
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 2

Modeling Strategies to Improve the Dependability of
Cloud Infrastructures

Erica Teixeira Gomes de Sousa and
Fernando Antonio Aires Lins

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71498

Abstract

Cloud computing presents some challenges that need to be overcome, such as planning
infrastructures that maintain availability when failure events and repair activities occur.
Cloud infrastructure planning that addresses the dependability aspects is an essential
activity because it ensures business continuity and client satisfaction. Redundancy mech-
anisms cold standby, warm standby and hot standby can be allocated to components of
the cloud infrastructure to maintain the availability levels agreed in service level agree-
ment (SLAs). Mathematical formalisms based on state space such as stochastic Petri nets
and based on combinatorial as reliability block diagrams can be adopted to evaluate the
dependability of cloud infrastructures considering the allocation of different redundancy
mechanisms to its components. This chapter shows the adoption of the mathematical
formalisms stochastic Petri nets and reliability block diagrams to dependability evalua-
tion of cloud infrastructures with different redundancy mechanisms.

Keywords: dependability evaluation, state space models, non-state space models,
redundancy mechanisms, maintenance policies

1. Introduction

Ensuring the availability levels required by the different services hosted in the private cloud is

a great challenge. The occurrence of defects in these services can cause the degradation of their

response times and the interruption of service of a request due to unavailability of the required

resource. The interruption of these services can be caused by the occurrence of failure events in

the hardware, software, power system, cooling system and private cloud network. When the

occurrence of defects is constant, users give less preference to hiring service providers due to

reduced availability, reliability and performance of these services [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

The dependability assessment can minimize the occurrence of faults and failure events [2] in

the private cloud and promote the levels of availability and reliability defined in the SLAs,

avoiding the payment of contractual fines. One option to ensure the availability of services

offered in the private cloud is to assign redundant equipment to its components. Redundant

devices allow service reestablishment, minimizing the effects of failure events. The major

problem with this assignment is the estimation of the number of redundant equipment and

the choice of the type of redundancy that must be considered to guarantee the quality of the

service offered. The estimation of the type and number of redundant equipment should also

consider the cost of the quantitative of each type of redundancy mechanism attributed to the

components of the cloud computing [3, 4].

2. Basic concepts

The dependability evaluation denotes the ability of a system to deliver a reliably service. Depen-

dability measures are reliability, availability, maintainability, performability, safety, testability,

confidentiality, and integrity [2].

Dependability evaluation is related to the study of the effect of errors, defects and failures in

the system, since these have a negative impact on the dependability attributes. A fault is

defined as the failure of a component, subsystem or system that interacts with the system in

question [5]. An error is defined as a state that can lead to a failure. A defect represents the

deviation from the correct operation of a system. A summary of the main measures of depend-

ability is shown below.

The reliability of a system is the probability (P) that this system performs its function satisfac-

torily, without the occurrence of defects, for a certain period of time (T). Reliability is

represented by Eq. (1), where T is a random variable that represents the time for occurrence

of defects in the system [3, 4].

R tð Þ ¼ P T > tf g, t ≥ 0 (1)

The probability of the occurrence of defects up to a time t, is represented by Eq. (2), where T is

a random variable that represents the time for system failures [3, 4].

F tð Þ ¼ 1� R tð Þ ¼ P T ≤ tf g (2)

Eq. (3) represents the reliability, considering the density function F(t) of the time for occurrence

of failures (T) in the system [3, 4, 6].

R tð Þ ¼ P T > tf g ¼

ð
∞

t

F tð Þdt (3)

The Mean Time to Failure (MTTF) is the average time for defects to occur in the system. When

this average time follows the exponential distribution with parameter λ, the MTTF is repre-

sented by Eq. (4) [3, 4, 6].

Dependability Engineering8

MTTF ¼

ð
∞

0

R tð Þdt ¼

ð
∞

0

e �λð Þt ¼
1

λ
(4)

The failures can be classified in relation to the time, according to the mechanism that originated

them. The behavior of the failure rate can be represented graphically through the bathtub curve,

which presents three distinct phases: infant mortality (1), useful life (2) and aging (3). Figure 1

shows the variation of the failure rate of hardware components as a function of time [7].

During the infant mortality phase (1), a reduction in the failure rate occurs. Failures during this

period are due to equipment manufacturing defects. In order to shorten this period, manufac-

turers submit the equipment to a process called burn-in, where they are exposed to high

operating temperatures. In the useful stage (2), the failures occur randomly. Equipment reli-

ability values provided by manufacturers apply to this period. The service life of the equip-

ment is not normally a constant. It depends on the level of stress in which the equipment is

subjected during that period. During the aging phase (3), an increase in the failure rate occurs.

In high availability environments, one must be sure that the infant mortality phase has passed.

In some cases, it is necessary to leave the equipment running in a test environment during this

time. At the same time, care must be taken to have the equipment replaced before entering the

aging phase.

The availability of a system is the probability that this system is operational for a certain period

of time, or has been restored after a defect has occurred. Uptime is the period of time in which

the system is operational, downtime is the period of time when the system is not operational

due to a defect or repair activity occurring, and uptime + downtime is the time period of

observation of the system. Eq. (5) represents the availability of a system [3, 4, 6].

A ¼
uptime

uptimeþ downtime
(5)

Computational systems and applications require different levels of availability and therefore

can be classified according to these levels. U.S. Federal Aviation Administration’s National

Airspace System’s Reliability Handbook classifies computer systems and applications

according to their criticality levels [1]. These computational systems and applications can be

Figure 1. Bathtub curve.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

9

considered critical critics when the required availability is 99.99999%, critical when the

required availability is 99.999%, essential when the required availability is 99.9% and routine

when the required availability is 99% [1].

The maintainability is the probability that a system can be repaired in a given period of time

(TR). The maintainability is described by Eq. (6), where TR denotes the repair time. This equation

represents maintainability, since the repair time TR has a density function G(t) [3, 4, 6].

V tð Þ ¼ P TR ≤ trf g ¼

ðtr
0

G tð Þdt (6)

The Mean Time to Repair (MTTR) is the average time to repair the system. When the time

distribution function of repair is represented by an exponential distribution with parameter μ,

the MTTR is represented by Eq. (7) [3, 4, 6].

MTTR ¼

ð
∞

0

1�G trð Þdt ¼

ð
∞

0

1� e μð Þtr ¼
1

μ
(7)

Mean Time Between Failures (MTBF) is the mean time between system defects, represented by

Eq. (8) [3, 4, 6].

MTBF ¼ MTTRþMTTF (8)

Performability describes the degradation of system performance caused by the occurrence of

defects [3, 6].

3. Redundancy mechanisms

The redundancy mechanisms provide greater availability and reliability to the system during

the occurrence of failure events due to the maintenance of components operating in parallel,

that is, a redundant system has a secondary component that will be available when the

primary component fails. Thus, redundancy mechanisms are designed to avoid single points

of failure and therefore provide high availability and disaster recovery if necessary [1, 8].

The redundancy mechanisms can be classified as active-active and active-standby. Active-

active redundancy mechanisms are employed when the primary and secondary components

share the workload of the system. When any of these components fails, the other component

will be responsible for servicing the system users’ requests. These redundancy mechanisms

can be classified as N + K, where K secondary components identical to N primary components

are required for system workload sharing. In the N + 1, configuration, a secondary component

identical to the primary N components is required for sharing the system workload. In the

N + 2, configuration, two secondary components identical to the N primary components are

required for system workload sharing [1].

Dependability Engineering10

The active-standby redundancy mechanisms are employed when the primary components

meet the requests of the system users and the secondary components are on hold. When the

primary components fail, the secondary components will be responsible for servicing the

system users’ requests. The active-standby redundancy mechanisms can be classified as hot

standby, cold standby and warm standby [1].

In the hot standby redundancy mechanism, redundant modules that are in standby function in

synchronization with the operating module, without their computation being considered in

the system, and in case the occurrence of a failure event is detected, it is ready to make

operational immediately [1, 4].

In the cold standby redundancy mechanism, the redundant modules are turned off and only

when a failure event occurs will they be activated after a time interval. In the cold standby

redundancy mechanism, inactive modules that are de-energized, by hypothesis, do not fail,

whereas the active module has a constant failure rate λ.

In the warm standby redundancy mechanism, the redundant modules that are in standby

function in sync with the operating module, without their computation being considered in

the system. If a fault event is detected, the redundant module is ready to become operational

after a time interval. Systems with standby sparing of cold standby sparing and warm standby

sparing need more time for recovery compared to hot standby sparing, but systems with cold

standby sparing and warm standby sparing have the advantage of lower power consumption

and no wear standby systems [1, 4].

4. Modeling techniques

The models adopted for dependability evaluation can be classified as combinatorial and state

space. The combinatorial models capture the conditions that cause failures in the system or

allow its operation when considering the structural relationships of its components. The best

known combinatorial models are Reliability Block Diagram (RBD) and Fault Tree (FT) [9, 10].

State space-based models represent the behavior of the system (occurrence of failures and

repair activities) through its states and the occurrence of events. These models allow the

representation of dependency relations between the components of the systems. The most

widely used state space-based models are Markov Chains (MC) and Stochastic Petri Net

(SPN) [9–12].

The SPN models provide great flexibility in the representation of aspects of dependability.

However, these models suffer from problems related to the size of the state space for compu-

tational systems with large number of components [11, 12]. RBD models are simple, easy to

understand, and their solution methods have been extensively studied. These models can

represent the components of cloud computing that do not have a dependency relation to allow

an efficient representation, avoiding growth problems too much of the space of states [9, 10].

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

11

5. Reliability block diagram

Reliability block diagram (RBD) is one of the most used techniques for reliability analysis of

systems [5].

The RBD allows the calculation of availability and reliability by means of closed formulas,

since it is a combinational model. These closed formulas make the calculation of the result

faster than the simulation, for example [6].

In a reliability block diagram, components are represented with blocks combined with other

blocks (i.e., components) in series, parallel or combinations of those structures. A diagram that

has components connected in series requires each component to be running for the system to

be operational. A diagram that has components connected in parallel requires that only one

component is working for the system to be operational [13]. Thus, the system is described as a

set of interconnected functional blocks to represent the effect of availability and reliability of

each block on the availability and reliability of the system [14].

The availability and reliability of two blocks connected in series is obtained through Eq. (9) [6].

Ps ¼
Yn

i¼1

Pi tð Þ (9)

where:

Pi(t) describes the reliability Ri(t), the instantaneous availability Ai(t) e a and the steady state

availability Ai of the block Bi.

The availability and reliability of two blocks connected in parallel is obtained through Eq. (10) [6].

Pp ¼ 1�
Yn

i¼1

1� Pi tð Þð Þ (10)

where Pi(t) describes the reliability Ri(t), the instantaneous availability Ai(t) e a and the steady

state availability Ai of the block Bi.

Figure 2 shows the connection of the blocks in series and Figure 3 shows the connection of the

blocks in parallel.

The reliability block diagram is mainly used in modular systems consisting of many indepen-

dent modules, where each can be easily represented by a block.

Figure 2. Reliability block diagram in series.

Dependability Engineering12

6. Petri nets

The concept of Petri nets was introduced by Carl Adam Petri in 1962 with the presentation

of his doctoral thesis “Kommunikation mit Automaten” (Communication with Automata) [15]

at the Faculty of Mathematics and Physics of Darmstadt University in Germany. Petri nets are

graphical and mathematical tools used for formal description of systems characterized by

properties of concurrency, parallelism, synchronization, distribution, asynchronism, and non-

determinism [15].

The applicability of Petri nets as a tool for systems study is important because it allows for

mathematical representation, analysis of models and also for providing useful information

about the structure and dynamic behavior of the modeled systems. The applications of Petri

nets can occur in many areas (systems of manufacture, development and testing of software,

administrative systems, among others) [16].

The Petri nets presents some characteristics that are: the dynamic representation of the model-

ing system with the desired level of detail; The graphical and formal description that allows to

obtain information on the behavior of the modeled system through its behavioral and struc-

tural properties; The representation of synchronism, asynchronism, competition, resource

sharing, among other behaviors; And the wide applicability and documentation.

Petri nets are formed by places (1), transitions (2), arcs (3) and marking (4). The places corre-

spond to state variables and the transitions, actions or events performed by the system. The

performance of an action is associated with some preconditions, that is, there is a relation

Figure 3. Reliability block diagram in parallel.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

13

between the places and the transitions that allows or not the accomplishment of a certain action.

After performing a certain action, some places will have their information changed, that is, the

action will create a post condition. The arcs represent the flow of the marking through the Petri

net, and the tokens represent the state in which the system is at a given moment. Graphically,

places are represented by ellipses or circles, transitions, by rectangles, arcs, by arrows and

marking, by means of dots (Figure 4) [16].

The two elements, place and transition, are interconnected by directed arcs as shown in

Figure 5. The arcs that interconnect places to the transitions (Place ! Transition) correspond

to the relationship between the true conditions (precondition), which enable the execution Of

the shares. The arcs that interconnect transitions to places (Transition ! Place) represent the

relationship between actions and conditions that become true with the execution of actions

(post condition) [16].

The formal mathematical representation of a model in Petri net (Petri net—PN) is the quintuple

PN = P, T, F, W, M0 [15], where:

6.1. Properties of Petri nets

The study of the properties of Petri nets allows the analysis of the modeling system. Property

types can be divided into two categories: the initial marking-dependent properties, named

behavioral properties, and the non-marking properties, named structural properties [15, 16].

6.1.1. Behavioral properties

The behavioral properties are those that depend only on the initial marking of the Petri net.

The properties covered are reachability, limitation, safeness, liveness and coverage.

Reachability indicates the possibility that a given marking can be reached by firing a finite

number of transitions from an initial marking. Given a Petri net marked RM = (R,M0), the

triggering of a transition t0 alters the marking of the Petri net. An M’ label is accessible from

M0 if there is a sequence of transitions which, triggered, lead to the M’ label. That is, if the

marking M0 enables the transition t0, by triggering this transition, the marking M1 is reached.

The marking M1 enables t1 which, upon being triggered, reaches the marking M2 and so on

until the marking M’ is obtained.

Figure 5. Example of Petri net.

Figure 4. Elements of Petri net.

Dependability Engineering14

Let M a place pi ∈ P, of a Petri net marked RM = (R, M0), this place is k-bounded (k ∈ IN) or

simply limited if for every accessible marking M ∈ CA (R, M0), M (pi) ≤ k.

The limited k is the maximum number of marking that a place can accumulate. A Petri net

labeled RM = (R, M0) is k-bounded if the number of marking at each RM site does not exceed k

at any accessible RM marking (max (M (p)) = k, ∀ p ∈ P).

Safeness is a particularization of limited property. The concept of limited defines that a pi place is

k-bounded if the number of marking that this place can accumulate is limited to the number k. A

place that is 1-limited can simply be called insurance.

Liveness is defined according to the triggering possibilities of the transitions. A Petri net is

considered live if, regardless of the marking that are reachable fromM0, it is always possible to

trigger any transition of the Petri net through a sequence of transitions L(M0). The absence of

deadlock in systems is strongly linked to the concept of vivacity, since deadlock in a Petri net is

the impossibility of triggering any transition of the Petri net. The fact that a system is deadlock

free does not mean that it is live, however a live system implies a deadlock free system.

The concept of coverage is associated with the concept of reachability and live. An Mi marking

is covered if there is a marking Mj 6¼ Mi, such that Mj ≥ Mi.

6.1.2. Structural properties

The structural properties are those that depend only on the structure of the Petri net. These

properties reflect independent marking characteristics. The properties analyzed in this work

are structural limitation and consistency.

A Petri net R = (P, T, F, W, M0) is classified as structurally limited if it is limited to any initial

marking.

The Petri net is considered to be consistent if, by triggering a sequence of enabled transitions

from an M0 marking, it returns to M0, however all transitions of the Petri net are fired at least

once.

Let RM = (R, M0) be a marked Petri net and a sequence s of transitions, RM is consistent if

M0 [s > M0] and every transition Ti, firing at least once in s.

6.2. Stochastic Petri net

Petri Net (SNP) [11] is one of the Petri net extensions (PN) [15] used for performance and

dependability modeling. A stochastic Petri net adds time to Petri net formalism, with the

difference that the times associated with the timed transitions are exponentially distributed,

while the time associated with the immediate transitions is zero. The timed transitions model

activities through the associated times, so that the timing transition period corresponds to the

activity execution period, and the timed transition trigger corresponds to the end of the activity.

Different levels of priority can be assigned to transitions. The trigger priority of the immediate

transitions is higher than the timed transitions. Priorities can solve situations of confusion [12]. The

firing probabilities associated with immediate transitions can resolve conflict situations [4, 5].

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

15

Timed transitions can be characterized by different memory policies such as Resampling,

Enabling memory and Age memory [5]. The timed transitions can also be characterized by

different firing semantics named single server, multiple server and infinite server [5].

6.3. Phase approximation technique

SPN models consider only immediate transitions and timed transitions with exponentially

distributed trigger times. These transitions model actions, activities, and events. A variety of

activities can be modeled through the use of constructor throughput subnets and s-transitions.

These constructs are used to represent expolinomial distributions, such as the Erlang,

hypoexponential and hyperexponential distributions [9].

The phase approximation technique can be applied to model non-exponential actions, activi-

ties, and events through moment matching. The presented method calculates the first moment

around the origin (average) and the second central moment (variance) and estimates the

respective moments of the s-transition [9].

Performance and dependability data measured or obtained from a system (empirical distribu-

tion) with mean μ and standard deviation σ may have their approximate stochastic behavior

through the phase approximation technique. The inverse of the variation coefficient of the data

measured or obtained from a system Eq. (11) allows the selection of the expolinomial distribu-

tion that best adapts to the empirical distribution. This empirical distribution can be continu-

ous or discrete. Among the continuous distributions, there are: Normal, Lognormal, Weibull,

Gamma, Continuous Uniform, Pareto, Beta and Triangular and among the discrete distribu-

tions there are: Geometric, Poisson and Discrete Uniform [8].

1

CV
¼

μ
D

σD
(11)

The Petri net described in Figure 6 represents a timed activity with generic probability distribution.

Depending on the inverse of the variation coefficient of the measured data (Eq. (11)), the

respective activity has one of these distributions attributed: Erlang, Hypoexponential or

Hyperexponential. When the inverse of the variation coefficient is an integer and different

from one, the data must be characterized by the Erlang distribution. When the inverse of the

variation coefficient is a number greater than one (but not an integer), the data are represented

by the hypoexponential distribution. When the inverse of the variation coefficient is a number

smaller than one, the data must be characterized by a hyperexponential distribution.

Figure 6. Empirical distribution.

Dependability Engineering16

7. Modeling strategy

The dependability metrics can be calculated using state space-based models (e.g., SPN) and

combinatorial models (e.g., RBD). The RBDs have an advantage over the provision of results,

as present faster calculations through their formulas than the simulations and the numerical

analyzes of the SPNs. However, SPNs have a greater power of representation [3, 17].

State space-based models can describe dependencies that allow the representation of complex

redundancy mechanisms. However, these models can generate a very large or even infinite

number of states when they represent highly complex systems [3, 12, 17].

The combination of state space-based models and combinatorial models allows for the reduc-

tion of complexity in the representation of systems. RBDmodels can represent the components

of the cloud computing [6]. These RBD models are used to estimate the availability and

downtime of the cloud computing when there is little dependency relation between the

components of this environment and the redundancy mechanisms adopted. If there is a need

to represent a greater dependency between the components of the cloud computing and the

redundancy mechanisms used, SPN models are used to represent the computational cloud

systems [11].

Figure 7 shows a basic SPN model that allows a representation of the cloud computing. In this

SPN model, the ON and OFF places represent the working or faulted computational cloud.

The attributes of the transitions of this SPN model are presented in Table 1.

Figure 8 shows a basic RBD model that allows a representation of the cloud computing. The

parameters of the RBD model are presented in the Table 2.

Figure 7. Basic SPN model.

Transition Type Time Weight Concurrence

MTTF exp XMTTF – SS

MTTR exp XMTTR – SS

Table 1. Attributes of the SPN model transitions.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

17

7.1. Cloud computing model

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and

Network equipment (Network). Figure 9 shows the RBD model of the cloud computing. The

parameters of the RBD model of cloud computing are presented in Table 3. Figure 10 shows

the SPN model of the cloud computing. The attributes of the SPN Model Transitions of cloud

computing are presented in Table 4. In RBD and SPN models, the cloud controller and node

controller are configured on different physical machines. The node controller enables the

instantiation of virtual machines. The physical machines where the components of cloud

computing are configured are connected through a switch and a router. All components of

cloud computing must be operational for the cloud computing to be operational. These com-

ponents can be described as Controller, Node, and Network. In this way, the operating mode

of cloud computing is OM = (Controller ∧ Node ∧ Network).

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and

Network equipment (Network). The Cloud Controller (Controller) has a hot standby redundancy,

but the other components (Node and Network) can also be assigned this redundancy. The main

cloud controller (ControllerMain) and the redundant cloud controller (ControllerStandby) in hot

standby are operational [3, 4]. The operating mode of cloud computing with redundant cloud

Figure 8. Basic RBD model.

Parameters Description

MTTFBlock Mean Time to Failure

MTTRBlock Mean Time to Repair

Table 2. Parameters of the RBD model.

Figure 9. RBD model of the cloud computing.

Parameters Description

MTTFController, MTTFNode, MTTFNetwork Mean Time to Failure of the controller, node and network

MTTRController, MTTRNode, MTTRNetwork Mean Time to Repair of the controller, node and network

Table 3. Parameters of the RBD model of the cloud computing.

Dependability Engineering18

controller in hot standby is OM = ((ControllerMain ∨ ControllerStandby) Λ Node Λ Network)).

Figure 11 shows the RBD model adopted to estimate the availability of cloud computing with

redundant cloud controller in hot standby.

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and

Network equipment (Network). The Cloud Controller (Controller) has a cold standby redun-

dancy, but the other components (Node and Network) can also be assigned this redundancy.

The main cloud controller (ControllerMain) is operational and the redundant cloud controller

(ControllerStandby) is non-active. The redundant cloud controller is not operational waiting to

Figure 10. SPN model of the cloud computing.

Transition Type Time Weight Concurrence Enable function

ControllerMTTF, NodeMTTF,

NetworkMTTF

exp XMTTF – SS –

ControllerMTTR, NodeMTTR,

NetworMTTR

exp XMTTR – SS –

CloudMTTF imme – 1 – ((#ControllerON = 0)OR(#NodeON = 0)OR

(#NetworkON = 0))

CloudMTTR imme – 1 – NOT((#ControllerON = 0)OR(#NodeON = 0)

OR(#NetworkON = 0))

Table 4. Attributes of the SPN model transitions of the cloud computing.

Figure 11. RBD model of the cloud computing with redundant cloud controller in hot standby.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

19

be activated when the main cloud controller fails. Thus, when the main cloud controller, the

activation of the redundant cloud controller occurs in a certain period of time. This period is

named Mean Time to Active (MTA) [3, 4]. The operating mode of cloud computing with

redundant cloud controller in cold standby is OM = ((ControllerMain ∨ ControllerStandby) Λ

Node Λ Network)). Figure 12 shows the SPN model adopted to estimate the availability of

cloud computing with redundant cloud controller in cold standby.

Cloud computing consists of the Cloud Controller (Controller), Node Controller (Node) and

Network equipment (Network). The Cloud Controller (Controller) has a warm standby redun-

dancy, but the other components (Node and Network) can also be assigned this redundancy. The

main cloud controller (ControllerMain) is based on a non-active redundant cloud controller

(ControllerStandby) that waits to be activated when the main cloud controller fails. The differ-

ence with respect to cold standby redundancy is that the main cloud controller and the redun-

dant cloud controller have an λ failure rate when they are in operation, but the redundant

cloud controller has a failure rate φ when it is de-energized, considering that 0 ≤λ ≤φ [3, 4].

The redundant cloud controller (ControllerStandby) starts in idle mode. When the main

cloud controller (ControllerMain) fails, the timed SpareActive transition triggers. This fire

represents the start of the redundant cloud controller operation. The time associated with the

SpareActive timed transition represents the Mean Time to Active (MTA). The SpareNActive

immediate transition represents the return of the main module to the operational mode. The

operating mode of cloud computing with redundant cloud controller in warm standby is

OM = ((ControllerMain ∨ ControllerStandby) Λ Node Λ Network)). Figure 13 shows the SPN

model adopted to estimate the availability of cloud computing with redundant cloud controller

in warm standby.

Figure 12. SPN model of the cloud computing with redundant cloud controller in cold standby.

Dependability Engineering20

8. Conclusions

This chapter presents concepts on dependability, redundancy mechanisms, stochastic Petri

nets and reliability block diagram. In addition, this chapter also shows how the mathematical

formalisms stochastic Petri nets and reliability block diagrams can be adopted for modeling

cloud infrastructures with cold standby, warm standby and hot standby redundancy mecha-

nisms. Reliability block diagrams is adopted to model cloud infrastructures with the redun-

dancy mechanism cold standby and stochastic Petri nets is used to model cloud infrastructures

with the redundancy mechanisms warm standby and hot standby.

Author details

Erica Teixeira Gomes de Sousa* and Fernando Antonio Aires Lins

*Address all correspondence to: erica.sousa@ufrpe.br

Department of Statistics and Informatics, Federal Rural University of Pernambuco, Brazil

References

[1] Bauer E, Adams R. Reliability and Availability of Cloud Computing. Wiley Online

Library; 2012

[2] Laprie JCC, Avizienis A, Kopetz H. Dependability: Basic Concepts and Terminology.

Secaucus, NJ, USA: Springer-Verlag New York, Inc; 1992

Figure 13. SPN model of the cloud computing with redundant cloud controller in warm standby.

Modeling Strategies to Improve the Dependability of Cloud Infrastructures
http://dx.doi.org/10.5772/intechopen.71498

21

[3] Kuo W, Zuo MJ. Optimal Reliability Modeling: Principles and Applications. Wiley; 2002

[4] Rupe JW. Reliability of computer systems and networks fault tolerance, analysis, and

design. IIE Transactions. 2003;35(6):586-587

[5] Maciel P, Trivedi K, Matias R, Kim D. Performance and Dependability in Service Com-

puting: Concepts, Techniques and Research Directions. IGI Global; 2011

[6] Xie M, Dai YS, Poh KL. Computing System Reliability: Models and Analysis. US: Springer;

2004

[7] Ebeling CE. An Introduction to Reliability and Maintainability Engineering. Waveland Pr

Inc; 2009

[8] Schmidt K. High Availability and Disaster Recovery: Concepts, Design, Implementation.

Vol. 22. Berlin Heidelberg: Springer-Verlag; 2006

[9] Sahner RA, Trivedi K, Puliafito A. Performance and Reliability Analysis of Computer

Systems: An Example-Based Approach Using the SHARPE Software Package. New York,

US: Springer; 1996

[10] Trivedi KS. Probability & Statistics with Reliability, Queuing and Computer Science Appli-

cations. 2nd ed. Wiley; 2001

[11] German R. Performance Analysis of Communication Systems with Non-Markovian Sto-

chastic Petri Nets. New York, NY, USA: John Wiley & Sons, Inc; 2000

[12] Marsan MA, Balbo G, Conte G, Donatelli S, Franceschinis G. Modelling with Generalized

Stochastic Petri Nets, ACM SIGMETRICS Performance Evaluation Review. Vol. 26. New

York, NY, USA; 1998

[13] Trivedi KS, Hunter S, Garg S, Fricks R. Reliability analysis techniques explored through a

communication network example. Citeseer, International Workshop on Computer-Aided

Design, Test, and Evaluation for Dependability; 1996

[14] Smith DJ. Reliability, Maintainability and Risk: Practical Methods for Engineers. Butterworth-

Heinemann; 2011

[15] Murata T. Petri nets: Properties, analysis and applications. IEEE, Proceedings of the IEEE.

1989;77(4):541-580

[16] Maciel PRM, Lins RD, Cunha PRF. Introduction of the Petri Net and Applied. Campinas,

SP: X Escola de Computação; 1996

[17] Balbo G. Introduction to Stochastic Petri Nets. Lectures on Formal Methods and Perfor-

mance Analysis: First EEF/Euro Summer School on Trends in Computer Science. Berg en

Dal, The Netherlands, July 3–7, 2000: Revised Lectures: Springer; 2000

Dependability Engineering22

