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Abstract

The drive for aircraft efficiency and minimum environmental impact is requiring the
aerospace industry to generate technologically innovative and highly integrated aircraft
concepts. This has changed the approach towards conceptual design and highlighted
the need for modular low fidelity aircraft simulation models that not only capture
conventional flight dynamics but also provide insight into aeroservoelasticity and flight
loads. The key aspects that drive the need for modularity are discussed alongside
integration aspects related to coupling aerodynamic models, flight dynamic equations
of motion and structural dynamic models. The details of developing such a simulation
framework are presented and the utility of such a tool is illustrated through two test
cases. The first case focuses on aircraft response to a gust that has a spanwise varying
profile. The second investigates aircraft dynamics during control surface failure scenar-
ios. The Cranfield Accelerated Aeroplane Loads Model (CA2LM) forms the basis of the
presented discussion.

Keywords:modelling, simulation, flight dynamics, flexible aircraft, aeroelastic coupling

1. Introduction

Today’s concerns regarding growth in the demand for air transport and the environmental

impact of aviation has resulted in active efforts by airframe manufacturers to design more

efficient aircraft. They have adopted a strategy that sees an incremental introduction of novel

technologies, where at each stage the components that constitute the aircraft become more

integrated with each other. This effectively provides the opportunity to build the multi-

disciplinary design tools and experience needed to develop radical configurations. As a result,

the technical disciplines in aircraft design which have traditionally been relatively independent,

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



such as aeroelasticity and flight dynamics, must now integrate. This chapter aims to present the

methods used for developingmodelling and simulation tools that are needed to facilitate such an

integrated approach, especially focusing on large flexible aircraft.

The traditional approach to modelling and simulation of aircraft flight dynamics has framed

the problem in the form of the equations of motion (EoM) that couple nonlinear inertial

components with quasi-linear aerodynamic models [1, 2]. This has been found to be satisfac-

tory when modelling the flight dynamics of rigid aircraft, but the assumptions of linearity in

the method used to formulate the aerodynamic model remains the primary limitation of this

approach. Typically, this limitation is the cause of significant uncertainty early in the aircraft

design process where engineers can only resort to either empirical methods or panel based

methods. For conventional tube and wing configurations, the civil aviation industry has

developed and modified these methods based on extensive testing and operational data.

On the other hand, the radical configurations seen in the military domain rely on significant

effort put towards the identification of aerodynamic characteristics and validation of models

during the expensive flight test phase. The latter may often span the entire service life of the

aircraft [3, 4].

Accurate modelling and simulation of novel concepts aimed to address today’s societal con-

cerns is needed to enable the multidisciplinary approach necessary for design. However, it

cannot resort to the knowledge gained either from significant operational data or extensive

flight test data. As a result it can only rely on a physics based approach and moreover, this

approach needs to be modular if it is to assist in the necessary multidisciplinary design

process. Within this chapter, a brief review of past methods for modelling and simulation of

flexible aircraft is presented before the physics based modular approach is discussed. This is

followed by details of the methods needed to integrate aerodynamics, structural dynamics and

flight dynamics within a single simulation framework. Finally, the reader is presented with

two test cases that demonstrate the use of such a framework in aircraft design. The Cranfield

Accelerated Aeroplane Loads Model (CA2LM) [5, 6] forms the basis of the discussion presented

in this chapter.

2. Review of past methods

An extended version of the Collar’s triangle shown in Figure 1 highlights the physical phenom-

ena that need to be integrated for accurate modelling and simulation of flexible aircraft. Tradi-

tionally the flight dynamics community has focused on the link between inertial dynamics and

aerodynamics and it assumes structural dynamics to occur at far higher frequencies than those of

rigid-body dynamics. The vice versa is true for the structural dynamics community who have

mainly focused on specific loads cases for sizing airframe components. The development of

aircraft such as the Boeing 747 [7], which was exceptionally large, and the Rockwell B-1 [8] with

its flexible fuselage made it necessary for flight dynamics and structural dynamics to be inte-

grated. The work done by Schmidt and Waszak [9] is an early example of such an integrated

modelling approach carried out from a flight dynamicist’s perspective. The approach retains the

inertial components of the classical nonlinear six degree of freedom (6-DoF) equations [1, 2].
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However, the aeroelastic effects are introduced by the addition of states related to each aeroelas-

tic mode. Assuming that the free vibration modes are available, these make a set of orthogonal

functions. The modal representation of the airframe is often obtained through the use of beam

element models of the structure and the use of structural analysis software such as NASTRAN.

Thus the airframe deformation e(x,y,z,t) can be described in terms of the mode shape ϕi(x, y, z)

and the general displacement coordinate ηi(t), as follow:

e x; y; z; tð Þ ¼
X∞

i¼1

Φi x; y; zð Þηi tð Þ (1)

The sum of the mode shapes is theoretically infinite but in practice, a finite number of mode

shapes are selected in order to investigate the coupling of aeroelastic modes with rigid-body

dynamics. The coupling between the rigid-body motion and elastic motion takes place through

the forces and moments. The generic force and moment term can be described as function of

the inputs (as in the general rigid equations of motion) and the generalised displacement η and

its first derivative _η, as follow:

F ¼ f u;α; δ;…; η; _ηð Þ (2)

Figure 1. Extended Collar’s triangle.
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A new equation is then introduced to account for the elastic dynamics as:

€η þ ω
2
ηi ¼

Qηi

Mi

(3)

where Qηi and Mi are the generalised force and mass terms, respectively. This formulation

allows the application of stability analysis and flight control methods that have been devel-

oped based on traditional aircraft models.

Since the work done by Waszak and Schmidt, modelling frameworks of varying complexity

have been developed both in industry and academia. Industrial frameworks are highly com-

plex and aimed at supporting certification activities. These often couple Computational Fluid

Dynamics (CFD) with Computational Structural Modelling (CSM) and result in processes that

provide the desired insight, but at a very high computational cost [10–12]. Much research has

been carried out to reduce the computational cost and the effort needed to integrate CFD

solvers with CSM packages. However, more often the approach has depended on the specific

technical challenge faced by the designer. For example, a few CFD-CSM simulations may be

carried out to provide a means of validation for Reduced Order Models (ROMs). The various

methods for aerodynamic and structural analysis are summarised in Figure 2.

Academic research has shown the capability to link aeroelasticity with flight control and

develop novel approaches to aeroservoelastic analysis of highly flexible configurations [13–15].

Figure 2. A non-exhaustive list of modelling methods ranked by complexity and fidelity.
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Structural flexibility effects have been modelled through the implementation of a nonlinear

structural dynamics formulation and aerodynamic contributions have been captured by means

of an Unsteady Vortex LatticeMethod (UVLM) code. Solving the geometrically-nonlinear beam

equations in three different ways, Palacios et al. concluded that the intrinsic beam element

model is more efficient regarding the computational time than the classical displacements and

rotations based model. It has been shown that for certain geometries the intrinsic model

required two times less operations per iteration due to simpler algorithms.

With regards to aerodynamic modelling Palacios et al. [14] showed that an indicial response

based on the usual Pade approximation to Wagner’s step response performs better at low

reduced frequencies than the model based on a Glauert’s expansion of the inflow velocity

field. Three models—strip theory, strip theory with wingtip effects correction and UVLM—

have been compared for different reduced frequencies and wingtip deflections. It has been

shown that at low reduced frequency wingtip effects is of high importance both for low and

high aspect ratio wings. However, for the case of increased reduced frequencies there has been

no agreement of results for low aspect ratio wing. On the other hand, for high aspect ratio

wing the agreement between the UVLM and the strip theory without wingtip correction has

been shown. Such an agreement has been expected as increasing wing aspect ratio tends to

reduce the 3D effect over the wing. The dynamic stall effects have not been modelled in the

examples, nevertheless they may be of a great importance for a highly flexible wing. It is

important to notice at this point that, if such a dynamic stall model is required by the user,

empirical methods are much easier to implement within 2D strip theory than within the

UVLM. Palacios and Cesnik [13] included aerofoil deformations in both the structural and the

aerodynamic models: A Ritz (finite-section) expansion includes cross-sectional structural

deformations, while a Glauert’s expansion accounts for deformations of the aerofoil camber

line. Integration of both expansions into a single methodology provides a simple alternative to

more complex two-dimensional and three-dimensional models for preliminary active aeroelas-

tic analysis of High Aspect Ratio Wings (HARW).

Although the approach adopted by Palacios is computationally cheaper than coupled CFD-

CSM, real time simulation is still not possible. The need for real time simulation of flexible

aircraft arises from the concern that low frequency aeroelastic modes can potentially couple with

rigid-body modes such as the aircraft’s short period pitch oscillation and result in poor handling

qualities due to unwanted aircraft-pilot coupling [16]. Furthermore, novel concepts for future

aircraft, such as those based on blended-wing-body configurations, need detailed stability and

control analysis early in the design stage. A real time pilot-in-the-loop simulation environment is

therefore needed to identify and solve stability and control problems. The development of such a

simulation model requires a trade-off between model fidelity and computational cost.

3. Physics based modular approach

3.1. Aspects of physics based modelling

The case for developing physics based simulation models and the motivation to move away

from the classical formulations that rely on stability and control derivatives stems from the
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need for flight dynamic insight at the early conceptual design of highly integrated concepts.

For such concepts, a database of stability and control derivatives such as Heffley and Jewell

[17] does not exist. Moreover, these concepts integrate numerous technologies, such as active

folding wingtips for flight and loads control [18] for which empirical methods also do not exist.

The modelling and simulation of airframe aerodynamics alone can be complex, but a further

layer of complexity is added when considering flexible aircraft for which, the inertial, aerody-

namic and structural models need to be coupled. Multiple calculation points, known as struc-

tural nodes and aerodynamic panels, must be defined around the airframe and used to capture

local flow physics. The structural model must be coupled with the aerodynamics model so that

aerodynamic forces and moments acting on the structure modify the effective shape of the

aircraft. To complete such an aeroelastic coupling, the updated shape is used to compute the

aerodynamic loading for the next iteration.

This additional layer of complexity and iteration process requires a clear definition of methods

used when investigating aircraft flight dynamics. These can be broadly divided into two

categories:

a. Low fidelity models used in particular for flight simulation and preliminary design stud-

ies. These allow for a rapid flight dynamic analysis and may allow parameters to be

modified for identifying and quantifying possible optimised solutions.

b. High fidelity computationally expensive models which are used to consolidate the results

obtained via low fidelity simulations and help in the investigation of specific problems

where low fidelity simulation is not accurate.

For a given problem, multiple approaches can be adopted depending on the needs of the user

or the key characteristics of the simulation framework. For example, the structural dynamics of

the aircraft can be captured through the integration of a full Finite Element (FE) model with

high fidelity, or with a simple beam, or ‘stick’ model. Within the latter method, multiple sub-

layers of complexity can be added depending on the mathematical formulation being used. A

direct solving method, which is the most intuitive as it is based on discrete structural loads and

nodes, will also be the most laborious and computationally heavy for a high number of

structural elements. Alternatively, the modal approach restricted to frequency ranges of inter-

est will be more efficient for linear deformations. In High Altitude Long Endurance (HALE)

aircraft or HAR Wing concepts, structural nonlinearities can also become a physical phenom-

enon that must be captured by the model. Nonlinearities may be relevant only for specific

modes and parts of the structure so that optimal solving methods can be identified as well.

Similarly, centre of gravity (CG) position and inertial terms will vary with structural flexibility

and displacement. Therefore, acceptable or desired fidelity must be identified. For example,

assuming a fixed CG and inertia can lead to significant simplifications in the EoM. However,

this may be incorrect for HALE configurations where most of the mass lies in the flexible wing

that undergoes large deformations.

Multiple methods to capture the aerodynamic loads acting on the aircraft have also been

developed for different levels of fidelity; from simple lifting line theory, use of Engineering

Science Data Unit (ESDU) to more complex UVLM and further to more expensive CFD based
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processes. The desired accuracy and performance can be optimised depending on the pur-

pose of the framework. Dynamic stall models can also be added for a more accurate

simulation of high angle of attack or flow detachment scenarios [19]. CFD simulations are

at the higher fidelity end of the spectrum and can be used for construction of the aerody-

namic databases [20].

3.2. Modular simulation

The objectives and scope of the problem being considered will undoubtedly dictate which

mathematical formulation is selected. For instance, the aerodynamic forces can be calculated

using either a Modified Strip Theory (MST) or a UVLM method [21] depending on the fidelity

requirements and the available computational power. The structural deflection of the wing can

be assumed either linear through an Euler-Bernoulli model or nonlinear with a Timoshenko

model [22]. Various atmospheric disturbance models [23] are also implemented so that flight

simulations with or without gusts and turbulence are possible for specific gust loads and flight

control research. Flight control laws and actuation models of a variety of control surfaces can

be used if the user wishes to investigate and develop optimal control or loads alleviation laws.

The gravity and navigation model allows for trajectory and autopilot if required. Specialised

hardware can be used to accelerate the model and reach real time performances suitable for

pilot in the loop simulations at 50 Hz, paving the way for handling quality analysis of flexible

aircraft concepts. So far a number of different modelling approaches towards flight dynamics

modelling of flexible aircraft have been introduced. This section focuses on the possible prob-

lems and issues that emerge when integrating the various elements of such a framework and

discusses the need for modularisation.

The basic components required for building a simulation framework are as follows:

1. A structural dynamics model that outputs airframe deformation. This should require

forces and moments acting on the structure as inputs, and provide the corresponding

displacements, velocities and accelerations as outputs.

2. An aerodynamic model that provides aerodynamic forces and moments as a function of

the flight conditions, rigid-body attitudes and structural deformations.

3. An EoM block which uses the total forces and moments acting on the aircraft to compute

the vehicle acceleration, velocity, attitude and position in the various reference frames.

This will require a clear definition of aircraft mass properties.

4. Atmosphere model that outputs parameters such as Reynolds number required to calcu-

late aerodynamic forces and moments.

5. A gravity model to compute the gravitational forces acting on the aircraft.

6. External atmospheric disturbances based on external velocity fields through which the

aircraft is flying. This can be used for carrying out gust/turbulence simulations.

7. Control surface and flight control systems to simulate controlled flight.

Figure 3 illustrates the links between each of the modules and their relative dependencies.
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Adopting a modular approach allows for a more versatile framework that can be used to

study different configurations and scenarios. Moreover, it allows the adoption of multiple

approaches to solve particular mathematical or physical problems. The overhead effort

required to develop a modular framework, which primarily takes the form of software

engineering, is justified by the end result. If carefully managed a versatile framework that

allows solvers and models to be treated in a plug-and-play fashion is achievable. An exam-

ple of a modular framework is given in Figure 4. The CA2LM framework offers the user

multiple options in most of the different mathematical models. The modular approach was

considered at the early stages of framework development, and has allowed continuous

development aiming for a versatile academic research tool.

4. Framework setup for CA2LM

4.1. Wing aerodynamic modelling

There are numerous ways in which wing aerodynamics can be modelled for flexible wings,

such as directly via CFD using RANS simulations or steady or unsteady VLM. However, given

that there can be thousands of cases that need to be considered for flight loads, computation-

ally cheap alternatives are needed. Within the CA2LM framework, the aerodynamics module

Figure 3. Links between each modules of the simulation framework.
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contains the implementation of the MST based steady aerodynamics coupled with unsteady

aerodynamic models [24].

To model the unsteady build-up of lift due to changes in angle of attack and airspeed, a state-

space representation of the unsteady aerodynamics of the aerofoil has been implemented

following the work done by Leishman and Nguyen [25]. This assumes an arbitrary motion of

the aerofoil as combination of the indicial lift response and the superposition principle apply-

ing the well-known Duhamel’s integral [26]. The following general two-pole approximation of

the Wagner function has been adopted in CA2LM:

Φ λð Þ ≈ 1�A1e
�b1λ �A2e

�b2λ (4)

where λ = 2Vt/c is the relative distance travelled by the aerofoil in terms of semi chords whilst A

and b are the indicial response parameters that depend on the boundary conditions. Using the

two-pole representation, Leishman and Nguyen developed the lift response to a change in

angle of attack α(t) as follow:

_x1

_x2

� �

¼
2V

c

�b1 0

0 �b2

� �

x1

x2

� �

þ
1

1

� �

α tð Þ (5)

and the output equation of the normal force coefficient is given by:

Figure 4. CA2LM framework overall modular architecture.
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CN tð Þ ¼ 2π
2V

c
A1b1A2b2½ �

x1

x2

� �

(6)

Coefficients Ai and bi have been derived by Leishman in order to obtain the indicial response

approximation for a two-dimensional subsonic flow [27]. However, since the Wagner indicial

response cannot be applied to compressible flows, a correction introduced by Leishman and

Beddoes [28], has been used including the Prandtl-Glauert coefficient β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
p

. The full

equation of unsteady aerodynamics is then described as:

ϕ τð Þ ≈ 1� 0:918e�0:366β2 � 0:082e�0:102β2 (7)

Increasing the number of poles of the Wagner function allows a closer approximation to be

obtained, but at the cost of an increased number of states.

In the CA2LM framework the two-pole representation is used to find lift and pitching moment

response with respect to a change in angle of attack α and pitch rate q for each section. The

generic total normal force coefficient is given by [29, 30]:

CN tð Þ ¼ Cc
N tð Þ þ Cnc

Nα tð Þ þ Cnc
Nq tð Þ (8)

where the superscripts c and nc represent the circulatory and non-circulatory terms respec-

tively. Once aerodynamic characteristics are obtained at each aerodynamic node, the results

are extended along the wingspan applying the method defined by DeYoung and Harper [31].

This approach considers the lift line and its trailing vortex as continuous. The circulation

strength, however, can be discretized in as many control points as desired. In the CA2LM

framework the control points are assumed to be at the aerodynamic nodes. DeYoung and

Harper stated that a number of seven control points is enough to correctly represent the span

loading without any sharp discontinuities. As the lifting line is discretized in m nodes, the

method allows the calculation of the aerodynamic coefficients as follows [29]:

cClv ¼
X

m

n¼1

AvnGnαn, n ¼ 1, 2,…, m (9)

where Avn is the influence matrix which defines the effect of the circulation in the node v to the

downwash at node n. The load coefficient G is dimensionless circulation and describes the

strength of the circulation at any node n. When the aerodynamic forces and moments at each

node are obtained, the loads are transposed from nodal-axis to body-axis and summed to give

the overall lift, drag and moment acting on the aircraft structure.

Following the same methodology used for the calculation of the drag, the pitching moment is

comprised of circulatory and non-circulatory term, described as follow:

CM ¼ Cc
Mα

þ Cc
Mq

þ Cnc
Mα

þ Cnc
Mq

(10)

The drag is instead modelled as the sum of the zero-lift drag coefficient, CD0
, and the pressure

drag coefficient, CDP
. The unsteady drag force has been defined by Leishman as:
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CD ¼ CD0
þ CN sinαe tð Þ � η

c
Cc cosαe tð Þ (11)

where the effective angle of attack αe is function of both the states and it is described as:

αe tð Þ ¼ β2
2V

c
A1b1x1 þ A2b2x2ð Þ (12)

and the chord force term is:

Cc tð Þ ¼
2 π

β
α2
e tð Þ (13)

As a real flow is unable to be fully attached in any real flow, the coefficient ηc is used to account

for the properties of the real flow.

4.2. Structural modelling

Now all aerodynamic forces have to be applied to the structures of the aircraft. This is done in

the structural dynamics modelling block.

Aerodynamic forces and moments, along with forces and moments due to gravity, are

converted to modal forces F through modal transformation matrix ΘT

m
:

Fi ¼ Θ
T

m
Faero (14)

The next step is to solve the following structural equation of motion:

Fi

mi

¼ €xi þ 2ζωn _xi þ ω2
nxi (15)

where Fi represents the modal forces, mi the modal masses, ωn, i the modal natural frequencies,

ζ the modal damping ratios, i is the modes number, xi, _xi, €xi are the modal displacements,

velocities and accelerations. To obtain the structural dynamics in modal form, the Normal

Modes analysis solver SOL 103 from the NASTRAN finite element analysis program is used.

Its output (modal masses, natural frequencies and modal transformation matrix) are used in

the CA2LM framework to calculate structural deflections. The displacements, velocities and

accelerations of each structural node can then be obtained using the transformation matrix.

As these deflections, velocities and accelerations are applied to aerodynamic frame, the inter-

polation between structural and aerodynamic nodes is executed.

The first 12 structural modes are considered in the CA2LM framework because the tool is

designed to investigate interactions between aeroelasticity effects and flight dynamics phe-

nomena that are typically at low frequencies. An illustration of an aircraft first four modes is

given in Figure 5.

It is important to note that only small wingtip deflections (less than 10% of a wing semi-span)

are modelled within CA2LM framework as linearly varying beam properties are assumed.

However, recent developments in highly flexible aircraft [32] have introduced wingtip
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deflections of more than 25% of a wing semi-span. To investigate the effects of such high

structural deformations on flight dynamics, a structural dynamics model capable of capturing

the nonlinear phenomena due to large deformations is needed.

4.3. Equations of motion

For large flexible aircraft, the centre of gravity (CG) position may vary significantly as a function

of structural deformation. This is typically ignored in the classical EoM formulation for rigid

aircraft [1, 2]. This issue together with continuously deforming aerodynamic and structural

stations requires the careful definition of the axes systems for each module of the simulation

framework. The selection of an appropriate axes system has been extensively discussed for many

years [8, 33, 34]. Effectively there are two approaches that may be adopted: (1) use an arbitrary

point on the aircraft also called the body axes centre (BAC) or, (2) adopt the mean axes system

which has a floating point as the reference centre [35]. The latter has seen widespread application

in research [9, 36] because its formulation minimises the coupling between rigid-body dynamics

and aeroelastic modes. On the other hand, the axes system centre is often collocated with the CG

which moves in phase with the flexible airframe, making the application of traditional flight

dynamics analysis techniques more difficult. The idea of the mean axes system’s inertial

decoupling and complexity of its formulation has been questioned [34].

The CA2LM framework uses a fixed BAC as a reference centre for its flight dynamic axis

system. This allows the framework to be used in both flexible and rigid modes and more

importantly, it allows the integration of classical flight dynamics post-processing tools.

Figure 5. First four modes of the AX-1 aircraft implemented in CA2LM.
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The derivation of the EoM begins by considering a fixed node which is located away from the

BAC, as shown in Figure 6. The velocities of this point can be expressed as:

u

v

w

2

6

4

3

7

5
¼

U þ _x

V þ _y

W þ _z

2

6

4

3

7

5
�

x

y

z

2

6

4

3

7

5
�

p

q

r

2

6

4

3

7

5
(16)

And therefore, the following accelerations can be obtained:

ax

ay

az

2

6

4

3

7

5
¼

_u

_v

_w

2

6

4

3

7

5
�

u

v

w

2

6

4

3

7

5
�

p

q

r

2

6

4

3

7

5
(17)

The velocities U, V and W express the motion of the BAC, while x, y and z express the position

of the node. The angular rates p, q and r represent the angular velocities of the overall aircraft.

Merging both equations gives following accelerations expressions:

ax ¼ _U � rV þ qW � x q2 þ r2
� �

þ y pq� _rð Þ þ z prþ _qð Þ þ €x � 2r _y þ 2q _z (18)

ay ¼ _V � pW þ rU þ x pqþ _rð Þ � y p2 þ r2
� �

þ z qr� _pð Þ þ €y � 2p _z þ 2r _x (19)

az ¼ _W � qU þ pV þ x pr� _qð Þ þ y qrþ _pð Þ � z p2 þ q2
� �

þ €z � 2q _x þ 2p _y (20)

Figure 6. Motion of a body and its particle within the frame.
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Now applying Newton’s second law with a nodal mass of δm the EoM can be obtained as

follows:

X

Y

Z

2

6
6
6
4

3

7
7
7
5
¼

XN

i¼1

δmi

ax

ay

az

0

B
B
B
@

1

C
C
C
A

¼
XN

i¼1

δmi _v0 þ
XN

i¼1

δmiω� v0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Rigid body dynamics force

þ
XN

i¼1

δmiω� ω� rið Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Centrifugal force

þ
XN

i¼1

δmi _ω � ri

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
Euler force

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Axes reference point offset

þ
XN

i¼1

δmiarel, i

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Inertial force

þ2
XN

i¼1

δmiω� vrel, i

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Coriolis force
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Flexibility effects

(21)

L

M

N

2

6
6
4

3

7
7
5
¼ I _ω þ ω� Iωð Þ

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
Rigid body dynamics

þ
XN

i¼1

δmiri � _v0 þ
XN

i¼1

δmiri � ω� v0ð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Axes reference point offset

þ _Iωþ ω�
XN

i¼1

δmi ri � vrel, ið Þ þ
XN

i¼1

δmiri � arel, i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Flexibility effects

(22)

The forces and moments on the left hand side of the above equations are the sum of the forces

and moments obtained from the structural dynamics, aerodynamics and gravitational modules.

4.4. Aeroelastic coupling and equations of motion integration

The previous sections have shown that each module within the simulation framework requires

the definition of its own axis system and a separate means of modelling the aircraft, whether it

is through a set of structural nodes or aerodynamic panels. This presents two issues that must

be addressed before scenarios can be simulated: (1) node and panel distributions and densities

need to be optimised based on the scope of the research and, (2) the structural nodes must be

linked to aerodynamic nodes.

As seen in the previous section, the structural loads calculations rely on a set of structural

nodes. Displacements, velocities and accelerations of each node are calculated in all 6 degrees

of freedom.1

1

It is possible to constrain specific degrees of freedom to reduce model complexity after a comparison study with the 6

DoF model. For stiff wings, structural rotation around the vertical axis can be neglected for example.
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Appropriate balance between accuracy and computational cost must be obtained using a

convergence study to identify the optimal number of structural nodes and aerodynamic panels

or strips. This number can vary with aircraft configuration and the type of flight dynamics

being considered. However, the number of structural nodes may be different from the optimal

number of aerodynamic stations. A modular simulation environment such as CA2LM allows

the definition of different numbers of aerodynamic strips and structural nodes. The aerody-

namic forces and moments calculated at the aerodynamic stations must then be transferred to

the structural set of nodes using various interpolation methods. Similarly the structural dis-

placements, velocities and accelerations calculated from the structural model must be trans-

ferred to the aerodynamic stations in order to calculate the local forces and moments with

structural flexibility. An example of this coupling can be found in Figure 7 where both the

structural node and aerodynamic station layout is illustrated for an example aircraft.

The EoM rely on the aircraft total forces and moments, acting around the centre of gravity of

the vehicle. Therefore, the updated CG position due to structural deformation must be used to

calculate the new global set of moments acting on the aircraft. Aerodynamic loading calculated

at each aerodynamic station is merged and calculated at the temporary CG position. Only then

can the coupling between the aerodynamic and structural block be made with the EoM.

The output of the EoM such as aircraft position, attitude and velocity can then be used by

conventional atmospheric models to compute the dynamic pressure and other aerodynamic

Figure 7. Illustration of the different mass, structural node and aerodynamic station positions for the AX-1 aircraft.

Flight Dynamic Modelling and Simulation of Large Flexible Aircraft
http://dx.doi.org/10.5772/intechopen.71050

63



parameters used by the aerodynamic model, closing the main calculation loop. Similarly, the

adequate gravity contribution can be computed with position (or altitude) and applied to the

structural model.

Appropriate inputs, usually on aircraft control surface and thrust, should be linked to the

model in the correct format. Control surface dynamics can be implemented for higher fidelity.

As each module is included in the simulation framework, correct integration testing must be

conducted to verify that each modules are behaving as expected. Therefore, as the complexity

of the framework increases, thorough testing also requires more effort. It can also be really

helpful to have visual aids and illustrations of the simulation. For example, an illustration of

aerodynamic station and structural node positions updated with structural flexibility at each

time step can be found in Figure 8 and is very useful to visualise the modelled aircraft.

5. Framework test cases

5.1. Multidimensional discrete gust loads simulation

The aim of this test case is to demonstrate the use of simulation frameworks such as CA2LM

for assessing the impact of multidimensional discrete gust modelling on conventional gust

loads practices seen in industry. The prediction and control of aircraft gust loads is a key step

in aircraft design development and certification. The methodology to model realistic discrete

and continuous atmospheric disturbances has been derived based on many years of flight

testing and operational data [37]. Hoblit [23] covers a concise but thorough overview of the

historical development of gust and turbulence modelling in whereas a detailed discussion of

current industry practices can be found in [35]. However, the methods to date simplify the

process of calculating gust loads by neglecting spanwise variations in the gust/turbulence

fields. This case study demonstrates the application of the CA2LM framework for studying

gust profiles that have spanwise variations. Atmospheric disturbances are usually added

through the use of velocity fields. For each aerodynamic station, the wind or gust velocities

can be added to the rigid-body translation, rotation and elastic structural dynamics in a local

Figure 8. Aircraft flexible structure overlaid with aerodynamic profiles and control surfaces for pilot input visualisation.
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nodal axis system to compute local changes to angle of attack and flow velocities. If gusts are

defined as a velocity field, the gust model should also use the aerodynamic station layout and

aircraft attitude to apply a penetration effect.

With the development of HALE UAV aircraft, the lack of spanwise non-uniform velocity

distributions was identified as critical both for realistic and theoretical modelling purposes.

The gust profiles specified in certification requirements [37, 38] implicitly assume that a

uniform velocity distribution causes the highest internal loads and therefore, are the only cases

that need to be investigated. Therefore, Defense Advanced Research Projects Agency (DARPA)

focused on the derivation of a modified discrete gust model to account for the extra dimen-

sional term and led to the expression of the discrete gust velocity Vdg to be defined by:

Vdg xd; yd
� �

¼ Vdof x xd;Hxð Þf y yd;Hy

� �

(23)

where:

f x ¼
1

2
1� cos

πxd
Hx

� 	� 	

(24)

and fy is the corresponding sinusoidal function. Vdo is the gust intensity, Hx and Hy are the

longitudinal and lateral gust gradients respectively and xd and yd are the longitudinal and

lateral positions of the interest point in the discrete gust reference frame. Specifications to

the range of both gust gradients can be made using similar hypothesis as before, ranging

from 9 to 107 m.2 An illustration of the multidimensional discrete gust velocity field is given

in Figures 9 and 10.

This type of model was implemented as a feature within the CA2LM framework and applied

to a conventional long range flexible aircraft configuration known as the AX-1. A study

investigating the impact of such an approach to gust loads prediction for conventional aircraft

was then carried out [39] using a sinusoidal lateral distribution as follows:

Figure 9. From a 1D to 2D discrete gust definition using coupled sinusoidal variation functions.

2

In fact, it is necessary to push the higher end of the gradient spectrum so as to reach a minimum of 12.5 times the

maximum aerodynamic chord of the vehicle and/or reach the peak maximum of the evaluated quantity with respect to the

various conditions.
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f y ¼ cos
πyd
Hy

� 	

(25)

A sufficiently large number of realistic flight points compatible with the framework and

implemented aircraft were used for this study. A number of gust gradients were used to allow

a comparison between the conventional spanwise uniform velocity field and the multi-

dimensional model of interest with enough fidelity. All simulations were made in an open

loop system, where no correction to aircraft attitude is made. Two different approaches were

used to scale the maximum gust intensity, keeping the core hypothesis of the certification

requirements. This is justified by the very nature of the derivation of the original model, based

on flight testing and loads data and not actual mapping of the gust velocity fields.

In both cases, the use of a multidimensional model led to lower gust structural wing root loads

and vertical loads for an equivalent longitudinal gust gradient, as illustrated in Figure 11. In

one case of velocity tuning methodology, some local loads extrema were higher than with the

conventional model, possibly leading to higher occurrence numbers of specific load values.

This also came to a cost in computation time, increasing by an order varying with Hy

discretisation size the number of simulations required for a complete gust loads loop process.

Overall, these results were to be expected with the chosen spanwise distribution. Maximal gust

intensity was centred on the fuselage in this study. But these results can vary quite dramati-

cally with the selected fy distribution. If focused on matching the vertical load factor whilst

keeping wingtip loads to the highest, this could lead to:

Figure 10. Visual display of the discrete gust velocity field for a given set of gust gradients used in the loads prediction

loop.
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• A ‘realistic’ model of the gust velocity field compliant with the historical development of

the methodology based on vertical load and angle of attack data recordings.

• Higher wing root structural loads due to increased wingtip loading.

5.2. Aileron failure simulations

A control surface failure scenario is one of many failure cases that need to be considered for

flight loads evaluation. Here the CA2LM framework is used for simulating a soft aileron failure

where the port aileron undergoes an actuation failure and is forced to undergo a 15
�

amplitude

limit cycle oscillation (LCO) whilst starboard aileron remains in the original trim setting. The

dynamics of the aileron actuators are modelled through the transfer function:

δa sð Þ ¼
�1:77sþ 399

s2 þ 48:2sþ 399
(26)

The main results obtained from the simulation of the AX-1 model are shown in Figure 12. The

port aileron moves under a limit cycle oscillation at a constant frequency of 1.16 Hz, which

corresponds to the first wing structural bending mode. The amplitude of this oscillation is set

to �15
�

.

Figure 11. Time histories of wing root bending offset relative to trim for a given Hx and various Hy gradients.
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The frequency content of the roll rate p and yaw rate r signals show that the failure has excited

a low frequency lateral-directional mode corresponding to periods of Tp = 10.24 s and Tr = 10.92

s in roll and yaw respectively. These correspond to the usual frequencies of the aircraft’s Dutch

roll mode. The highest peaks, just above 1 Hz, are the direct result of the simulated aileron

forcing function. The load factor (n) only exhibits large transients when the aileron failure is

initiated.

Figure 13 shows the frequency content of the wing root bending moment Mroot at different

aileron excitation frequencies. At a frequency of 1.245 Hz, slightly higher than the frequency of

the first structural mode of the wing (1.1634 Hz), the first aeroelastic mode appears and a

resulting resonance is observed. Upon magnification (bottom right subfigure) another two

peaks can be observed at 2.5 and 3 Hz. These correspond to aeroelastic modes associated with

the 5th and 11th aircraft structural modes. At the frequency of 0.9 Hz,Mroot is higher than at the

frequency of 1.1 Hz, which can be explained by the fact that the forcing function frequency is

getting closer to rigid-body frequencies.

Simulations like this provide the insight loads engineers and flight control engineers need for

exploring scenarios where a novel solution could be tested and design improvements can be

made. Simulation frameworks such as CA2LM provide a rapid simulation capability needed

especially at low technology readiness levels, where engineers and designers are interested in

the impact of novel technologies such as folding wingtips, possible aircraft-pilot coupling

scenarios [40] and flight loads during collision avoidance [6].

Figure 12. Example of AX-1 aileron cycle oscillation failure simulation results.
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6. Conclusions

Technologically innovative and highly integrated concepts are being considered in response to

increasing aircraft efficiency and reducing the environmental impact of aviation. The develop-

ment of these concepts has highlighted the need for modular low fidelity aircraft simulation

frameworks at the conceptual design stage that are capable of predicting the flight dynamics,

flight loads and aeroservoelastic characteristics. This chapter has presented the key aspects of

developing such a framework and the need for a modular physics based approach. This

approach requires a careful integration of aerodynamic models with models for structural

dynamics and then both need to be coupled with the flight dynamic equations of motion. It

has been shown that the aerodynamic representation must include a combination of unsteady

and steady aerodynamic models implemented through aerodynamic panels. These panels

need to then be linked to the aircraft structure which is typically implemented as a series of

nodes and beams. The coupled aero-structural model then needs to provide forces and

moments to the equations of motion. The details of developing such a simulation framework

has been presented in this chapter and the utility of such a tool is illustrated through two test

cases. The first case focuses on aircraft response to a gust that has a spanwise varying profile.

The second investigates aircraft dynamics during control surface failure scenarios. The

Cranfield Accelerated Aeroplane Loads Model (CA2LM) forms the basis of the presented

discussion.

Figure 13. Wing root bending moment frequency spectrum for different aileron excitation.
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