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Abstract

Count time series with excess zeros are frequently encountered in practice. In character-
izing a time series of counts with excess zeros, two types of models are commonplace:
models that assume a Poisson mixture distribution, and models that assume a binomial
mixture distribution. Extensive work has been published dealing with modeling frame-
works based on Poisson-type approaches, yet little has concentrated on binomial-type
methods. To handle such data, we propose two general classes of time series models: a
class of observation-driven ZIB (ODZIB) models, and a class of parameter-driven ZIB
(PDZIB) models. The ODZIB model is formulated in the partial likelihood framework,
which facilitates model fitting using standard statistical software for ZIB regression
models. The PDZIB model is conveniently formulated in the state-space framework.
For parameter estimation, we devise a Monte Carlo Expectation Maximization (MCEM)
algorithm, with particle filtering and particle smoothing methods employed to approx-
imate the intractable conditional expectations in the E-step of the algorithm. We investi-
gate the efficacy of the proposed methodology in a simulation study, which compares
the performance of the proposed ZIB models to their counterpart zero-inflated Poisson
(ZIP) models in characterizing zero-inflated count time series. We also present a practi-
cal application pertaining to disease coding.

Keywords: autocorrelation, count time series, observation-driven models,
parameter-driven-models, particle methods, zero-inflation

1. Introduction

Count time series with excess zeros are commonly encountered in a variety of research fields.

In principle, both zero-inflation and autocorrelation may be present in such series. Failing

to adequately accommodate temporal dynamics and a high frequency of zeros can lead to

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



incorrect inferential conclusions. Developing a general modeling framework that accounts for

these characteristics poses a daunting challenge.

In characterizing data comprised of counts with excess zeroes, two types of models are

commonplace: a model that assumes a Poisson mixture distribution, and a model that

assumes a binomial mixture distribution. A considerable literature exists for regression

models based on the zero-inflated Poisson (ZIP) distribution to deal with count data that

are independently distributed [1]. Many researchers have extended the classical ZIP model

to analyze repeated measures data by incorporating independent random effects, as these

can account for within-subject correlation and between-subject heterogeneity [2, 3]. To deal

with count time series with excess zeros, some researchers have proposed parameter-driven

ZIP models that accommodate the temporal dynamics by incorporating correlated random

effects, which can be represented by a latent autoregressive process [4, 5]. However, for data

arising from a binomial mixture distribution, a survey of the literature for analogous frame-

works reflects an absence of work dealing with binomial time series with excess zeros. To

handle such data, we propose two general classes of models: a class of observation-driven

ZIB (ODZIB) models, and a class of parameter-driven ZIB (PDZIB) models. The inspiration

for the two proposed modeling frameworks arises from the work of Hall [6], Yau et al. [4],

and Yang et al. [5, 7].

Depending on how the temporal correlation is conceptualized, count time series models

can be classified as either observation-driven or parameter-driven [8]. For the former,

serial correlation is characterized by specifying that the conditional mean of the current

response depends explicitly on its past values [9–14]. For the latter, such correlation is

characterized through an unobservable underlying process [15–19]. In this chapter, we

employ the partial likelihood framework to formulate the ODZIB model, as this largely

simplifies parameter estimation with negligible loss of information. The ODZIB model can

be viewed as an extension of the observation-driven binomial model [20]. Such a model is

often fit using standard statistical software available for classical ZIB regression models.

For the PDZIB model, we employ a state-space approach, as this framework allows for the

investigation of the underlying latent processes that govern the temporal correlation and

zero inflation. Due to the non-Gaussian distribution of the count response, and the non-

linear nature of modeling its conditional mean, traditional state-space methods using the

Kalman filter and the Kalman smoother are not available for parameter estimation. We

thereby adopt a Monte Carlo Expectation Maximization (MCEM) algorithm based on the

particle filter [21] and the particle smoother [22].

The remainder of the chapter is organized as follows. In Section 2, we briefly introduce a

class of observation-driven models for a zero-inflated count time series that arises from a

binomial mixture. Section 3 proposes a class of parameter-driven models in the state-

space framework, and presents the MCEM algorithm devised to fit such models. A

comprehensive simulation study is provided in Section 4. In Section 5, we illustrate the

proposed methodology through a practical application. Section 6 concludes with a brief

discussion.
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2. Observation-driven ZIB models

2.1. ZIB models

A popular approach for modeling independent zero-inflated binomial data is the ZIB model

proposed by Hall [6]. This model assumes that data are generated from a mixture distribution,

comprised of a binomial distribution and a degenerate distribution at zero. For response

variable Y, let yi denote the observation for subject i, i = 1, 2,…, n. The probability mass function

for the ZIB model is defined as follows:

f yijπi;ωi

� �

¼

ωi þ 1� ωið Þ 1� πið Þni , if yi ¼ 0,

1� ωið Þ
ni

yi

 !

π
yi
i 1� πið Þni�yi , if yi > 0:

8

>

>

>

<

>

>

>

:

(1)

Here, ωi is the zero-inflation parameter, and πi is the intensity parameter representing the

probability of success, both modeled via logit link functions:

logit ωið Þ ¼ x
Τ
i1γ, (2)

logit πið Þ ¼ x
Τ
i2 β: (3)

In the preceding, xi1 and xi2 are sets of explanatory variables for the corresponding vectors of

regression coefficients γ and β. The Expectation Maximization (EM) algorithm or the Newton-

Raphson method can be used to obtain the parameter estimates.

2.2. Observation-driven ZIB models

In this section, we introduce an autoregressive model for binomial time series with excess zeros

based on an observation-driven approach.We retain the samemodel structure as that introduced

in Section 2.1 to account for the binomial mixture, yet we employ lagged responses as covariates

to resolve the temporal correlation. The proposed model can be viewed as an extension of the

binomial time series model presented by Kedem and Fokianos [20].

Let yt denote the binomial count response. Define the information set

F t�1 ¼ σ yt�1; yt�2;…; xt

� �

(4)

so as to represent all that is known to the observer at time t about the response and any

relevant covariate processes. Thus, the vector xt represents a collection of past and possibly

present time-dependent covariates that are observed at time t� 1. In the present setting,

xt may be viewed as either fixed or random. Conditioning on the information F t�1, the

response is assumed to follow a ZIB distribution with probability mass function defined

as follows:
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f t ytjF t�1;πt;ωt

� �

¼

ωt þ 1� ωtð Þ 1� πtð Þnt , if yt ¼ 0,

1� ωtð Þ
nt

yt

 !

π
yt
t 1� πtð Þnt�yt , if yt > 0:

8

>

>

>

<

>

>

>

:

(5)

Similarly, ωt and πt represent the zero-inflation parameter and the intensity parameter, respec-

tively. Both parameters are modeled via logit link functions. Specifically, we assume that

logit ωtð Þ ¼ x
Τ
1, tγ, (6)

logit πtð Þ ¼ x
Τ
2, tβþ

X

p

j¼1

φjyt�j, (7)

where x1, t and x2, t are sets of time-dependent explanatory variables for the corresponding vectors

of regression coefficients γ and β, and φ = [φ1,…,φp]
Τ is a vector of autoregressive coefficients

corresponding to the past responses [yt� 1,…, yt� p]
Τ. For simplicity, we treat the zero-inflation

parameterωt as a constant thatdoesnot varyover time. In theobservation-drivenZIBmodel, serial

correlation is accommodated by introducing lagged values of the response to the linear predictor.

The partial data likelihood of the observed series is

PL θð Þ ¼
Y

n

t¼1

f t ytjF t�1

� �

, (8)

where θ = [β,φ,γ]Τ is the vector of unknown parameters. The partial likelihood does not

require the derivation of the joint distribution of the response and the covariates, and is largely

simplified relative to the full likelihood. This approach facilitates conditional inference for a

fairly large class of transitional processes where the response depends on its past values.

The log-likelihood for the observation-driven ZIB model is

log PL θð Þ ¼
X

n

t¼1

log ωtI yt¼0ð Þ þ 1� ωtð Þ
nt

yt

� �

π
yt
t 1� πtð Þnt�yt

� 	

: (9)

The vector θ̂ obtained by maximizing the partial likelihood is called the maximum partial

likelihood estimator (MPLE).

Similar to Section2.1,we canapply theEMalgorithmor theNewton–Raphsonmethod toobtain the

MPLE. This estimation process can be conveniently conducted in practice using standard software

tools available for fitting classical ZIBmodels. In SAS, we can use the finite mixture models (FMM)

procedure to fit the observation-drivenZIBmodel,whilewe canuse function gamlss in the package

generalized additivemodels for location scale and shape (GAMLSS) formodel fitting inR.Hypoth-

esis testing for θ is carried out through the partial likelihoodmethod. The common tests are based

on Wald statistics, score statistics, and partial likelihood ratio statistics. All of these tests are

conducted based on the framework for classicalmaximum likelihood inference.
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3. Parameter-driven ZIB models

3.1. Model formulation

An alternative approach to describe binomial time series with excess zeros is based on parameter-

driven ZIB models. This class of models can be viewed as an analogue of the parameter-driven

ZIP models presented by Yang et al. [5].

To account for temporal dynamics in the series, we introduce a latent stationary autoregressive

process {zt} of order p (AR(p)):

zt ¼
X

p

i¼1

φizt�i þ εt: (10)

Here, εt is a Gaussian white noise process with a mean of 0 and a variance of σ2. Additionally,

φi explains how the past state zt� i relates to the current state zt.

Let yt be the observed count at time t. Given the current state zt, the positive count response yt
is assumed to follow a ZIB distribution with a probability mass function defined as

f t ytjzt;πt;ωt

� �

¼

ωt þ 1� ωtð Þ 1� πtð Þnt , if yt ¼ 0,

1� ωtð Þ
nt

yt

 !

π
yt
t 1� πtð Þnt�yt , if yt > 0:

8

>

>

>

<

>

>

>

:

(11)

Similar to the previous model parameterizations, ωt and πt represent the zero-inflation param-

eter and the intensity parameter, respectively. Both parameters are modeled via logit link

functions and could be time-varying. To relate the intensity parameter πt to the latent compo-

nent zt, we use the model

logit πtð Þ ¼ x
Τ

t βþ zt, (12)

where xt is a set of explanatory variables observed at time t, and β is the corresponding vector

of regression coefficients. In the present setting, xt is assumed fixed. For simplicity, we treat the

zero-inflation parameter ωt as a constant that does not vary over time.

For the parameter-driven ZIB model, the conditional mean and variance of the response

variable yt are given by

E Ytjztð Þ ¼ 1-ωtð Þntπt, (13)

Var Ytjztð Þ ¼ 1-ωtð Þntπt 1-πt 1-ωtntð Þ½ �: (14)

Obviously, the presence of zero-inflation (ωt > 0) not only explains the excess zeros in the series,

but also introduces overdispersion. Additionally, the correlated random effects zt contribute to

the extra variance.
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We can write the parameter-driven ZIB model in the following hierarchical form:

st∣st�1 � N p Φst�1;Σð Þ, (15)

ut � Bernoulli ωð Þ, (16)

yt∣st, ut � Binomial nt; 1� utð Þπtð Þ, (17)

where st = [zt,…, zt� p + 1]
Τ is a p-dimensional state vector with zt being its first element, ut

is an unobservable membership indicator that determines whether the response comes

from a degenerate distribution or an ordinary binomial distribution, Φ is an unknown

transition matrix, and Σ is the covariance matrix of the state noise process st. The process

st is initiated with a normal vector s0 that has mean μ0 and covariance matrix Σ0. Diffuse

priors are often assigned to s0 in practice. Given the two unobserved latent processes st
and ut, we can conceptualize a sequential update of the response variable yt.

In Eq. (15), Φ and Σ are p� p matrices defined as follows:

Φ ¼

φ1 φ2 ⋯ φp�1 φp

1 0 ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

, Σ ¼

σ2 0 ⋯ 0 0

0 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (18)

The transition matrix Φ governs the generation of the state vector st from the past state

st� 1 for time points t = 1,…, n. Note that the covariance matrix Σ in Eq. (18) is not positive

definite. This is both legitimate and common in the state-space modeling approach.

3.2. Parameter estimation via MCEM algorithm

3.2.1. Model fitting

To fit the parameter-driven ZIB model, in principle, one would first obtain the marginal

likelihood of the observed data y1,…, yn by integrating out unobserved components. However,

because of the presence of correlated random effects and the non-Gaussian nature of the

response, these integrals are not analytically tractable. Therefore, approximations or numerical

solutions for the maximum likelihood estimates (MLEs) are necessary. Instead of obtaining the

MLEs based on the marginal likelihood, we propose an EM algorithm [23], which relies on the

complete-data likelihood to estimate the parameters.

Let y1 : t = [y1, y2,…, yt]
Τ denote the vector of observed data from time point 1 through t. In a

similar fashion, let s0 : t = [s0, s1,…, st]
Τ and u1 : t = [u1, u2,…, ut]

Τ denote the vectors of two latent

processes, respectively, over the same time frame. Let θ = [ω, βΤ,φΤ, σ]Τ denote the vector of

unknown parameters.

Time Series Analysis and Applications132



To develop an EM algorithm for parameter estimation of the mixture model, Eqs. (15)–

(17), we begin by formulating the complete-data likelihood; i.e., the joint density of s0 : n,

u1 : n, and y1 : n. The two latent processes s0 : n and u1 : n are considered missing. Based on the

state-space representation, the complete-data likelihood may be orthogonally decomposed

as follows:

Lc θð Þ ¼ f s0:n; u1:n; y1:n

� �

¼ f s0:n; u1:nð Þf y1:njs0:n; u1:n

� �

¼ f s0:nð Þf u1:nð Þf y1:njs0:n; u1:n

� �

¼ f s0ð Þ
Y

n

t¼1

f stjst�1ð Þ
Y

n

t¼1

f utð Þ
Y

n

t¼1

f ytjst; ut
� �

:

(19)

Here, the initial state vector s0 is assumed to be normally distributed with mean vector μ0 and

covariance matrix Σ0. In implementing the algorithm, we set μ0 = 0 and Σ0 = Ip, as the effect of

the starting values of μ0 and Σ0 on the estimated parameters θ is negligible.

Up to an additive constant, the complete-data log-likelihood is given by

lc θð Þ ¼ �
n

2
log σ2 �

1

2σ2

X

n

t¼1

zt � φΤ
st�1

� �2

þ
X

n

t¼1

ut logωþ 1� utð Þ log 1� ωð Þf g

þ
X

n

t¼1

1� utð Þ ytx
Τ
t β� nt log 1þ exp x

Τ
t βþ zt

� �� �� �

:

(20)

The complete-data log-likelihood can be described as the sum of three functionally indepen-

dent parameter forms, such that lc(θ) = l(φ, σ| st) + l(ω| ut) + l(β| st, ut), resulting in ease of the

maximization in the M-step for each set of parameters.

With the implementation of the EM algorithm, we need to compute the conditional expecta-

tion of lc(θ) given the observed data y1 : n. Deriving an analytical form for the conditional

expectation is not feasible due to the nonlinear forms in the latent variables and the response,

as well as the non-Gaussian distributions of the response and the latent indicators. There are

many numerical methods available to approximate the conditional expectation, such as the

Markov chain Monte Carlo (MCMC) algorithm [24], the MCEM algorithm [7, 25], the penal-

ized quasi-likelihood (PQL) method [2], and integrated nested Laplace approximations (INLA)

[26]. Following Yang et al. [5], we develop an MCEM algorithm to approximate the conditional

expectation.

To simplify the notation, we let A
jð Þ
t , b

jð Þ
t , c

jð Þ
t , d

jð Þ
t , e

jð Þ
t , and f

jð Þ
t denote the conditional expecta-

tions of st�1s
Τ
t�1, ztst� 1, z

2
t , ut, 1� utð Þ log 1þ exp xΤt βþ zt

� �� �

, and 1� utð Þexp xΤt βþ zt
� �

=

1þ exp xΤt βþ zt
� �� �

evaluated at θ(j), respectively. In the Monte Carlo E-step of the algorithm,

we first compute the conditional expectation of lc(θ):
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Q θjθ jð Þ

 �

¼ E lc θð Þjy1:n;θ
jð Þ

n o

¼ �
n

2
log σ2 �

1

2σ2

X

n

t¼1

c
jð Þ
t � 2φΤ

b
jð Þ
t þ φΤ

A
jð Þ
t φ


 �

þ
X

n

t¼1

d
jð Þ
t log ωþ 1� d

jð Þ
t


 �

log 1� ωð Þ
n o

þ
X

n

t¼1

1� d
jð Þ
t


 �

ytx
Τ
t β� nte

jð Þ
t

n o

,

(21)

where particle filtering and smoothing techniques are used to approximate the conditional

expectations. The details of the particle methods for the parameter-driven ZIB model are

presented in Section 3.3.

The following partial derivatives are applied to maximize Q(θ|θ(j)) in the M-step:

∂Q

∂ω
¼

1

ω

X

n

t¼1

d
jð Þ
t �

1

1� ω

X

n

t¼1

1� d
jð Þ
t


 �

, (22)

∂Q

∂φ
¼

1

σ2

X

n

t¼1

b
jð Þ
t �A

jð Þ
t φ


 �

, (23)

∂Q

∂σ
¼ �

n

σ
þ

1

σ3

X

n

t¼1

c
jð Þ
t � 2φΤ

b
jð Þ
t þ φΤ

A
jð Þ
t φ


 �

, (24)

∂Q

∂β
¼

∂E lc θð Þjy1:n;θ
jð Þ

n o

∂β

¼ E
∂lc θð Þ

∂β
jy1:n;θ

jð Þ

� �

¼ E
X

n

t¼1

1� utð Þyt � nt 1� utð Þ
exp xΤt βþ zt

� �

1þ exp xΤt βþ zt
� �

( )

xtjy1:n;θ
jð Þ

 !

¼
X

n

t¼1

1� d
jð Þ
t
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yt � ntf
jð Þ
t

n o

xt:

(25)

At the jth iteration, we obtain the following closed-form solutions for ω(j + 1), φ(j + 1), and σ(j + 1):

ω jþ1ð Þ ¼
1

n

X

n

t¼1

d
jð Þ
t , (26)

φ jþ1ð Þ ¼
X

n

t¼1

A
jð Þ
t

 !�1
X

n

t¼1

b
jð Þ
t , (27)
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σ jþ1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

t¼1

a
jð Þ
t �

X

n

t¼1

b
jð Þ
t

 !Τ
X

n

t¼1

A
jð Þ
t

 !�1
X

n

t¼1

b
jð Þ
t

8

<

:

9

=

;

v

u

u

u

t : (28)

In addition, we can easily compute β(j + 1) through iterative algorithms such as Broyden-

Fletcher-Goldfarb-Shanno (BFGS). Once we acquire the particle smoothers from the smoothing

step, we can obtain the MCEM estimates by plugging in the sample means of the functions of

particle smoothers for the conditional expectations.

To offset the slow convergence and to reduce the computational cost of the EM algorithm,

starting with good initial parameters is essential. For the proposed parameter-driven ZIB

model, we suggest using the estimates of the parameters from a classical ZIB model or from

the observation-driven ZIB model discussed in Section 2.2.

3.2.2. Standard errors

Standard errors of the parameter estimators can be obtained either by using the inverse of the

observed information to approximate the variance/covariance matrix, or by employing a

collection of replicated bootstrapped parameter estimates. Given the computational cost of

the MCEM algorithm, we pursue the first approach by applying Louis's formula [27] to

compute the observed information matrix Io(θ). Based on the missing information principle,

we have

Io θð Þ ¼ Ic θð Þ � Im θð Þ, (29)

where Ic(θ) and Im(θ) are defined as follows:

Ic θð Þ ¼ E �
∂2lc

∂θ∂θ
Τ
jy1:n

� �

, (30)

Im θð Þ ¼ E
∂lc
∂θ

∂lc

∂θ
Τ
jy1:n

� �

� E
∂lc
∂θ

jy1:n

� �

E
∂lc

∂θ
Τ
jy1:n

� �

: (31)

The first-order derivatives of lc(θ) are given by

∂lc
∂ω

¼
1

ω

X

n

t¼1

ut �
1

1� ω

X

n

t¼1

1� utð Þ, (32)

∂lc
∂β

¼
X

n

t¼1

1� utð Þ yt � nt
exp xΤt βþ zt

� �

1þ exp xΤt βþ zt
� �

( )

xt, (33)

∂lc
∂φ

¼
1

σ2

X

n

t¼1

zt � φΤ
st�1

� �

st�1, (34)
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∂lc

∂σ
¼ �

n

σ
þ

1

σ3

X

n

t¼1

zt � φΤ
st�1

� �2
: (35)

The second-order derivatives of lc(θ) are given by

∂2lc

∂ω∂ω
¼ �

1

ω2

X

n

t¼1

ut �
1

1� ωð Þ2

X

n

t¼1

1� utð Þ, (36)

∂2lc

∂β∂βΤ
¼ �

X

n

t¼1

1� utð Þnt
exp xΤt βþ zt

� �

1þ exp xΤt βþ zt
� �
 �2

xtx
Τ
t , (37)

∂2lc

∂φ∂φΤ
¼ �

1

σ2

X

n

t¼1

st�1s
Τ
t�1, (38)

∂
2lc

∂σ∂σ
¼

n

σ2
�

3

σ4

X

n

t¼1

zt � φΤ
st�1

� �2
, (39)

∂
2lc

∂φ∂σ
¼ �

2

σ3

X

n

t¼1

zt � φΤ
st�1

� �

st�1: (40)

Again, particle filtering and smoothing techniques are used to approximate the conditional

expectations in Ic(θ) and Im(θ).

In principle, the variance/covariance matrix can be approximated by taking the inverse of the

observed information matrix. However, the computation of the inverse is often problematic.

As indicated by Kim and Stoffer [25], the observed information matrix is not guaranteed to be

numerically positive definite. To address this problem, we slightly modify Louis’s formula by

introducing a slack variable ξ, such that

Io θð Þ ¼ Ic θð Þ � 1� ξð ÞIm θð Þ, (41)

where ξ is a non-negative variable ranging from 0 to 1. In practice, we can iteratively increase

this value until the observed information matrix can be inverted.

3.3. Particle methods

Particle filtering [21] and particle smoothing [22] belong to the class of sequential Monte Carlo

(SMC) methods [28]. These particle methods can be viewed as the non-linear and non-Gaussian

extensions of the popular Kalman filtering and smoothing algorithms for traditional state-space

models. Rather than yielding a single estimate for the filter or the smoother, as computed

through conventional Kalman filtering and smoothing, particle methods provide a set of parti-

cles with associated weights to approximate the conditional densities governing the filters and

smoothers. Implemented via sequential importance sampling (SIS), in the E-step of the EM

algorithm, particle methods provide approximate solutions to the intractable integrals

corresponding to the conditional expectations of functions of the latent components given the
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observed data. However, sample degeneracy is a typical problem for SIS methods. In particular,

degeneracy occurs when particles have small weights or even negative weights, rendering their

contributions to the conditional density negligible. Resampling (e.g., bootstrapping) offers a

recourse for eliminating particles with negligible effects. Kim [29] provides an elegant treatment

of particle filtering and smoothing for state-space models.

Particle filtering

For the parameter-driven ZIB model, we implement particle filtering by first generating

s
ið Þ
0∣0 � N p μ0;Σ0

� �

. Then for t = 1,…, n:

(F.1) Generate s
ið Þ
t∣t�1 � N p Φs

ið Þ
t�1∣t�1;Σ


 �

and u
ið Þ
t∣t�1 � Bernoulli ωð Þ.

(F.2) Compute the filtering weights

q
ið Þ
t∣t�1 ∝

nt

yt

� �

1� u
ið Þ
t∣t�1


 �

π
ið Þ
t∣t�1


 �yt
1� 1� u

ið Þ
t∣t�1


 �

π
ið Þ
t∣t�1


 �nt�yt
, (42)

where logit π
ið Þ
t∣t-1


 �

¼ xΤt βþ z
ið Þ
t∣t-1 and z

ið Þ
t∣t�1 is the first element of s

ið Þ
t∣t�1.

(F.3) Generate s
ið Þ
t∣t ; u

ið Þ
t∣t


 �

by resampling s
ið Þ
t∣t�1; u

ið Þ
t∣t�1


 �

with replacement based on the preceding

filtering weights.

As a byproduct of the particle filtering, the observed-data log-likelihood can be approximated by

X

n

t¼1

log
1

N

X

N

i¼1

q
ið Þ
t∣t�1

 !

, (43)

where N is the number of particles in the filtering step.

Particle smoothing

Next, we employ the particle smoothing algorithm proposed by Godsill et al. [22] to obtain the

conditional expectations of the functions of the latent variables given the complete set of

observed data. In this step, we first choose s
rð Þ
n∣n; u

rð Þ
n∣n


 �

¼ s
ið Þ
n∣n; u

ið Þ
n∣n


 �

with probability q
ið Þ
n∣n�1.

Then for t = n� 1,…, 1:

(S.1) Calculate the smoothing weights

q
ið Þ
t∣n ∝ q

ið Þ
t∣t�1exp �

1

2σ2
z

ið Þ
tþ1∣n � φΤs

ið Þ
t∣t


 �2
� 	

ωu
ið Þ

tþ1∣n 1� ωð Þ1�u
ið Þ

tþ1∣n
: (44)

(S.2) Choose s
rð Þ
t∣n; u

rð Þ
t∣n


 �

¼ s
ið Þ
t∣t ; u

ið Þ
t∣t


 �

with probability q
ið Þ
t∣n.

We obtain independent realizations by repeating the preceding process for r = 1,…,R.
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4. Simulation studies

In this section, we investigate through simulation two salient issues pertaining to the proposed

modeling frameworks. In the first part, we explore the convergence of the MCEM algorithm

through simulated examples, and investigate the finite sample distributional properties of the

parameter estimators through a comprehensive simulation study. In the second part, we

present a simulation study to compare the performance of the proposed ZIB models to their

counterpart ZIP models in characterizing zero-inflated count time series.

4.1. Evaluation of the MCEM algorithm

We consider time series data simulated from four different parameter-driven models: ZIB + AR

(2), binomial + AR(2), ZIB + AR(1), and binomial + AR(1). The sample size is set to 300 and the

number of cases nt for each time point is set to 30. All of the models feature the following linear

predictor:

logit πtð Þ ¼ β0 þ β1x1, t þ zt, (45)

where x1, t is a covariate series generated from a standard uniform distribution. The true

parameters for the most complicated model ZIB + AR(2) are as follows:

ω ¼ 0:3, β0 ¼ 2, β1 ¼ �3,φ1 ¼ 0:8,φ2 ¼ �0:6, and σ ¼ 0:5: (46)

For the rest of the models considered, the corresponding parameters are set to 0 if no such a

form is included. Autoregressive (AR) coefficients are chosen to assure stationarity of the

series. In fitting the models, the number of particle filters (N) is set to 500 and the number of

particle smoothers (R) is set to 300. We stop the MCEM algorithm after 300 iterations. Table 1

presents the parameter estimates for the simulated data corresponding to the four parameter-

driven models.

Figure 1 shows the trace plots of the log-likelihood for the four fitted parameter-driven

models. Note that the log-likelihood of the MCEM algorithm is not strictly increasing at each

iteration due to the introduction of Monte Carlo errors. However, the log-likelihood stabilizes

after a few dozen iterations with slight fluctuations around the maximal value. Figure 2 shows

the trace plots for the parameter estimates from the most complex fitted model, ZIB + AR(2).

The plots indicate that the parameter estimates converge to the MLEs quickly with negligible

ω β0 β1 φ1 φ2 σ

True 0.300 2.000 �3.000 0.800 �0.600 0.500

Binomial + AR(1) 1.984 �2.968 0.800 0.540

ZIB + AR(1) 0.283 2.124 �2.930 0.781 0.563

Binomial + AR(2) 1.989 �3.012 0.852 �0.620 0.499

ZIB + AR(2) 0.293 1.992 �2.872 0.831 �0.576 0.506

Table 1. True and estimated parameters for the simulated examples.
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fluctuations. The trace plots of the parameter estimates for the other three models exhibit

similar patterns (results not shown). In practice, we recommend always checking the trace

plots of the estimates to assess convergence of the MCEM algorithm.

We next investigate the finite sample distributional properties of the parameter estimators from

the MCEM algorithm. We consider the same parameter-driven models presented in the preced-

ing simulated example. For each model structure, 500 replications are generated based on

sample sizes of 200 and 500. We employ the proposed MCEM algorithm to fit models based on

these replications, and record the subsequent parameter estimates and their standard errors. As

theMECM algorithm is computationally expensive, we set the number of particles for both filters

and smoothers to 200, and the stopping iteration for the MCEM algorithm at 100. In Tables 2–3,

we provide the simulation results based on the most complex model, ZIB + AR(2).

In general, the mean and median of the estimates converge to the true parameters, with a minor

degree of negative bias associated with the estimation of the AR coefficients. The empirical
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Figure 1. Trace plots of the log-likelihood for fitted parameter-driven models based on simulated data.
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standard deviations (ESDs) are reasonably close to the average asymptotic standard errors

(ASEs). Therefore, the standard errors calculated by Louis’s method prove to be sufficient. As

the sample size increases from 200 to 500, the bias for the estimation of the AR coefficients

attenuates, and the standard errors tend to diminish. The two behaviors indicate that weak

convergence holds. The results for the other three parameter-driven models are analogous to

those presented in Tables 2–3. Tables 4–9 show the simulation results for the binomial + AR(2)

model, ZIB + AR(1) model, and binomial + AR(1) model, respectively.

The normality of the parameter estimators is assessed by Q-Q plots based on the sets of

replicated estimates (figures not shown). For the most complex ZIB + AR(2) model, approxi-

mate normality holds for the finite sample distribution of the parameter estimators, with
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Figure 2. Trace plots of the estimated parameters for the fitted ZIB + AR(2) model.
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True Mean Median ESD ASE

ω 0.300 0.299 0.295 0.032 0.032

β0 2.000 1.999 1.992 0.139 0.166

β1 �3.000 �2.992 �2.980 0.235 0.224

φ1 0.800 0.743 0.757 0.120 0.165

φ2 �0.600 �0.563 �0.572 0.104 0.145

σ 0.500 0.504 0.508 0.063 0.098

Table 2. Summary statistics for replicated parameter estimates from fitted ZIB + AR(2) models with sample size 200.

True Mean Median ESD ASE

ω 0.300 0.300 0.299 0.020 0.020

β0 2.000 2.002 2.002 0.081 0.104

β1 �3.000 �3.006 �3.007 0.138 0.139

φ1 0.800 0.754 0.754 0.076 0.095

φ2 �0.600 �0.566 �0.573 0.067 0.086

σ 0.500 0.509 0.510 0.039 0.057

Table 3. Summary statistics for replicated parameter estimates from fitted ZIB + AR(2) models with sample size 500.

True Mean Median ESD ASE

β0 2.000 1.998 2.003 0.108 0.167

β1 �3.000 �3.002 �3.010 0.179 0.174

φ1 0.800 0.783 0.783 0.087 0.101

φ2 �0.600 �0.593 �0.596 0.080 0.094

σ 0.500 0.496 0.494 0.052 0.062

Table 4. Summary statistics for replicated parameter estimates from fitted binomial + AR(2) models with sample size 200.

True Mean Median ESD ASE

β0 2.000 1.995 1.989 0.070 0.101

β1 �3.000 �2.994 �2.995 0.113 0.108

φ1 0.800 0.791 0.791 0.057 0.063

φ2 �0.600 �0.593 �0.595 0.053 0.059

σ 0.500 0.498 0.496 0.032 0.038

Table 5. Summary statistics for replicated parameter estimates from fitted binomial + AR(2) models with sample size 500.

State-Space Models for Binomial Time Series with Excess Zeros
http://dx.doi.org/10.5772/intechopen.71336

141



slightly non-normal tail behavior (thick or thin) evident for the estimated AR coefficients. As

the sample size is increased from 200 to 500, this non-normal behavior is attenuated. Similar

patterns are observed for the other three parameter-driven models.

True Mean Median ESD ASE

β0 2.000 1.997 1.996 0.125 0.168

β1 �3.000 �2.997 �2.994 0.106 0.106

φ1 0.800 0.787 0.789 0.035 0.035

σ 0.500 0.499 0.499 0.030 0.033

Table 9. Summary statistics for replicated parameter estimates from fitted binomial + AR(1) models with sample size 500.

True Mean Median ESD ASE

ω 0.300 0.299 0.299 0.020 0.021

β0 2.000 1.984 1.989 0.135 0.168

β1 �3.000 �2.992 �2.991 0.133 0.132

φ1 0.800 0.781 0.785 0.041 0.040

σ 0.500 0.500 0.499 0.035 0.040

Table 7. Summary statistics for replicated parameter estimates from fitted ZIB + AR(1) models with sample size 500.

True Mean Median ESD ASE

ω 0.300 0.299 0.299 0.031 0.032

β0 2.000 1.971 1.971 0.208 0.251

β1 �3.000 �2.982 �2.969 0.199 0.210

φ1 0.800 0.763 0.770 0.073 0.067

σ 0.500 0.500 0.502 0.056 0.063

Table 6. Summary statistics for replicated parameter estimates from fitted ZIB + AR(1) models with sample size 200.

True Mean Median ESD ASE

β0 2.000 2.006 2.024 0.192 0.233

β1 �3.000 �2.987 �2.988 0.165 0.167

φ1 0.800 0.782 0.788 0.054 0.056

σ 0.500 0.497 0.496 0.051 0.052

Table 8. Summary statistics for replicated parameter estimates from fitted binomial + AR(1) models with sample size 200.
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4.2. Model comparison

As previously mentioned, based on a Poisson mixture distribution, extensive methodology has

been published to deal with count time series with excess zeros. In addition, the Poisson

distribution provides an accurate approximation to the binomial distribution when the sample

size is large and the success probability is small. Therefore, one may question whether Poisson-

type models are sufficient for approximating binomial-type models when data are generated

from a binomial mixture distribution. In this section, we try to address this question through a

simulation study.

Two different types of ZIB models are proposed in this work: the parameter-driven ZIB model,

and the observation-driven ZIB model. To evaluate the propriety of the binomial-type

models, we consider two corresponding Poisson-type counterparts: the parameter-driven ZIP

model, and the observation-driven ZIP model. We assess the performance of the four models

under two scenarios: first, where data are generated from the parameter-driven ZIB model,

and second, where data are generated from the observation-driven ZIB model.

To denote the parameter-driven ZIB/ZIP model with an AR(p) latent process, we use PDZIB(p)/

PDZIP(p). Similarly, we use ODZIB(p)/ODZIP(p) to denote the observation-driven ZIB/ZIP

model with p lagged responses employed as covariates.

In the first scenario, data are generated from a PDZIB(2) model having the same form as that

provided in Section 4.1. To reduce the computational burden associated with fitting the

models, 100 replicated series of length 200 are generated. We fit four different zero-inflated

models to each of the series. For the two parameter-driven models, we specify a latent

autoregressive process of order two, and employ the MECM algorithm to fit the models.

For the two observation-driven models, we incorporate the lagged responses yt� 1 and yt� 2

to account for the temporal correlation, and employ the Newton–Raphson algorithm to fit

the models.

In the second scenario, data are generated from an ODZIB(2) model featuring the following

structures:

logit πtð Þ ¼ β0 þ β1x1, t þ φ1yt�1 þ φ2yt�2, and logit ωð Þ ¼ γ0: (47)

Here, x1, t is a covariate series generated from a standard uniform distribution, and φ1 and φ2

are the autoregressive coefficients for the lagged responses yt� 1 and yt� 2, respectively. The

values of the true parameters are the same as those for the parameter-driven model.

Again, we generate 100 replications of length 200 based on the preceding model. The same

four zero-inflated models are fit to each of the replications. The Akaike information criterion

(AIC) [30] is used to guide the selection of an optimal model in both scenarios. To evaluate the

magnitude of the absolute difference in AIC values, Burnham and Anderson [31] provide the

following guidelines (Table 10).

Thus, a difference in AIC values of two or more is considered meaningful, and a difference of

10 or more is considered pronounced.

State-Space Models for Binomial Time Series with Excess Zeros
http://dx.doi.org/10.5772/intechopen.71336

143



Figure 3 illustrates the performance of the four zero-inflated models, in terms of AIC differ-

ences, when data are generated from a PDZIB(2) model. The PDZIB(2) model serves as the

reference for model comparison. Each point represents the difference in the AIC value between

the target model and the reference model. As evident from the figure, the PDZIB(2) model

markedly outperforms the other three models for all 100 replications, with AIC differences

over 50. Although vastly inferior to the PDZIB(2) model, the PDZIP(2) model performs better

than the two observation-driven models. The ODZIB(2) performs the worst among the four

models considered. Parameter-driven models clearly exhibit a substantial advantage over

observation-driven models when the underlying data arise via a parameter-driven approach.

Figure 4 shows the performance of the four zero-inflated models, in terms of AIC differences,

when data are generated from an ODZIB(2) model. Similarly, the ODZIB(2) model serves as

Difference in AIC Level of empirical support for model with larger AIC

0�2 Substantial

4�7 Considerably less

>10 Essentially none

Table 10. Guidelines for assessing AIC differences.

Figure 3. AIC differences of zero-inflated fitted models relative to parameter-driven ZIB fitted models.
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the reference. The ODZIB(2) model easily performs the best among all four models for all 100

replications, reflecting a substantial improvement in model fit over the other three models

based on AIC differences (>20). Compared to the two parameter-driven models, the ODZIP(2)

model accommodates the data much more appropriately. Between the two parameter-driven

models, the PDZIB(2) model is substantially favored over the PDZIP(2) model. Thus,

observation-driven models markedly outperform parameter-driven models when the under-

lying data arise via an observation-driven approach.

We close this section with a brief discussion of issues germane to model selection. These issues

are relevant not only in evaluating the results of the preceding simulations, but also in facili-

tating the choice of a model in practice.

First, one may question which class of models should be considered when coping with binomial

time series data with excess zeros. In the simulation sets, the fitted parameter-driven models

markedly outperform the fitted observation-driven models when data are generated via a

parameter-driven approach. Although parameter-driven models are computationally expensive

to fit, observation-driven models do not appear to provide an adequate characterization of the

Figure 4. AIC differences of zero-inflated fitted models relative to observation-driven ZIB fitted models.
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data in such settings. Additionally, unlike observation-driven models, parameter-driven models

provide a description of the underlying latent processes that govern the temporal correlation

and zero inflation. Observation-driven models, in contrast, outperform parameter-driven models

when the underlying data are generated via an observation-driven approach. In general, the

selection of the class of models depends on the conceptualization of the model structure and

the perceived value of recovering and investigating the underlying latent processes. However, in

the context of zero-inflated count time series, since an understanding of the phenomenon that

gives rise to the data will rarely inform the practitioner as to whether the parameter-driven or

observation-driven conceptualization is more appropriate, we recommend the use of AIC or an

alternate likelihood-based selection criterion in choosing between these two model classes.

Second, one may question which distribution should be used when dealing with count time

series with excess zeros. The Poisson-type model with an offset is often considered an appro-

priate approximating model for a binomial-type model when the sample size is large and the

success probability is low. However, in the presence of zero inflation, our simulation results

indicate the necessity of using binomial-type models over their Poisson counterparts when the

underlying distribution is actually a binomial mixture. In practice, if the dynamics of the

phenomenon that gives rise to the data do not inform the underlying data generating distribu-

tion, we again recommend the use of AIC or another likelihood-based criterion in choosing an

appropriate distribution.

5. Application

In this section, to illustrate our proposed methodology, we consider an application pertaining

to the diagnosis coding of a severe disease, Kaposi’s sarcoma (KS). The application concerns

the assessment of a particular level change for a primary KS diagnosis. The data used are

extracted from the Healthcare Cost and Utilization Project (HCUP) database. We identify all

hospitalizations during the period from January 1998 through December 2011 during which a

primary or secondary diagnosis of KS is received. For case ascertainment, we use the Interna-

tional Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM), code 176. We

then aggregate all cases of KS by month to produce a national sample of the monthly KS

hospitalizations. The data consist of monthly counts of both primary and overall KS hospital-

izations from January 1998 to December 2011. The sample size for both KS series is 168.

Figure 5 shows both the primary KS count time series and the overall KS count time series. In

the latter, the overall KS count serves as the denominator for the binomial-type model and the

offset for the Poisson-type model.

A coding change was implemented in early 2008, during which many hospitals may have

modified the coding convention by switching the primary code to secondary, as this modifica-

tion may lead to an increase in hospital reimbursements. During the study period, a large

number of zero counts is observed and data among adjacent points seem to be highly corre-

lated. Since the primary KS count series exhibits a relatively large degree of zero-inflation

(appropriately 25% of the values are zero), we apply our proposed ZIB models to characterize

the data.
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Our analysis focuses on two objectives. First, we aim to model the dynamic pattern of the

primary KS series; in particular, we are interested in determining the appropriate order of the

autoregressive process embedded in the series, and evaluate whether there is a significant level

change at January 2008. Second, we aim to compare the performance of our proposed ODZIB

(p) and PDZIB(p) models to their counterpart ODZIP(p) and PDZIP(p) models.

For potential autocorrelation structures, we let p be either 1 or 2. As a result, we consider eight

candidatemodels in total. Each of themodels features an indicator to represent an intervention in

January 2008, which allows us to test whether there is significant level change at this time period.

Specifically, for the two PDZIB(p) models, we employ the following linear predictor:

logit πtð Þ ¼ β0 þ β1xt þ zt, (48)

zt ¼
Xp

i¼1

φizt�i þ εt, (49)

where t is a discrete time index, and xt = I(t > 2008) is a dummy variable indicating whether the

index t is greater than the predefined change point (January 2008). Thus, β1 reflects the level
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Figure 5. Monthly time series plots of primary KS hospitalizations (top panel) and overall KS hospitalizations (bottom

panel) from January 1998 to December 2011.
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change in KS counts due to the coding practice, and the φi denote the coefficients for the

autoregressive process.

For the two ODZIB(p) models, we employ the following linear predictor:

logit πtð Þ ¼ β0 þ β1xt þ
X

p

i¼1

φiyt�i, (50)

where β1 and φi reflect parameters analogous to those defined for the parameter-driven setting.

In addition, we consider four comparable Poisson-type models based on the work by Yang

et al. [5, 7]. For the two PDZIP(p) models, we employ the linear predictor

log μt

� �

¼ log ntð Þ þ β0 þ β1xt þ zt, (51)

zt ¼
X

p

i¼1

φizt�i þ εt: (52)

For the two ODZIP(p) models, we employ the linear predictor

log μt

� �

¼ log ntð Þ þ β0 þ β1xt þ
X

p

i¼1

φiyt�i: (53)

Model AIC ω β0 β1 φ1 φ2 σ

PDZIB(1) 922.98 0.248 �3.349 �0.249 �0.223 0.430

(0.034) (0.051) (0.120) (0.160) (0.044)

PDZIP(1) 923.31 0.248 �3.389 �0.242 �0.241 0.410

(0.034) (0.051) (0.116) (0.166) (0.043)

ODZIB(1) 1039.80 0.341 �3.184 �0.319 �0.007

(0.061) (0.024) (0.086) (0.002)

ODZIP(1) 1030.04 0.341 �3.224 �0.309 �0.007

(0.061) (0.046) (0.084) (0.004)

PDZIB(2) 922.98 0.248 �3.359 �0.237 �0.120 0.264 0.426

(0.034) (0.054) (0.126) (0.166) (0.153) (0.046)

PDZIP(2) 924.09 0.248 �3.395 �0.230 �0.119 0.263 0.402

(0.034) (0.052) (0.118) (0.178) (0.158) (0.045)

ODZIB(2) 1038.11 0.341 �3.250 �0.275 �0.008 0.007

(0.061) (0.033) (0.088) (0.002) (0.002)

ODZIP(2) 1028.49 0.341 �3.288 �0.266 �0.007 0.007

(0.061) (0.058) (0.087) (0.004) (0.004)

Table 11. Model fitting results for eight different zero-inflated models.
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Here, nt serves as an offset variable representing the overall number of KS diagnoses. AIC is

used to guide the selection of the optimal model.

Table 11 features results for the eight fitted candidate models. The parameter estimates along

with their standard errors are presented. All eight models indicate a significant level change

for the primary KS series after the introduction of the potential coding change practice

(β1 < 0). Among the first four models, which feature an autocorrelation structure of order

one, parameter-driven models are deemed superior to observation-driven models, with AIC

differences over 100. The PDZIB(1) model is slightly favored over the PDZIP(1) in terms of

the AIC value. We observe similar patterns in the last four models, which feature an auto-

correlation structure of order two. Among the parameter-driven models, adding a second

order to the autocorrelation offers little improvement in model fit, since the increase in

goodness-of-fit is offset by a decrease in parsimony. Therefore, the best model appears to be

PDZIB(1).

6. Conclusion

Count time series featuring a preponderance of zeros are commonly encountered in a variety

of scientific applications. In characterizing such series, modeling frameworks that assume a

Poisson mixture distribution have been extensively studied. However, minimal work has been

focused on modeling frameworks that assume a binomial mixture distribution. When data are

more naturally assumed to arise from the latter, a Poisson-type model with an offset is often

employed; however, the propriety of such an approximation is unclear.

We propose two general classes of models to effectively characterize a count time series that

arises from a zero-inflated binomial mixture distribution. The observation-driven ZIB model,

formulated in the partial likelihood framework, is fit using the Newton–Raphson algorithm.

The parameter-driven ZIB model, formulated in the state-space framework, is fit using the

MCEM algorithm. When data are generated from a binomial mixture, our proposed ZIB

models outperform their Poisson-type counterparts. We illustrate our methodology with an

application that assesses a particular level change for a diagnosis code.

Future work involves extending the current frameworks to the zero-inflated beta-binomial

(ZIBB) model. Both observation-driven and parameter-driven ZIBB models can be formu-

lated and fit based on methodological developments similar to those presented in this

work. However, weak identifiability could arise as a potentially problematic issue in

fitting the parameter-driven ZIBB model, as not only the overdispersion explicitly induced

by the beta distribution but also the correlated random effects account for any excess

variability in the data [5]. In addition, we could consider more complicated correlation

structures by incorporating moving average components in the linear predictors for

parameter-driven models. Such an extension necessitates non-trivial revisions to the

state-space model formulation and the complete-data likelihood, which warrant further

investigation.
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