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Abstract

In this chapter, an adaptive embedded control system is developed to measure yield 
strength of the material plate with an applied load. A systematic approach is proposed 
to handle special requirements of embedded control systems which are different from 
computer-based control systems as there are much less computational power and hard-
ware resources available. Efficient control algorithm has to be designed to remove CPU 
burden so that the microcontroller has enough power available. A three-step approach 
is proposed to address the embedded control issue: Firstly, the mathematical descrip-
tion of the whole system is studied using both theoretical and experimental methods. 
A mathematical model is derived from the physical models of each component used, 
and an experiment is retrieved by employing Levy’s method and least square estimation 
to identify specific parameters of the system model. Secondly, an adaptive feedforward 
plus feedback controller is designed and simulated as a preparation for the embedded 
system implementation. The Cerebellar Model Articulation Controller (CMAC) is chosen 
as the feedforward part, and a PD controller is used as the feedback part to train the 
CMAC. Finally, the proposed algorithm is applied to the embedded system, and experi-
ments are conducted to verify both the identified model and designed controller.

Keywords: embedded system, force control, systems modeling, systems identification, 
cerebellar model articulation controller

1. Introduction

With the increasing threat of global warming and the waning of fossil fuel reserves, renewable 

energy is playing more and more important roles in both environmental and economic aspect 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of lives. Solar photovoltaic (PV), as one of the most important renewable energy sources, 
has been widely used in more than a hundred of countries [1]. Solar panels are commonly 
deployed in harsh environments with high temperature, high humidity and strong winds [2], 

and are expected to be functional for over 30 years. Thus the glass panel, where the PV mate-

rial will be located, has to be specially designed to sustain the harsh environments over its 

life of service [3]. As a necessary validation step, the strength and quality of the manufactured 

glass sheet must be tested and qualified, especially before the mass production stage. A rigor-

ous test would require the strength of the solar glass sheet to be verified under a controlled 
environment with simulated temperature, humidity and induced vibration or forces on the 

PV glass sheet. Although commercial solutions exist for the various types of material-strength 
testing, environment simulated glass sheet strength testing is not available. As the booming of 

the PV industry and the increasing researching into stronger and better PV glass sheet, there 
has been a greater demand into the research and development of specially designed PV glass 
sheet test machines. This chapter presented the design of an environment controlled force 

loading machine specifically for solar panel glass sheet strength testing.

The glass sheet testing machine is basically a real-time electro-mechanical control system 

which is composed of actuators for simulated loading generation, sensors for monitoring and 

control feedback, a digital controller for the control of the overall system performance and 

mechanical supporting structures to hold everything together. The key part is the real-time 

digital controller which serves as the brain of such a system. Although computer-based con-

trol system with great computational power is able to host complex control algorithm, testing 

facilities with space, power and budget constraint cannot afford the size, power and cost of the 
computer-based design. Moreover, many extended and long hour testing scenarios require 

great robustness on the control system, where computer with standard operating system can-

not meet the requirement. Embedded control systems with much lower power consumption, 

compact space, less cost and increased robustness is preferred over computer-based systems 

in many custom designed solutions [4–6]. Although embedded control systems have many 

advantages, they usually have limited or reduced computational powers that may not be able 

to host complex control algorithms. This poses challenges into the design of efficient real-time 
control algorithms. Specific embedded system-oriented control techniques must be carried 
out to guarantee control performances. For this reason, a simple and effective control law is 

preferred on the embedded control system and the Cerebellar Model Articulation Controller 
(CMAC) is a good choice.

The CMAC proposed by Albus [7] is a lookup-table adaptive neural network for estimating 

complicated nonlinear functions. The basic idea of CMAC is to quantify states from input, 
find memory addresses of states according to their locations in memory, add the content in 
the memory address, generate the CMAC output, compare the output with desired output 
and update the content in memory based on learning algorithms. Compared with other neu-

ral networks, advantages of the CMAC [8] are: (1) it is based on local learning and stores 
information in local memory, hence weights are changed slightly in each step and its learn-

ing speed is fast and suitable for real-time control; (2) it owns definite generalization prop-

erty, so that the close inputs generate the close outputs, and the different inputs produce the 
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different outputs; (3) it can receive continuous input and produce continuous output; (4) it 
can accelerate the response speed by using addressing mode and (5) it is a nonlinear approxi-
mation and robust to the sequences of training data. Owing to above predominant merits, the 

nonlinear approximating capacity of the CMAC is superior to that of other traditional neural 
networks and is more suitable for real-time control in the real world.

In summary, various CMAC control algorithms have been formed so far, such as CMAC 
feedforward control [9–11], CMAC feedback control [12–14], CMAC optimal control [15, 

16], CMAC fuzzy control [17–22], CMAC H-infinity control [23] and CMAC adaptive con-

trol [24–26]. The previous works can be divided into two categories: one is to improve the 

control structures of the CMAC, such as the CMAC feedforward control; the other is to 
improve the learning algorithms with other intelligent techniques, such as the fuzzy CMAC 
(FCMAC). Although a lot of complicated advanced CMAC control algorithms can well 
perform the control tasks in the simulations or with the computer-based control systems, 

the performances raised by some of them are very limited compared with the basic CMAC 
structure, even several advanced CMAC control algorithms, such as the FCMAC with the 
wavelet, cannot be implemented in real time with an embedded system due to the compli-

cated improvement algorithms.

In this chapter, we adopt CMAC feedforward and PD feedback control, because [10, 11]: 

(1) the CMAC carries out the feedforward part to approximate the inverse model of the 
plant; (2) the PD controller actualizes the feedback part to train the CMAC and guarantee 

the stability of the closed-loop system; (3) compared with other neural networks or other 
complicated CMACs, limited computation cost of the simple and effective CMAC plus PD 
control removes CPU burden, so that the microcontroller can have enough computational 
power available.

Since there is not much effort dealing with the systematic design problem of an embedded-
control glass strength testing machine, the contribution of this chapter is to present a three-step 

systematic design approach to address the embedded control issue: Firstly, the mathematical 

description of the system is studied using both theoretical and experimental method. A math-

ematical model is derived from the physical models of each component used, and an experi-

ment is retrieved by employing Levy’s method to identify parameters of the mathematical 

model. Secondly, an adaptive CMAC feedforward plus PD feedback controller is designed 
and simulated based on the identified system model as a preparation for the embedded sys-

tem implementation. Finally, the proposed algorithm is applied to the embedded system with 

the same parameters as those of simulations, and experiments are conducted to verify both 

the identified model and designed controller. To design a machine systematically for practical 
use, these three steps are closely linked and indispensable. The three-step systematic design 

approach could benefit engineers in measurement and control as a guide.

Rest of this chapter is organized as follows. Section 2 analyses the system requirements 
and formulates a mathematical system model. Section 3 performs the system identification. 
Section 4 proposes the simulation-based controller design. Embedded system-based experi-
ments are conducted in Section 5 and Section 6 concludes this work.

A CMAC-Based Systematic Design Approach of an Adaptive Embedded Control Force Loading…
http://dx.doi.org/10.5772/intechopen.71420

257



2. System Modeling

2.1. System analysis

The schematic diagram of the force loader unit is shown in Figures 1 and 2. The loader unit 

consists of one loader and one steel bar, which is connected to the load cell and linear motor 

actuator. The linear motor actuator, used to apply force, consists of a motor with linear motion 

and an encoder. The loader is attached to the steel bar and then through a load cell to the linear 
motor. In short, the force is applied on the material plate by a loader unit which is connected to 

a linear motor actuator through a steel bar, and the applied force is recorded by a force sensor.

The load applied on the material plate varies as a ramp function. The user can select the slope 

of the ramp function by setting the maximum force in a finite time period on the touch screen, 
and can perform the test under different forces ranging from 0 to 300 lbs. The control objective 
is to ensure the applied force track the reference force command for measuring the material 

plate’s yield stress qualified or not.

2.2. Mathematic model of the motor-loader unit

DC motors are widely used as actuators for high-precision servo control owing to its good 
working characteristics and simple mathematical model. Mechanical resonance phenomena 
are ubiquitous because the transmission shaft is not completely rigid and will be distorted 

under force. For the servo-motor-drive system, considering the mechanical resonance phenom-

ena, the double-mass structure model is commonly used to describe such dynamical systems.

Linear motor

Force sensor

Material plate
Loader

Steel bar

Load cell

Force SupportSupport Force

Figure 1. Schematic drawing of the loader unit.
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The electrical equilibrium equation can be written as [27]

   R  
a
  i +  L  

a
     di __ 
dt

   +  K  
e
    θ   ̇    
m
   =  u  

m
    (1)

where R
a
 is the armature resistance, L

a
 is the armature inductance, i is the armature current, 

K
e
 is the counter-electromotive force coefficient, θ

m
 is the motor rotating angle and u

m
 is the 

motor voltage.   K  
e
    θ   ̇    
m
    reflects that the back electromotive force (EMF) has a linear relationship 

with the motor speed. Figure 3 illustrates the mechanical parameter of the motor with a load.

The motor output torque T
m
 is determined by the armature current as

   T  
m
   =  K  

t
  i  (2)

Figure 2. Photo of the loader unit.

Figure 3. Motor and load double mass diagram.
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where K
t
 is the electromagnetism-torque constant.

The torque equilibrium equation of the motor is

   J  
m
    θ ¨    
m
   +  B  

m
    θ   ̇    
m
   =  T  

m
   −  T  

l
    (3)

where J
m
 is the moment of inertia of the motor, B

m
 is the viscidity damping coefficient of the 

motor extremity and T
l
 is the torque of the load extremity. T

l
 can be represented as

   T  
l
   =  K  

s
   ( θ  
m
   −  θ  

l
  )   (4)

where θ
l
 is the rotating angle of the load shaft and K

s
 is the mechanical rigidity of the rotating 

shaft.

The torque equilibrium equation of the load is

   J  
l
    θ ¨    
l
   +  B  

l
    θ   ̇    
l
   =  T  

l
   −  T  

d
    (5)

where J
l
 is the moment of inertia of the load, B

l
 is the damping coefficient on the load side and 

T
d
 is the disturbance torque, including the friction torque, the coupling torque and the exter-

nal disturbance torque. The displacement of the loader mass generated from the linear motor 

has a linear relationship with the rotating angle of the load shaft, which can be represented as

  Dis =  K  
D
   ⋅  θ  

l
    (6)

The force generated on the solar panel glass has an almost linear relationship with the defor-

mation of the glass, which can be represented as

   F  
m
   =  K  

F
   ⋅ Dis  (7)

2.3. Mathematical models of other components

The control objective is to track the input command through feedback control based on the 
signal measured by the force sensor. In addition to the motor-loader and the micro controller 

unit (MCU), other components included in the control loop are a digital to analog converter 

(DAC), an amplifier and a load cell. Figure 4 illustrates the open-loop plant structure.

The DAC converter is basically a zero-order hold. Assume the controller’s output is u(t), the 
amplifier’s input is u

h
(t) and the system’s sampling time is T. The zero-order hold can be 

represented as

   u  
h
   (t)  = u (kT) , kT ≤ T <  (k + 1) T  (8)

Considering the sampling process, by replacing e−Ts with   e   −Ts  ≈  (− s +   2 
__

 T  )  /  (s +   2 
__

 T  )  , the DAC con-

verter and the zero-order hold can be described as
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   G  
H
   (s)  =   

 u  
h
   (s) 
 ____ u (s)    ⋅   

1 __ 
T

   =   1 −  e   −Ts  _____ s   ⋅   1 __ 
T

   ≈   T ____ 
  T __ 
2
   s + 1

   ⋅   1 __ 
T

    (9)

which is a low-pass filter.

In a high-precision servo system, PWM-based amplifiers are commonly used as the motor 
drivers [28]. The PWM power amplifiers can be represented as

   G  
A
   (s)  =   

 K  
a
  
 _____ 

1 +   1 ___ 
2  f  
s
  
   s

    (10)

where K
a
 is the amplifying multiple and f

s
 is the modulation frequency.

The load cell signal conditioner linearly converts the force into a voltage signal, and its model 

can be simplified as

   G  
S
   (s)  =  K  

Sen
    (11)

2.4. Simplified model

Without considering the disturbance torque T
d
, the angles of the motor and the load have the 

following dynamical relationship

   T  
l
   =  J  

l
    θ ¨    
l
   +  B  

l
    θ   ̇    
l
   =  K  

s
   ( θ  
m
   −  θ  

l
  )  ⇒   

 θ  
l
   (s) 
 _____ 

 θ  
m
   (s)    =   

 K  
s
  
 _________ 

 J  
l
    s   2  +  B  

l
   s +  K  

s
  
    (12)

K
s
 is very large and the time constant is very small, therefore in the lower frequency range 

θ
l
(s)/θ

m
(s) ≈ 1, θ

l
 ≈ θ

m
.

By considering K
s
 = ∞ and θ

l
 ≡ θ

m
, the motor-loader model can be simplified as

   J  
a
    θ ¨    
m
   +  B  

a
    θ   ̇    
m
   =  T  

m
    (13)

where J
a
 = J

m
 + J

l
, B

a
 = B

m
 + B

l
. Deleting the intermediate variables, the dynamical equation of the 

motor can be obtained as

    
 L  
a
    J  
a
  
 ___ 

 K  
t
  
     

 d   3  θ  
m
  
 ____ 

 dt   3 
   +   

 R  
a
    J  
a
   +  L  

a
   B  
a
  
 ________ 

 K  
t
  
     

 d   2  θ  
m
  
 ____ 

 dt   2 
   +  ( K  

e
   +   

 R  
a
   B  
a
  
 ____ 

 K  
t
  
  )    
d θ  

m
  
 ____ 

dt
   =  u  

m
    (14)

If the motor armature inductance is regarded as L
a
 ≈ 0, the system can be further simplified as

Figure 4. Open-loop block diagram.
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 R  
a
    J  
a
  
 ____ 

 K  
t
  
     

 d   2  θ  
m
  
 ____ 

 dt   2 
   +  ( K  

e
   +   

 R  
a
   B  
a
  
 ____ 

 K  
t
  
  )    
d θ  

m
  
 ____ 

dt
   =  u  

m
    (15)

And the transfer function between the input voltage and output rotational angle is

   G  
M

   (s)  =   
 θ  
m
   (s) 
 _____  u  

m
   (s)    =   

 K  
m
  
 ______ 

 T  
m
    s   2  + s

    (16)

where   T  
m
   =   

 R  
a
    J  
a
  
 

________
  K  

e
   K  
t
   +  R  

a
   B  
a
      is the time constant of the motor system, and   K  

m
   =   

 K  
t
  
 

________
  K  

e
   K  
t
   +  R  

a
   B  
a
      is the gain coef-

ficient of the motor system.

2.5. Open-loop transfer function

The mathematical model of the open-loop plant is the cascade of the units described previously:

   G  
P
   (s)  =  G  

H
   (s)  ⋅  G  

A
   (s)  ⋅  G  

M
   (s)  ⋅  G  

S
   (s)   (17)

Because the system bandwidth is much lower than the system sampling rate and the mod-

ulation frequency of the PWM amplifier, the time constant of the DAC converter and the 
amplifier is very small. In the lower frequency range, the effect of the DAC converter and the 
amplifier can be omitted. Therefore, the open-loop plant can be simplified as

   G  
P
   (s)  =   

 b  
1
  s +  b  

0
  
 ________ 

 a  
2
   s   2  +  a  

1
  s + 1

    (18)

where b
0
, b

1
, a

1
 and a

2
 are final parameters.

Obvious, it is a second-order model. Only four parameters need to be identified.

3. Parameters identification of the system model

Levy’s method [29] and least square estimation are widely used in system identification. 
Assume that the identified transfer function is given as

   G  
P
   (s)  =   

 b  
0
   +  b  

1
   s + ⋯ + b  

m
    s   m 
  ____________  

1 +  a  
1
   s + ⋯  a  

n
    s   n     (19)

where b
0
, b

1
, ⋯, b

m
, a

1
, a

2
, ⋯, a

n
 are real numbers, m and n are integers, and m ≤ n.

The frequency response is

   G  
P
   (j𝜔)  =   

 ( b  0   −  b  
2
    ω   2  + ⋯)  + j𝜔 ( b  1   −  b  

3
    ω   2  + ⋯) 

   _____________________   
 (1 −  a  

2
    ω   2  + ⋯)  + j𝜔 ( a  1   −  a  

3
    ω   2  + ⋯)    =   

N (j𝜔) 
 _____ 

D (j𝜔)     (20)

For each frequency point ω
i
(i = 1, 2, ⋯, L), it is assumed that the actual frequency response is 

Re(ω
i
) + j Im(ω

i
), and the approximation error is defined as

  ε (j  ω  
i
  )  = Re ( ω  

i
  )  + j Im  ( ω  

i
  )  −   
N (j  ω  

i
  ) 
 _____ 

D (j  ω  
i
  )     (21)
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Define an objective function:

  J =  ∑ 
i=1

  
L

      ‖D (j  ω  
i
  ) ε (j  ω  

i
  ) ‖    2   (22)

Minimize the objective function, and prompt ∂J/∂a
j
 = 0 (j = 1, 2, …, n) and ∂J/∂b

k
 = 0 (k = 1, 2, …, 

m), then two matrix equations will be obtained. By solving the matrix equations, we can get the 

estimated parameters b
0
, b

1
, ⋯, b

m
, a

1
, a

2
, ⋯, a

n
.

Table 1 shows actual frequency response obtained by experiments. We employ different 
sinusoidal input r(t) = A

m
 sin ωt with different angular frequency ω (from 0.1 to 1 rad/s) 

to excite the open-loop system. By theoretical analysis, the output signals are in the form 

y(t) = A
f
 sin(ωt + Φ). Comparing the output with input sinusoidal signals, we can calcu-

late the values of A
f
/A

m
 and phase delay angle Φ based on the least square estimation as 

follows.

The output signals can be decomposed as

   y (t)  =  A  f   sin  (𝜔t + Φ)  =  A  f   cos Φ sin 𝜔t +  A  f   sin Φ cos 𝜔t          

         =  [ sin 𝜔t  cos 𝜔t ]  [ 
 A  

f
   cos Φ

  
 A  

f
   sin Φ  ] 

    (23)

First, we select the sampling interval t = 0, h, 2h, …, nh, where h is a step time.

Second, by defining Y =   [ y (0)   y (h)   …  y (nh)  ]    T  , c
1
 = A

f
 cos Φ, c

2
 = A

f
 sin Φ and  

Ψ =   [ 
sin  (ω0) 

  
sin  (𝜔h) 

  
…

  
sin  (𝜔nh) 

    
cos  (ω0) 

  
cos  (𝜔h) 

  
…

  
cos  (𝜔nh) 

 ]    
 

  , the least square solutions of c
1
 and c

2
 can be derived as

   [ 
 c  

1
  
   c  

2
    ]  =   ( Ψ   T  Ψ)    −1   Ψ   T  Y  (24)

Third, A
f
 /A

m
 and Φ are calculated as

    
  A ̂    

f
  
 ___ 

 A  
m
  
   =   

 √ 
_____

  c  
1
  2  +  c  

2
  2   
 ____ 

 A  
m
  
  , Φ =  tg   −1  ( c  

2
   /  c  

1
  )   (25)

where    A ̂    
f
    is the estimation of A

f 
. 

After A
f
/A

m
 and Φ are obtained, it is easy to estimate the parameters b

0
, b

1
, a

1
 and a

2
 in Eq. (18) 

based on Levy’s method. Finally, we get the identified transfer function:

  G (s)  =   − 38.48s − 141.4  _____________  1.523  s   2  + 8.324s + 1
    (26)

ω 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1

A
f
/A

m
16 22 25 27 30 31 40 46 64 122 16

Φ 1.71 1.82 1.78 1.77 1.89 1.92 1.90 2.00 1.94 2.23 1.71

Table 1. Actual frequency response (ω is angular frequency, rad/s; Φ is phase delay, rad).
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4. Simulation-based controller design

4.1. Control scheme

As shown in Figure 5, in the CMAC plus PD control scheme, the PD controller is used to train 
the weights of the CMAC at the early stage of control. The output u

n
 of the CMAC and the output 

u
p
 of the PD controller are integrated as the control command u to track the desired input com-

mand. Once the system is running, the PD controller will play a main role at the beginning. As 
the weights are tuned by u

p
, u

n
 will increase to become the main control command. The fast learn-

ing speed prompts the leading role of control to switch from the PD controller to the CMAC.

CMAC employs the supervisory learning algorithm. At the end of each control step k, the 

controller calculates the corresponding output u
n
(k), compares it with total control output 

u(k), amends the weights and enters into learning process to make error small between the 
total control output and the output of the CMAC. That means the total control output will be 
finally generated by the CMAC only via its learning strategy.

The control law can be described as

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

u (k)  =  u  
n
   (k)  +  u  

P
   (k) 

   
 u  

n
   (k)  =  ∑ 

i=1
  

c

     w  
i
   a  

i
  
   

 u  
P
   (k)  =  k  

P
  e (k)  +  k  

D
     e (k)  − e (k − 1) 

 _________  t  
s
    

    (27)

where w
i
 are weights of the CMAC, a

i
 are binary vectors, u

n
(k) is output of the CMAC, u

P
(k) 

is output of the PD controller, k
P
 and k

D
 are gains, t

s
 is the sampling time and e is the error 

between y and r.

And the learning function of the CMAC is given as

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

E (k)  =   1 __ 
2
     (u (k)  −  u  

n
   (k) )    2     a  

i
  
 __ c  

   
𝛥w (k)  = η   

u (k)  −  u  
n
   (k) 
 ________ c    a  

i
   = η   

 u  
P
   (k) 
 ____ c    a  

i
  
    

w (k)  = w (k − 1)  + 𝛥w (k)  + α (w (k)  − w (k − 1) ) 

    (28)

where E is the adjusting index, η is the learning speed and η ∈ (0, 1), α is the inertial variable 

and α ∈ (0, 1) and c is the generalizing parameter.

Once the system starts running, the controller initializes w = 0, then we have u
n
 = 0 and u = u

P
 

at the beginning. At the early stage, the system is mainly controlled by the PD controller. 
As the CMAC is learning, error e will decreases, which makes u

n
(k) increase to become the 

main control command. Although the CMAC is trained by the output of the PD controller, 
the output of the CMAC is not a simple imitation of the output of the PD controller. The PD 
controller helps the CMAC to improve its performances, restrain disturbance and enhance 
stability of the closed-loop system. If the PD controller works alone, control performances are 
determined by the gain k

P
 to a great extent. If the CMAC and PD controller work together, 

control performances will be independent of k
P
, which is flexible in a rational span.
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4.2. Simulations

Choose the identified model (26) as the simulation plant to tune the controller and verify its 
performance. The force control is aimed at tracking a ramp command, of which the expres-

sion is given as r(t) =  − 10t, where t is from 0 to 20 s.

The CMAC plus PD controller is tuned and trained by simulations. Figure 6 demonstrates 

that the PD controller plays a main role of control at the beginning. Then the control effect of 
the CMAC will gradually increase via learning from the output of the PD controller. Owing 
to the help of the CMAC, control performances are better than those of the only PD control-
ler. Overshoots are reduced dramatically and control actions are speeded up while choos-

ing the ramp signal as an input. Figure 7(a) shows an overview of control  performances 

Figure 5. CMAC feedforward plus PD feedback control block diagram.
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Figure 6. Output of the controller.
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from 0 to 20 s. Figure 7(b) is an enlarged view of control performances from 19 to 20s. It 

can be seen that the system output well tracks the input command. Figure 8 further exhibits 

the superiority of the CMAC: the tracking errors are tiny, mostly between −0.2 and 0.2 lbs. 
Since there exists a modeling error between identified system and actual controlled plant, 

the controller’s performances will be further validated in the real material-strength testing 

experiments.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Tracking error(20s)

Time(s)

F
o
rc

e
(l
b
)

Figure 8. Tracking error.

(b) 19~20s(a) 0~20s

0 2 4 6 8 10 12 14 16 18 20
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Time(s)

F
o
rc

e
(l
b
)

Simulation Result(0-20s)

19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20

-198

-196

-194

-192

-190

-188

Time(s)

Simulation Result(19-20s)

-200

F
o
rc

e
(l
b
)

Output

Input

Figure 7. Simulation results.

Adaptive Robust Control Systems266



5. Embedded system-based experiments

5.1. Experiments

For verifying the controller’s adaption to modeling error in the real-time control experiments, 

we implement above control law in C language and download compiled files into the embed-

ded system. The central processing unit is an ARM7-based processor LPC2294. The LPC2294 
is a 32-bit reduced instruction set computer (RISC) processor with low power consumption 

and high performance. Although there is no Float Point Unit (FPU) in this processor, the 70 

million instructions per second (MIPS) processing speed makes it ideal for the real-time con-

trol system. The control step size is set as 50 ms.

The actual force tracking control diagram is shown in Figure 9. The force is applied to the 

glass sheet specimen by a loader which is connected to a linear motor actuator through a steel 

bar. A three point bending test is utilized under this configuration. The load force followed 
a ramp function with time as the independent variable. The slope of the ramp function can 

be programmed through the LCD touch screen. The force range can be from 0 to 300 lbs. 
Displacement of the motor, which also reflected the deformation of the glass sheet specimen, 
is recorded during the test. The signal flow of the control system is as follows. The DAC gen-

erates the control outputs as a voltage signal, which is amplified by a power amplifier and 
exerted on the linear motor. The linear motor then transforms the voltage signal into rotation, 

and generates linear displacements. The force sensor and conditioner measure the displace-

ments and generates charges, which are transformed back to a voltage signal and fed back 

through ADC to the microcontroller.

Figure 9. Actual force tracking control diagram.
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The input command and control parameters are the same as those of simulations. Figure 10(a) 

shows that the output force basically tracks the input command well and the controller imple-

mented on the embedded system can perform the control task in real time within the control 

step size. From Figure 10(b), it can be seen that tracking errors of the experiment are mostly 

between −2.5 and 2.5 lbs, which are larger than those of the simulation. The reason is that 

uncertainties and disturbances always exist in the real world, which mainly reflects in model-
ing error. However, the maximum absolute tracking error is 3.79, and the variance of tracking 
errors is 1.69, which are still acceptable in the actual real-time control environment. Moreover, 
it verifies that the controller tuned by simulations is also available for actual experiments, and 
indirectly proves the effectiveness of identified system model.

5.2. Comparisons

As shown in Figure 11, an inverse model feedforward control is compared with the CMAC 
feedforward control by embedded-system-based experiments. Its basic idea is to directly 

employ the inverse model 1/G(s) of the plant’s identified transfer function G(s) in Eq. (26) to 
be the feedforward part. Obviously, this control scheme is also suitable for real-time imple-

mentations; even its computation cost is less than that of the CMAC scheme.

Figure 12(a) shows overall performances of the tracking control with the inverse model 

scheme. It can be seen that the output force basically tracks the input command and the con-

troller implemented on the embedded system can perform the control task in real time within 

the control step size; however, the tracking control is not performed very well. As shown in 

Figure 12(b), tracking errors are mostly between −5 and −2 lbs, which are larger than those of 
the CMAC scheme. Table 2 also shows that the maximum absolute tracking error and vari-

ance of tracking errors of the inverse model scheme are both larger than those of the CMAC 
scheme, so that performances of the CMAC scheme are superior to those of the inverse model 
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Figure 10. Experimental results.
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scheme. Although the CMAC scheme and inverse model scheme both utilize inverse model 
idea, the difference is that the latter directly employs the unchanged inverse model of the 
identified transfer function and the modeling error always exists, but the inverse model 
approximated by the CMAC is dynamical and adaptive.

5.3. Results analysis

Compared with the traditional PID control method, the learning behavior and adaptive fea-

ture of the proposed CMAC control algorithm are embodied in the freedom of tuning control 
parameters and the robustness to the disturbances in the real world.

The PID control method has been widely used because of its simpleness, but the tuning prob-

lem of PID parameters (proportional, integral and differential) is difficult. At present, PID 
parameter-tuning optimization depends on the experiences of technical staffs and needs a 

Figure 11. Block diagram of the inverse model feedforward control.
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lot of manpower and time, which means that the optimal PID parameters are difficult to be 
obtained by people’s tuning, and the inappropriate parameters cannot guarantee the control 

performances to meet the control requirements. In addition, the PID control law is a kind 
of the linear control law which owns few robustness to the disturbances. It means that even 

though the PID parameters are tuned optimally and perfectly in the simulations, the tuned 
parameters may perform poor in the real world due to disturbances and uncertainties.

Thus, combining the adaptive CMAC and the traditional PID to construct an intelligent neu-

ral network PID controller, can automatically identify the controlled plant and adaptively 
adapt the control parameters of the CMAC, which can solve the difficult problem of tuning 
parameters of the traditional PID controller. As shown in Sections 4 and 5, the PID parameters 
of the proposed CMAC algorithm in the experiments are same as those in the simulations, 
which verifies control performances of the proposed CMAC algorithm are independent of 
tuning PID parameters. Experimental results in the real world in Section 5 also demonstrate 
the robustness of the proposed algorithm owing to the CMAC neural network, while the tra-

ditional PID controller does not have this capacity.

6. Conclusions

In this chapter, a three-step systematic design approach is proposed to design an adaptive 

control system for practical use. We firstly study the system model identification problem 
of the embedded control material-strength testing system, including mathematical modeling 

of all the open-loop physical components and parameters identification of the mathemati-
cal model. Both theoretical analyses and experimental comparisons validate the identified 
transfer function of the system model is applicable for controller design and simulation. Next, 

benefited from limited computation cost and compensation ability to the modeling error, a 
simple and effective CMAC plus PD controller is simulated based on the identified system 
model, and then applied to the embedded control system for real-time force tracking. Both 

numerical simulations and actual experiments illustrate the proposed algorithm satisfactorily 

performs the tracking control task under real-time constraints of the embedded system.

On the other hand, different strength features of different types of the material plates will 
affect the control performances. Since the yield strength generated by the solar panel glass has 

an almost linear relationship with the deformation of the glass sheet, K
F
 in Eq. (7) is a constant. 

If the tested material plate is not a solar panel glass and the yield strength generated does not 

have a linear relationship with the deformation of the material plate, K
F
 in Eq. (7) will not be a 

Method Maximum absolute error Variance

CMAC 3.79 1.69

Inverse model 6.13 3.85

Table 2. Comparisons between the CMAC and the inverse model.
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constant. In this case, the problems how to identify the parameters of the system model accu-

rately for simulation-based controller design and how to adjust the CMAC plus PD controller 
to compensate the varying K

F
, will be under consideration in our future work.
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