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Abstract

The concepts of mass and surface fractals are introduced, and the corresponding small-
angle scattering (SAS; X-rays, neutrons) intensities are computed. It is shown how to
resolve the fractal structure of various complex systems from experimental scattering
measurements, and how obtained data are related to specific features of the fractal models.
We present and discuss various mass and surface fractal structures, including fractals
generated from iterated function systems and cellular automata. In addition to the fractal
dimension and the overall fractal size, the suggested analysis allows us to obtain the
iteration number, the number of basic units which form the fractal and the scaling factor.

Keywords: small-angle scattering, form factor, structure factor, fractals, iterated
function system, cellular automata

1. Introduction

A great number of natural systems provide us with examples of nano- and micro- structures,

which appear similar under a change of scale. These structures are called fractals [1], and can be

observed in various disordered materials, rough surfaces, aggregates, metals, polymers, gels,

colloids, thin films, etc. Quite often, the physical properties (mechanical, optical, statistical,

thermodynamical, etc.) depend on their spatial configurations, and a great deal of activity has

been performed in elucidating such correlations [2–4]. To this aim, in the last decade, important

steps have been performed in three directions: instrumentation [5–7], computer programs [8, 9],

and the development of new methods for sample preparation [10–14]. The first two have been

proved to be very useful for the physical execution and data analysis, and the third one for

preparation of nano- and micro-materials with the pre-defined structure and functions.

These achievements have stimulated a great interest in the development of theoretical investi-

gations for structural modeling of self-similar objects at nano- and micro-scale. In particular,

models based on deterministic or exact self-similar fractals (i.e., fractals that are self-similar at

every point, such as the Koch snowflake, Cantor set, or Mandelbrot cube) have been frequently
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used, since this type of fractals allows an analytical representation of various geometrical
parameters (radius of gyration) or of the scattering intensity spectrum. Although for most
fractals generated by natural processes, this is only an approximation, in the case of determin-
istic nano- and micro-materials obtained recently such as 2D Sierpinski gaskets [15] and
Cantor sets [16], or 3D Menger sponge [17] and octahedral structures [18], this approximation
becomes exact.

Small-angle scattering of X-rays (SAXS) and/or neutrons (SANS) are well established tech-
niques for probing the nano/micro scale structure in disordered materials [19–21]. While in
the case of X-rays, the scattering is mostly determined by the interaction of the incident
radiation with electrons, in the case of neutrons, the scattering is determined by their interac-
tion with the atomic nuclei and with the magnetic moments in magnetic materials. Since the
wavelengths of X-rays (0.5–2 Å) are of the same order of magnitude as those of thermal
neutrons (1–10 Å), often, the data analysis and interpretation procedures for SANS can be
interchanged with SAXS, and the developed theoretical models can be applied, generally, to
both techniques [22]. However, using neutrons is very important in studying magnetic prop-
erties of materials as well as in emphasizing or concealing certain features of the investigated
sample [23]. In the later case, the possibility of wide variations in the neutron scattering lengths
(which can be negative sometimes) is exploited, and this is a unique feature of SANS, which
makes it a preferred method over SAXS in structural analysis of biological materials [24, 25].

As compared with other methods of structural investigations, SAXS/SANS have the advantage
that they are noninvasive, the physical quantities of interest (specific surface, radius of gyra-
tion, volume, or the fractal dimension) are averaged over a macroscopic volume and they can
be extracted with almost no approximation [26]. In particular, for self-similar objects (either
exact or statistical), the most important advantage is that SAXS/SANS can distinguish between
mass [27] and surface fractals [28]. Experimentally, the difference is revealed through the value
of the scattering exponent τ in the region where the scattering intensity I(q) decays as a power-
law, i.e., I(q)∝ q�τ, where q = (4π/λ) sinθ is the scattering vector, λ is the wavelength of the
incident radiation, and 2θ is the scattering angle. For mass fractals τ =Dm, where Dm is the
mass fractal dimension with 0 <Dm < 3. For surface fractals τ = 6�Ds, where Ds is the surface
fractal dimension with 2 <Ds < 3. Thus, in practice if the absolute value of the measured
scattering exponent is smaller than 3, the sample is a mass fractal with fractal dimension τ (in
the measured q-range), and if the exponent is between 3 and 4, the sample is a surface fractal
with fractal dimension 6� τ.

Besides the fractal dimension (either mass or surface one), traditionally from SAXS/SANS pat-
terns, we can also obtain the overall size of the fractal, as well as the size of the basic structural
units composing the fractal. The last years have brought a breakthrough in the theoretical
analysis of SAXS/SANS experimental data, allowing for the extraction of additional structural
information and detailed modeling of fractals using a deterministic approach [29–40]. This
progress was stimulated by recent advances in nanotechnology, which allows preparation of
both mass and surface deterministic fractals at sub-micrometer scale [15–18, 41, 42], as well as by
instrumentation which allows novel structural features to be recorded in experimental data [43].
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This chapter focuses on the interpretation of SAXS/SANS data from deterministic mass and

surface fractals. First, a brief theoretical background on the basics of SAS theory, and on

description of mass and surface fractals, is presented. Here, we also include the theory of some

well-known methods of generating fractals, such as iterated function system of cellular autom-

ata. Novel data analysis methods for extracting additional structural information are presented

and illustrated by applications to various models of mass and surface fractals.

2. Theoretical background

In this section, some important concepts for the analysis of SAXS/SANS are reviewed, and

analytical and numerical procedures for calculating the scattering intensity from some basic

geometrical shapes are described. As we will see in the next section, these geometrical shapes

will form the “scattering units” of the fractals. Then, the basic notions of fractal theory includ-

ing fractal dimension, mass, and surface fractals are presented and defined in a rigorous

manner, and two general methods for generating fractal structures are presented. These con-

cepts are then applied in calculating the SAXS/SANS patterns from several theoretical models

of mass and surface fractals.

2.1. Small-angle scattering

2.1.1. General remarks

In a SAS experiment, a beam of X-rays or neutrons is emitted from a source and strikes the

sample. A small fraction is scattered by the sample and is recorded by the detector. In Figure 1,

the incident beam has a wave vector ki, and the scattered beam with the wave vector ks makes

the angle 2θwith the direction of the incoming or transmitted beam.

To describe the scattering from assemblies of objects with scattering length bj, we write the

scattering length density SLD as ρ(r) =∑jbj(r� rj) [21], where r
!

j is the object positions. Then, the

total scattering amplitude is defined by the Fourier transform of ρ r
!

� �

:

A qð Þ �

ð

v

ρ rð Þe�iq:rd3r, (1)

where v is the total volume irradiated by the beam. In the following, we consider scattering

occurring in a particulate system where particles of density ρm are dispersed in a uniform

solid matrix of density ρp. Then, the excess scattering SLD is defined by Δρ = ρm� ρp. We also

consider that the objects are fractals that are randomly distributed and with uncorrelated

positions and orientations. Thus, the scattering intensities of each object are added, and the

intensity from the entire sample can be obtained from a single object averaged over all

orientations, according to [29]:
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I qð Þ ¼ n Δρ
�

�

�

�

2
V2 F qð Þj j2

D E

, (2)

where n is the concentration of objects, V is the volume of each object, and F q
!

� �

is the

normalized scattering amplitude given by:

F qð Þ ¼
1

V

ð

V

e�iq:rd3r: (3)

The symbol 〈⋯〉 stands for ensemble averaging over all orientations, and for an arbitrary

function f, it is calculated according to:

f qx; qy; qz

� �D E

¼
1

4π

ðπ

0

dθ sinθ

ð2π

0

dϕf q;θ;ϕ
� �

, (4)

where, in spherical coordinates qx = q cosϕ sinθ, qy = q sinϕ sinθ, qz = q cosθ.

Another useful form of the scattering intensity, as a function of the correlation function, is the

following [21]:

I qð Þ ¼ 4π

ðD

0

γ rð Þ
sin qr

qr
r2dr, (5)

where γ(r)� 〈ρ(r) ∗ρ(�r)〉 is the correlation function of the object, with γ(r) = 0 for r >D and D

is the largest dimension in the object. The symbol ∗ denotes a convolution, and thus, the

correlation function can be seen as an averaged self-convolution of density distribution.

Figure 1. Schematic representation of a small-angle scattering experiment. 2θ is the scattering angle and λ is the

wavelength of incident beam. The sample shown is a two-phase system of polydisperse scatterers with the same shape

and random orientations, embedded in a matrix or solution.
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At low values of the scattering vector (q≲ 2π/D), the above expression can be further exploited.

By considering first the MacLaurin series

sin qrð Þ

qr
≃ 1�

q2r2

6
þ
q4r4

120
�⋯, (6)

and then using only the first two terms of this approximation into Eq. (5), the Guinier equation

is obtained:

I qð Þ ¼ I 0ð Þ 1�
q2R2

g

3
þ⋯

 !

, (7)

where I 0ð Þ ¼ 4π
ÐD
0 γ rð Þr2dr, and

Rg ¼
1

2

ðD

0

γ rð Þr4dr=

ðD

0

γ rð Þr2dr, (8)

is the radius of gyration of the object. In practice, a plot of logI(q) vs. q2 is used to obtain the

slope R2
g=3, and then an overall size of the object. For a ball of radius R, it is known that

R ¼ Rg

ffiffiffiffiffiffiffiffi

5=3
p

[21]. If a scattering experiment is performed on an absolute scale, molecular

weight can also be obtained.

However, as we shall see in the next sections, inside a fractal, the scattering units have defined

positions and correlations, and the interference among rays scattered by different units may no

longer be ignored, so that the scattering amplitudes of individual units have to be added. By

considering that the fractal is composed of N balls of size R, its form factor becomes [29]:

F qð Þ ¼ ρqF0 qRð Þ=N, (9)

where ρ
q
¼
P

je
�iq. rj is the Fourier component of the density of units centers, F0 is the form

factor of each scattering unit composing the fractal, and r
!
j are their positions. By introducing

Eq. (9) into Eq. (2), the scattering intensity can be written as [29]:

I qð Þ ¼ I 0ð ÞS qð Þ F0 qRð Þj j2=N, (10)

where I(0) =n|Δρ|2V2, and S qð Þ � ρ
q
ρ-q

D E

=N is the structure factor and it describes the corre-

lations between the scattering units inside the fractal.

A physical sample almost always consists of fractals that have different sizes, which is called

polydispersity. An exception to this rule is protein solutions, in which all have the same size

and shape. Thus, the corresponding scattering intensity from polydisperse fractals can be

regarded as the sum of each individual form factor weighted with the corresponding volume

V and contrast Δρ. We consider here a continuous distribution DN(l) of fractals with different

sizes l, defined in such a way that DN(l)dl gives the probability of finding a fractal with
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dimension l lying in the range (l, l + dl). Although any kind of broad distribution can be used,

we take here, as an application, a log-normal distribution of fractal sizes, such as:

DN lð Þ ¼
1

σl 2πð Þ1=2
e�

log l=μ0ð Þþσ2=2ð Þ
2

2σ2 , (11)

where σ ¼ log 1þ σ2r

� �� �1=2
, μ0= 〈l〉D is the mean length, σr ¼ l2

� 	

� μ2
0

� �1=2
=μ0 is the relative

variance, and ⋯h iD ¼
Ð

∞

0 ⋯DN lð Þdl. Since for a polydisperse fractal dispersion, the volume of

each fractal has a continuous variation with its size, the polydisperse scattering intensity becomes:

I qð Þ ¼ n Δρ
�

�

�

�

2
ð

∞

0

F qð Þj j2
D E

V2 lð ÞDN lð Þdl, (12)

where the form factor F(q) is given by Eq. (9). The effect of polydispersity is to smooth the

scattering curves [20, 21] (see also Figure 2a).

2.1.2. Debye-Pantos formula

In the next section, we shall make use of chaos game representation (CGR) and cellular

automata (CA) to generate positions of the N scattering units/points. Thus, we can start with

the Debye formula [44]

ID qð Þ ¼ NIs qð Þ þ 2Fs qð Þ2
X

N�1

i¼1

X

N

j¼iþ1

sin qrij

qrij
, (13)

where Is(q) is the intensity scattered by each fractal unit, and rij is the distance between units i and j.

When the number of units exceeds few thousands, the computation of the term sin(qrij)/(qrij)

is time consuming, and thus it is handled via a pair-distance histogram g(r), with a bin-width

commensurate with the experimental resolution [45]. Thus, Eq. (13) becomes

ID qð Þ ¼ NIs qð Þ þ 2F2s qð Þ
X

Nbins

i¼1

g rið Þ
sin qri
qri

, (14)

where g(ri) is the pair-distance histogram at pair distance ri. For determining fractal properties,

we can neglect the form factor, and consider Is qð Þ ¼ F2s qð Þ ¼ 1. Thus, Eq. (14) gives the struc-

ture factor:

ID qð Þ � SD qð Þ ¼ N þ 2
X

Nbins

i¼1

g rið Þ
sin qri
qri

: (15)

2.1.3. Scattering from a ball and from a triangle

As a first example, we derive the scattering intensity of a ball with unit density, radius R, and

volume V = (4π/3)R3. To do so, we can rewrite the normalized scattering amplitude given by

Eq. (3), in spherical coordinates, such as:
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F0 qð Þ ¼
1

V

ð2π
ϕ¼0

ðπ
θ¼0

ð
∞

r¼0

e�iq. rr2 sinθdrdθdϕ: (16)

Note that since balls represent here the basic units of the fractal, we have chosen the notation

F0(q) instead of F(q), in spirit of Eq. (9). We can choose the polar axis to coincide with the direction

of q, and therefore q. r ¼ qr cosθ. By denoting u= cosθ, in the new variable, Eq. (16) becomes:

F0 qð Þ �
1

V

ð2π
ϕ¼0

ð1
u¼�1

ð
∞

r¼0

e�iqrur2 sinθdrdθdϕ ¼
1

V

ðR
r¼0

4πr2
sin qrð Þ

qr
dr: (17)

By performing an integration by parts of the last expression, the normalized scattering ampli-

tude of the ball of radius R becomes:

F0 qRð Þ ¼
3 sin qRð Þ � qRð Þ cos qRð Þð Þ

qRð Þ3
: (18)

Thus, the total scattering intensity (see also Eq. (2)) becomes:

I qð Þ � F0 qRð Þ½ �2 ¼
32 sin qRð Þ � qRð Þ cos qRð Þð Þ2

qRð Þ6
: (19)

Figure 2a shows the scattering intensity of a ball of radiusR = 10 nm. The scattering is represented

on a double logarithmic scale and shows the presence of two main regions. At low values of the

scattering vector (q≲π/R), we have the Guinier region, which is a plateau with I(q)∝ q0, and from

which one can obtain the radius of gyration, as described in the previous section. At higher values

(i.e., q≳π/R), there is apower-lawdecayof the type I(q)∝ q�4 andwithmanyminima. This is called

the Porod region and generally it gives information about the specific surface of the investigated

object. The main feature here is that by increasing the relative variance σr, the scattering curve

Figure 2. (a) SAS intensity from a ball of radius R = 10 nm from Eq. (19) (lowest curve). The higher the relative variance, the

smoother the curve. Polydisperse SAS intensity, according to Eq. (12) at various values of relative variances. (b) SAS

intensities from a ball of radius R = 10 nm (left curve), and R = 1 nm (right curve).
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becomes smoother, and the value of the scattering exponent is preserved. Figure 2b shows that by

decreasing the size of the ball, the corresponding scattering curve has the same characteristics and

the Porod region is shifted to the rightwith the corresponding factor (here by 10).

The second example is an equilateral triangle of edge size a. This is a slightly more complicated

structure since it does not have a center of symmetry as a ball, and thus an orientational

averaging is required. Thus, its height is h ¼ a
ffiffiffi

3
p

=2 and its surface area is:

Area að Þ ¼ a2
ffiffiffi

3
p

4
: (20)

We choose a Cartesian coordinate system where one edge is parallel to the x-axis and the

opposite vertex coincides with the origin. Thus, Eq. (3) becomes a surface integral given by:

F0 qð Þ ¼ 1

Area að Þ

ða

0

dy

ð

ya
2h

�ya
2h

dxe�i xqxþyqyð Þ, (21)

which can be calculated and transformed into:

F0 qð Þ ¼ 2e�iα βe
iα � β cos β� iα sin β

β β2 � α2
� � , (22)

where α = hqx and β = hqy. As we shall see in next sections, the scattering amplitude of a system of

triangles can be obtained by properly taking into account their scaling, rotation, and translations.

The averaging over all orientations is performed by allowing the triangle to rotate in a 2D

space, and thus the average given by Eq. (4) for 3D case, becomes now:

f qx; qy

� �D E

¼ 1

2π

ð2π

0

dϕf q;ϕ
� �

, (23)

with qx = q cosϕ and qy = q sinϕ.

Similarly to scattering from a ball, the intensity curve of a triangle also shows the Guinier

region at low-q (q≲ 2π/a), and a Porod region at high-q (q≳ 2π/a) as shown in Figure 3a.

However, for a triangle, the absolute value of the scattering exponent in the Porod region is

equal to 3. This is in contrast to the value of 4 obtained for the ball in the previous example (see

Figure 3b). The difference arises due to the fact that the triangle is a 2D object while the ball is a

3D one. In addition, due to the lack of symmetry, scattering from a triangle does not show

pronounced minima as in the case of scattering from a ball.

2.1.4. Scattering from systems of triangles

In the previous section, we have seen that regardless of the shape and Euclidean dimension, the

SAS intensity from basic geometrical structures always reproduces a Guinier region followed by

a Porod one. Without loosing from generality, we will restrict in the following to calculate SAS

intensity from systems of triangles. In principle, any geometrical shape can be chosen but we
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prefer here triangles due to the fact that the both well-known techniques for generating fractal

structures: iteration function systems and cellular automata, in their basic form, involve triangles

in the construction process.

We start first with a simple model consisting of three triangles of edge size a/2, with a = 1 nm,

as shown in Figure 4a. For this configuration, we can write [40]:

Area a=3ð ÞF qð Þ ¼
X

2

j¼0

β2sArea að ÞF0 βsq
� �

e�iqaj , (24)

where βs is the scaling factor, F0(q) is given by Eq. (22), and the translation vectors are given by:

aj ¼
a

ffiffiffi

3
p

6
cos

π

3
2jþ 3

2


 �

; sin
π

3
2jþ 3

2


 �� 

(25)

The corresponding scattering intensity is shown in Figure 4b, and as expected, it consists of a

Guinier region followed by a Porod one with scattering exponent �3. For comparison, the

same figure shows the scattering intensity of a single of edge size a = 1 nm.

The second example is a system of 6 triangles of edge sizes a/3 arranged in such a way that

they form a hexagon as shown in Figure 5a in black. For this configuration, the translation

vectors can be written as [38]:

bj ¼
2a

3
ffiffiffi

3
p cos

π

3
j; sin

π

3
j

n o

: (26)

The corresponding scattering intensity is shown in Figure 5b and shows a superposition of

maxima and minima. Excepting the distribution of minima in the Porod region, there is no

significant difference between this scattering curve and the one corresponding to the system of

three triangles shown in Figure 4b.

Figure 3. (a) SAS intensity from an equilateral triangle of edge size a = 1 nm (right curve), and a = 3 nm (left curve),

respectively. (b) A comparison between the SAS intensity of a ball of radius R = 1 nm (left curve) and a triangle of edge size

a = 1 nm (right curve).
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The last example is slightly more complicated and it consists of one hexagon of edge size a/3

(black) and six triangles of edge size a/3 (gray), with a = 1 nm arranged as in Figure 5a. This

configuration is equivalent to a system of one triangle of edge size a and three triangles of edge

size a/3. This is known in the literature, also as the Star of David. The translation vectors of the

three triangles can be obtained in a similar way, as in the case of the first example. The

corresponding scattering intensity is shown in Figure 5b (red). It can be seen that due to

various sizes of the triangles involved in the construction, an intermediate regime emerges

between the Guinier and Porod regions, approximately at 2≲ q≲ 8 nm�1. As we shall see later,

for even more complex structures, this intermediate region will evolve into a fractal one.

- 0.6 - 0.4 - 0.2 0.2 0.4 0.6

- 0.4

- 0.2

0.2

0.4

0.6

(a)

Figure 4. (a) A model of three triangles (gray) of edge size a/2, with a = 1 nm; (b) the corresponding SAS intensity (highly

oscillating curve). The smoother curve is the SAS intensity corresponding to a single triangle of edge size a = 1 nm and

whose center coincides with the center of white triangle in part (a).

Figure 5. (a) Two models consisting only of equilateral triangles: hexagon (black color) and Star of David (black and gray

colors); (b) the corresponding SAS intensities of the hexagon (continuous curve) and Star of David (dashed curve).
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In particular, if the triangles composing the system are arranged in such a way that they form a

Sierpinski gasket, the intermediate region will correspond to a mass fractal region [29–31]. When

the triangles have a power-law distribution in their sizes, the intermediate region will correspond

to a surface fractal one [37, 38]. The great advantage of the SAS technique consists in the possibility

to differentiate these two types of fractal regimes, as discussed at the beginning of this chapter.

2.2. Mass and surface fractals

As it was already pointed out before, the main characteristic of fractals obtained from a SAS

experiment is the fractal dimension. Mathematically, the α-dimensional Hausdorff measure is

defined by [29]

mα Að Þ ¼ lim
a!0

inf
V if g

X

i

aαi ,α > 0 (27)

where A is a subset of an n-dimensional Euclidean space, {Vi} is a covering of A with ai = diam

(Vi) ≤ a, and the infimum is on all possible coverings. Then, the Hausdorff dimension D of the

set A is given by:

D � inf αi;m
α Að Þ ¼ 0f g ¼ sup α;mα Að Þ ¼ ∞f g, (28)

and it represents the value of α for which the Hausdorff measure changes its value from zero to

infinity.

However, in practice, this definition is quite inconvenient to be used, and here we shall use the

“mass-radius” relation for calculating the Hausdorff dimension of the fractals [1]. In this

approach, the total fractal measure (i.e., mass, surface area, volume) of the fractal within a ball

of radius r centered on the fractal is given by:

M rð Þ ¼ A rð ÞrD, (29)

where logA(r)/ log r! 0 for r!∞.

As an application, for a deterministic mass fractal of length L, scaling factor βs, and k structural

units in the first iteration, we can write [1]:

M Lð Þ ¼ kM βsL
� �

, (30)

and using Eq. (29), one obtains a formula for calculating the fractal dimension of the mass

fractal:

kβDs ¼ 1: (31)

Thus, if a finite iteration of the fractal consists of N scattering balls of radius a, the fractal

dimension is given by the asymptotic:

N∝
L

a


 �D

, (32)

in the limit of large number of iterations.
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If the quantity to be measured is themass M(r) embedded in a disk of radius r, Eq. (30) becomes

M(r)∝ rDm
, which leads to I(q)∝ q�Dm. The lower the value of mass fractal dimension Dm, the

less compact is the structure. In a similar way, for a surface fractal of fractal dimension Ds, its

surface obeys S(r)∝ r2�Ds and thus the scattering intensity decays as I(q)∝ q�(2d�Ds).

More generally, in a two-phase system where one phase is of dimension Dm and the second

phase is its complement set of dimension Dp (“pores”), the “boundary” between the two phases

also forms a set of dimension Ds (“surface”). Thus, for a mass fractal, we have Ds =Dm < d and

Dp = d, while for a surface fractal we have Dm =Dp = d and d� 1 <Ds < d [37, 38]. The possibility of

differentiating between mass and surface fractals makes SAS a very convenient technique for

measuring fractal dimensions of materials at nano- and micro-scales.

2.3. Iterated function system

As a first method of generating fractals, we consider an iterated function system (IFS). By

definition, an IFS is a complete metric space (X, d) together with a finite set wn :X!X of

contraction mappings and contractivity factors sn,n > 1, 2,⋯,N. In general, a transformation

f : X!X on a metric space (X, d) is a contraction mapping if there is a constant (contractivity

factor) 0 ≤ s < 1 such that

d f xð Þ; f yð Þð Þ ≤ s. d x; yð Þ ∀x, y∈X. (33)

By considering a hyperbolic IFS and if we denote by (H(X), h(d)), the space of nonempty

compact subsets with the Hausdorff metric h(d), then the transformations W :H(X)!H(X)

defined by W Bð Þ ¼ ∪
N
n¼1wn Bð Þ, ∀B∈H Xð Þ is a contraction mapping on the complete metric

space H Xð Þ; h dð Þð Þ with the contractivity factor s [46], i.e.,

h W Bð Þ;W Cð Þð Þ ≤ s � h B;Cð Þ∀B, C∈H Xð Þ: (34)

The unique fix point A∈H(X) obeys A ¼ ∪
N
n¼1wn Að Þ and is called the attractor of the IFS, which

is a deterministic fractal [46].

We generate here the attractor by using random iteration algorithm, and thus we assign the

probability pn > 0 to wn for n = 1, 2,⋯where
PN

n¼1 pn ¼ 1. Then, a point x0∈X is chosen, and we

build recursively the sequence xk∈ {w1(xk� 1),w2(xk� 1),⋯,wN(xk� 1)}, where the probability of

the event xk =wn(xk� 1) is pn, and k = 1, 2,⋯. This leads to the sequence {xk� 1 : k = 0, 1,⋯}, which

converges to the attractor of IFS.

2.4. Cellular automata

Another important method to generate exact self-similar fractals is by using cellular automata

(CA) [47–49]. They provide simple models for dynamical systems dealing with the emergence

of collective phenomena such as chaos, turbulence, or fractals. Basically, a cellular automaton is

a set of cells on a grid (rectangular, hexagonal, etc.) that evolves through a number of discrete

steps according to a set of rules based on the states of neighboring cells. The rules are then
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applied alternatively for as many times as needed. The grid is n-dimensional but for our

purposes, we will choose n = 1.

In this chapter, we shall present Rule 90 [49] together with the corresponding structure

factor based on Pantos formula given by Eq. (15). For particular values of the number of

steps, Rule 90 generates exact shapes of the Sierpinski gasket (SG). However, for most of the

number of steps, it generates intermediate structures between two consecutive iterations of

SG. Thus, for Rule 90, CA extends considerably the number of structures generated, and

therefore new classes of materials consisting of a “mixture” of SG at various iterations can

be investigated.

More generally, SAS from CA could be used to check whether a generated structure is a mass or

surface fractal (or none of them), i.e., whether there exists a power-law distribution of some

entities (collections of cells). In addition, through the oscillations of the scattering curve in the

fractal region, SAS from CA can shed some light on the randomness of the generated structures.

This could be of particular interest since some rules like Rule 30 generates so-called pseudo-

random structures. However, this is beyond the scope of this chapter. Here, we shall restrict

ourselves to calculation and interpretation of SAS intensities from basic structures, such as those

based on SG. This shall facilitate a quick comparison with the theoretical model based on SG

presented in the next section, and thus to support the validity of the obtained results.

3. Small-angle scattering from mass fractals

As an example of a deterministic mas fractal, we calculate the scattering from a two dimen-

sional Sierpinski gasket (SG), generated by three different methods. In order to calculate the

scattering intensities of an ensemble of triangles, we use the following properties:

• When the size of a triangle is scaled as a! βsa, then the form factor scales as F(q)! F(βsq);

• When the triangle is translated by a vector b such as r!rþr, then F(q)!F(q)e�iq. b.

Zero-th iteration of SG consists of a single triangle of edge size a (here, a = 1 nm). First iteration

(m = 1) consists of four smaller triangles, each of the edge length a/2 as shown in Figure 3a.

At second iteration (m = 2), the same operation is repeated for each of the triangles of edge

length a/2. In the limit of large number of iterationsm, the total number of triangles of edge size

am = a/2m is:

N ¼ 3m: (35)

Therefore using Eq. (31), one obtains the fractal dimension of SG as:

D ¼ lim
m!∞

logN

log a=amð Þ
≈ 1:585: (36)

At m-th iteration, the positions of the triangles forming the SG are given by:
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Pm q
!

� �

�
Y

m

i¼1

Gi q
!

� �

, (37)

where Gi q
!

� �

is known as the generative function [29, 31, 38], and is given by

G1 q
!

� �

¼
1

3

X

2

j¼0

e�i q
!
� a
!
j , (38)

where the translation vectors are given by Eq. (25), Gm q
!

� �

¼ G1 βm�1
s q

!
� �

, and βs = 1/2. Figure 5

left part, shows first three iterations of SG.

By using the property given in Eq. (37), the fractal structure factor can be written as [29]:

S qð Þ=N ¼
Y

m

i¼1

Gi q
!

� �
�

�

�

�

�

�

2
:

* +

(39)

Thus, by introducing Eqs. (39) and (22) into Eq. (10), we obtain an analytical expression for the

scattering intensity:

I qð Þ=I 0ð Þ ¼ F0 βms a q
!

� �
�

�

�

�

�

�

2
� �

S qð Þ=N: (40)

By ignoring the form factor F0 in Eq. (40), an analytical expression of the structure factor is

obtained. This case is discussed in [40].

The corresponding scattering intensities are shown in Figure 5 right part, for a triangle (m = 0)

and for the first three iterations of SG (m = 1, 2, 3). At low q-values (q≲ 2 nm�1), all the scatter-

ing curves are characterized by a Guinier region. A main feature of scattering from determin-

istic mass fractals is that after the Guinier region, it follows a fractal regime in which the

absolute value of the scattering exponent equals the fractal dimension of the fractal. The length

of the fractal regime increases with increasing the iteration number since the distances between

the scattering units of the fractals (here triangles) decrease. In Figure 5 right part, the fractal

regime is clearly seen within the range 2≲ q≲ 14 nm�1 for m = 3. It is characterized by a

succession of maxima and minima superimposed on a power-law decay (also known as a

generalized power-law decay [29]). The number of minima in the fractal regime is equal with

the fractal iteration number and from their periodicity, we can extract the value of the scaling

factor [29]. Beyond the fractal regime, one obtain as expected, the Porod region where the

exponent of the power-law decay is �3 (or �4 for three-dimensional objects). In Figure 5 right

part, at m = 3 the Porod regime begins near q≳ 14 nm�1.

By taking into account, the effect of polydispersity or the random distribution of the scattering

units, the scattering curve is smoothed and thus the maxima and minima are smeared out. The

“smoothness” of the curve increases with increasing the relative variance of the distribution

function, and they can be completely smeared out when a threshold is reached. Experimentally,
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most of the times, SAS experiments give this type of behavior, when the curve is completely

smeared out. Please note that if we neglect the contribution of the form factor F0 in Eq. (40), then

the Porod region is replaced by an asymptotic region, from which the number of scattering units

inside the fractal can be obtained (see Figure 6). This case is presented and discussed in the

following, for the SG generated using CGR and IFS, respectively.

CGR representation gives directly the positions of the scattering units in the fractal. Figure 6

left part, shows the SG generated from CGR for N = 30, 130, 230, and for 430 points, respec-

tively. The figure clearly shows that by increasing the number of points, the obtained structure

approaches better the structure of SG. From the same figure, we can see that for N = 430 points,

the second iteration of SG can be quite clearly distinguished. Thus, a convenient way to

calculate the scattering intensity is to use Pantos formula given by Eq. (15), since we neglect

the shape of the scattering units.

Figure 6 right part shows the scattering structure factor of SG built from the CGR, for the four

structures in the left part. Generally, all scattering curves are characterized by the presence of

the three main regions specific to SG, obtained using the analytic representation (Figure 5)

right part: Guinier region at low q, fractal region at intermediate q, and here an asymptotic

region instead of a Porod one, since we neglect the form factor. The same figure shows that by

increasing the number of particles, the length of the fractal region also increases. This is to be

expected, since increasing the number of points leads to a better approximation of the deter-

ministic SG. However, for SG generated using CGR, a transition region appears (at

40≲ q≲ 200), since in this region, the pair distance distribution function does not follow a

power-law decay distribution of the number of distances. Finally, in the asymptotic region,

the curves are proportional to 1/N, and thus, the number of points can be recovered. The

asymptotic values of the curves are marked by horizontal dashes lines in Figure 5 right part.

Rule 90 (Figure 7 left part) is an elementary cellular automaton rule, and it produces SG for

particular values of the number of steps. Although the system is generated on a rectangular

Figure 6. Left part: first four iterations of the Sierpinski gasket generated using a deterministic algorithm; right part: The

corresponding SAS intensities of the Sierpinski gasket. The curves are shifted vertically by a factor 10m, for clarity. The

lowest curve corresponds to m = 0, and the highest one corresponds to m = 3.
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grid with cells of finite size, we consider here (as in the previous example) that the scattering

units are points centered in the cells. Figure 7 left part, shows the structure generated by Rule

90 for p = 31, 41, 51, and for p = 63 steps, respectively. Note that p = 31 and p = 63 correspond to

SG at iterations m = 3, and m = 4, respectively, while p = 41 and p = 52 correspond to some

intermediate structures between the two consecutive iterations.

The corresponding structure factors are shown in Figure 7 right part. In the scattering curve,

all the three main regions are present: Guinier, fractal, and asymptotic regions. However, as

opposed to the Guinier region of the SG generated deterministically, or through CGR, here its

length decreases with increasing the number of steps. This is a consequence of the construction

algorithm used, namely the structure increases its size at every step. Decreasing the length of

the Guinier region leads to an increase of the fractal one, since the smallest distances between

scattering points remain the same. This is indicated in the scattering curve, by approximately

equal positions (q≃ 360 nm�1) of the first minima, for each of the four steps. As expected, the

absolute value of the scattering exponent in the fractal region coincides with the fractal

dimension of the structure, and the asymptotic behavior at large q (shown by horizontal dotted

lines in Figure 7 right part) tens to 1/N, where N is the total number of scattering points.

4. Small-angle scattering from surface fractals

Recently, it has been shown that surface fractals can be built as a sum of mass fractals [37, 38]. As

an example, we consider here a generalized version of the Koch snowflake (KS). The construc-

tion algorithm starts from an equilateral triangle with edge length a, which is the zero-th mas

fractal iteration (black triangle in Figure 8 left part). At the second step, each side is divided into

three segments, each of length a/3, and a new triangle pointing outward is added. The base of the

new triangle coincides with the central segment. This is the first mass fractal iteration (three

Figure 7. Left part: Sierpinski gasket generated using CGR, for different values of the number of scattering units; right

part: the corresponding SAS intensities of the Sierpinski gasket from CGR. The highest curve corresponds to N = 30 and

the lowest one corresponds to N = 430.
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orange triangles in Figure 8 left part). By repeating the same procedure for each of the new

triangles, one obtains the KS having the fractal dimension:

Ds ¼ lim
m!∞

log 3 � 4m

log a=amð Þ
¼

log 4

log 3
≈ 1:26, (41)

where am is the side length at mth iteration. In Figure 8, each of the triangle is scaled down by a

factor of 0.6 � am. The case when the triangles are not scaled down corresponds exactly to the

well-known KS and its scattering properties have been extensively studied in [38].

Since a surface fractal can be constructed as a sum of mass fractals, the normalized scattering

amplitude is written as a sum of the scattering amplitudes of mass fractals. If we denote

Am q
!

� �

� Area að ÞFm q
!

� �

, then a recurrence formula for the scattering amplitude of the surface

fractal at arbitrarily iteration can be written as [38]:

Am q
!

� �

¼ 6G3 q
!

� �

β2sAm�1 βs q
!

� �

� 6G2 βs q
!

� �

β4sAm�2 β2s q
!

� �h i

þ β2sAm�1 βs q
!

� �

1þ 6G2 q
!

� �h i

:

(42)

Here, the scaling factor is βs = 3/10, and the generative functions are given by:

G2 q
!

� �

¼
1

6

X

5

j¼0

e�i q
!
� c
!
j , (43)

and respectively by:

G3 q
!

� �

¼
1

6

X

5

j¼0

e�i q
!
�b
!

j : (44)

The translation vectors are defined as:

Figure 8. Left part: Rule 90 for p = 31, 41, 52 and p = 63 number of steps, respectively; right part: the corresponding

scattering intensities. The leftmost curve corresponds to p = 63 and the rightmost one corresponds to p = 31.
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c
!

j ¼
2a

9
cosπ jþ 1=2ð Þ=3; sinπ jþ 1=2ð Þ=3f g, (45)

and the vectors b
!

j are given by Eq. (26). Thus, using Eq. (2), the non-normalized scattering

amplitude is I qð Þ∝ Am q
!

� ��

�

�

�

�

�

2
� �

, provided the amplitudes at m = 0 and m = 1 are known.

Figures 8 and 9 left parts show the construction of the generalized KS when the ratio between

the sizes of the triangles and the distances between them are 0.6 and 0.4, respectively. Figures 8

and 9 right parts show the corresponding scattering intensities. The general feature is that when

the ratio is 0.4, in the fractal region the overall agreement between the total scattering intensity

and the intensity corresponding to uncorrelated triangles is slightly better. The curve also shows

that the absolute value of the scattering exponent is now 6�Ds, with Ds = 1.26 given by Eq. (41),

which is a “signature” of scattering from surface fractals. The reason for such behavior is that at a

given iteration, the surface fractal consists of scattering units of different sizes following a power-

law distribution (see Figure 8 left part), while mass fractals consist of scattering units of the same

size (see Figure 5 left part). A mathematical derivation of the value of the scattering exponent in

the case of scattering from surface fractals can be found in [37, 38].

The centers of triangles in Figure 8 left part coincide with the centers of triangles of the regular

KS. From another hand, it has been recently shown that the scattering intensity corresponding to

a system of triangles whose sizes follow a power-law distribution and whose positions are

uncorrelated, approximates under certain conditions the scattering intensity of the same system

but when the positional correlations are not considered [38]. Figure 8 right part, shows also the

scattering intensity of a system of triangles whose positions are uncorrelated (red curve). We can

observe that in the fractal region (20≲ q≲ 400 nm�1), the approximation is not quite satisfactory.

The reason of this behavior is that here the scaling factor is βs, and thus the distances between the

centers of the triangles is of the same order as their size. However, when the distances between

Figure 9. Left part: a generalized Koch snowflake model. Right part: highly oscillating curve—the corresponding scatter-

ing intensity, smoother curve—the scattering intensity from a system containing the same number of triangles but whose

positions are randomly.
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the scattering units are much bigger than the sizes of the units, the approximation of the

uncorrelated positions of the triangles works fairy well in the fractal region [38] (Figure 10).

5. Conclusions

In this chapter, we have presented and discussed some general concepts in small-angle scat-

tering (SAS; neutrons, X-ray, light) from deterministic mass and surface fractals. To do so, we

have considered the Sierpinski gasket (SG) as a model for deterministic mass fractals, and a

generalized version of Koch snowflake (KS) as a model for deterministic surface fractals. The

model for SG has been introduced through three main algorithms: deterministic and random

iteration function system (IFS), and through cellular automata (CA). KS has been constructed

in the framework of deterministic IFS.

The SAS intensities (fractal and structure factor) has been calculated from a system of 2D,

monodisperse diluted (i.e., spatial correlation can be neglected) and randomly oriented frac-

tals. They are characterized by the presence of three main regions: Guinier (at low q), fractal (at

intermediate q), and Porod/asymptotic (at high q). We have shown that in the case of mass

fractals, we can extract structural information about the fractal dimension (from the exponent

of the SAS curve in the fractal region), scaling factor (from the periodicity of minima in the

fractal region), iteration number (from the number of minima in the fractal region), and the

total number of scattering units inside a fractal (from the value of the structure factor in the

asymptotic region). In addition, mass fractals generated using IFS are able to reproduce fairly

well the scattering curve of deterministic IFS under the proper conditions. Mass fractals

generated from CA increase their size with increasing the number of steps. This growing

process is also reflected by a decrease of the length of Guinier region. We have also shown that

Figure 10. Left part: a generalized Koch snowflake model. Right part: highly oscillating curve—the total scattering

intensity, smoother curve—the scattering intensity from a system containing the same number of triangles but whose

positions are random.
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a surface fractal can be considered as a superposition of mass fractals at various iterations and

the range of structural information which can be extracted is similar to the case of scattering

from mass fractals.

The IFS and CA algorithms used to generate the mass fractals models can be easily extended to

more general structures and can be used to address various questions. For example, in the case

of CA, SAS could be used to determine the fractal dimension of an arbitrary structure gener-

ated using one dimensional rules, it can shed some light on the randomness of some structures,

or it can reveal the existence of a power-law distribution of some entities (of arbitrarily shape)

generated by a specific rule.
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