure 36. (a) SEM image of an electrospun PANI/PS composite fibrous membrane with lotus leaf–like structure.  
(b) Magnified view of a single sub-microsphere from (a). Source: Ref. [199], Copyright 2006; reproduced with permission 

from Wiley-VCH Verlag GmbH & Co. KGaA.
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 polyhedral oligomeric silsesquioxane (POSS) molecules, featuring a rigid silsesquioxane cage 
enclosed by per fluoro-alkyl groups (fluoro POSS) [201]. A number of experimental oleopho-

bic membranes were created using a straightforward dip-coating and thermal annealing tech-

nique that applied a combination of fluoro POSS and PMMA, cross-linked poly (ethylene 
glycol) diacrylate (x-PEGDA), cross-linked PDMS, or poly (ethyl methacrylate) (PEMA) onto 
the textured substrates, like stainless steel wire meshes, that have re-entrant curvature on the 

rougher length scale [202]. For instance, a variety of fabric morphologies with multiple scales 

of roughness, high porosity, and “beads on a string” type morphology can be adjusted by 

changing the concentration of the fluoro POSS and PMMA blends [202]. Those surfaces that 

offer multiple scales of roughness allowed fiber membranes to obtain superhydrophobicity 
and oleophobicity at higher POSS concentration values and hydrophilicity oleophobicity at 
smaller POSS concentration values. There are, however, other methods available for the design 
and fabrication of self-cleaning membranes. For example, textile membranes covered with 

thiol-ligand nanocrystals, based on the interaction between the VIII and IB nanocrystals and 

n-octadecyl, can gain super-oleophilic and superhydrophobic qualities [203]. Furthermore, 

PVDF membranes, made out of linked spherical microparticles that have been uniformly 

dispersed on the surface, can be produced using an inert solvent-induced phase inversion 

that showcases superoleophilic as well as superhydrophobic potential [204]. Alternatively, 

the nanoparticle-polymer suspension coating was applied during the production of a self-

cleaning stainless steel mesh membrane [204]. The synergistic effects of the micro/nanoscale 
hierarchical constructions produced with the help of SiO

2
 nanoparticles and the hydrophilic-

oleophobic groups of poly(diallyldimethylammonium chloride) (PDDA)-sodium per fluoro 
octanoate (PFO) allowed the spray-coated mesh membrane to successfully gain superoleo-

phobic and superhydrophilic characteristics. A research study on this subject recently showed 

how amphiphilic self-cleaning membrane surfaces, that offer low surface energy character-

istics and mixed domains of mosaic hydrophilic, were produced using surface grafting per-

fluoroalkyl molecules that instigated surface segregation in lower surface energy amphiphilic 
copolymers [205]. Constructed with fluorine-based polymers, the lower surface energy micro-

domains located on the membrane’s surface were supposed to decrease the intermolecular 

interactions occurring between the membrane’s surface and oil. The hydrophilic domains 

were intended to restrict water molecules and create a hydration layer that would become an 

oil, water, or solid interface for oleophobicity.

2.4.1.2. Fabrication of membranes via the incorporation of high hydration energy moieties

Research has shown that superhydrophilic surfaces submerged into water can likewise encour-

age self-cleaning behavior and oleophobicity. The elevated hydration conditions of hydrophilic 

moieties located on the membrane’s surface have the capacity to restrict a relatively large ratio of 

water molecules by using hydrogen bond or electrostatic interaction, both of which essentially 

prevent the oil’s entry onto the membrane’s surface. These approaches to producing under-

water hydrophilic or oleophobic self-cleaning type membranes place emphasis on incorpora-

tion of high hydration energy moieties onto the membrane’s surfaces. On the other hand, the 

underwater self-cleaning superoleophobic membranes offer unusual microscale and nanoscale 
hierarchical structural organizations. Research collaborations have reported underwater 
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superoleophobic membranes made out of polyacrylamide hydrogel-coated mesh membranes 

with microscale porous metal substrates and coarse nanostructured hydrogel coatings [206]. A 

thermal-responsive block copolymer PMMA-b-PNIPAAm was casted onto a steel mesh so as 

to create a membrane that can have two switchable states of wettability depending of tempera-

ture values (Figure 37a) [207]. A PMMA-b-PNIPAAm had undertaken a self-assembly process 

into a lamellar structure featuring PNIPAAm domains between the hard walls of PMMA on 

a nanometer scale. In this case, the alternating conformational modification of the PNIPAAm 
chain establishes the surface roughness at a value near lower critical solution temperature, 

while the collaboration between PMMA and PNIPAAm domains grants the film reversible 
switching between wettability conditions of hydrophobicity/oleophilicity and hydrophilicity/
oleophobicity (Figure 37b). Moreover, underwater superoleophobic chitosan-coated meshes 

based on cross-linked chitosan network were successfully produced, and the overall stability 

potential of chitosan-coated meshes may be enhanced through the modification of the CS coat-
ing and its reduction, PVA addition, and full cross-linking [208].

Latest experimental research developments have reported the creation of underwater supero-

leophobic membranes based on PMAPS-g-PVDF and PAA-g-PVDF [207]. These ultralow oil-

adhesion and superoleophobic properties of the PMAPS-g-PVDF membrane were caused by 
the enhanced surface energy and the hydrated conduct of the grafted zwitterionic PMAPS 
chains whenever in water. A prolonged conformation of hydrated PMAPS chains could incite 
the creation of a tightly bound hydration layer as well as encourage oil droplets to roll off 
from the membrane’s surface [209]. The PAA-g-PVDF membranes’ underwater superoleo-

phobic wetting properties were impacted by the hydrophilic nature of PAA chains and the 
hierarchical micro/nanoscale structure. The micro/nanoscale spherical particles located on the 

Figure 37. (a) Temperature-controlled water/oil wetting behavior on a block copolymer-coated mesh. (b) A schematic 
showing reversible conformational change of the PNIPAAm chain and the resultant surface roughness at different 
temperatures leading to two states of wettability [lower critical solution temperature (LCST)]. Source: Ref. [207], 

Copyright 2013; reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA.
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membrane’s surface were produced using the PAA-g-PVDF micelle aggregates and during 

the application of the salt-induced phase-inversion method. Specifically, this occurred during 
the coagulation step, when the quick solvent exchange encouraged the NaCl’s crystalliza-

tion out from the water and the nascent small crystal seeds became accumulation points for 

aggregates around the PAA-g-PVDF micelles. Thus, this experimental approach was able to 

illustrate that an increase in roughness can improve antiwetting performance of underwater 
oils on the membrane’s surfaces [210].

2.4.2. Challenges and shortcomings

Researchers that focus on the membrane surfaces’ wetting performance have developed 
key sets of guidelines for the design of self-cleaning membranes. Admittedly, multiple chal-
lenges still have to be addressed in this area. When it comes to hydrophobic, or oleophobic, 

self-cleaning type membranes, the fluorinated moieties were used in the majority of cases in 
order to decrease surface energy values. The synthesis and application of fluorinated moi-
eties could increase the likelihood of the ecosystem being contaminated by fluorine, which 
in turn can have a damaging effect on the living organic bodies and materials. As a result, 
environmentally conscious methods that can address self-cleaning are currently necessary. 

For the hydrophilic, or underwater oleophobic, self-cleaning type membrane, one of the 

critical concerns is the strength of the surface hydrophilic quality. Another aspect that has 

not been adequately investigated is the structural development of hydrophilic layer that 

experiences intense conditions like higher salinity, alkalinity/acidity, and temperature val-

ues. The future of membrane design must shift its focus toward combining strategies that 

take into consideration multiple interactions and that can significantly improve membrane 
hydrophilic stability and its applications.
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