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Abstract

Learning navigation policies in an unstructured terrain is a complex task. The Learning
to Search (LEARCH) algorithm constructs cost functions that map environmental fea-
tures to a certain cost for traversing a patch of terrain. These features are abstractions of
the environment, in which trees, vegetation, slopes, water and rocks can be found,
and the traversal costs are scalar values that represent the difficulty for a robot to cross
given the patches of terrain. However, LEARCH tends to forget knowledge after new
policies are learned. The study demonstrates that reinforcement learning and long-short-
term memory (LSTM) neural networks can be used to provide a memory for LEARCH.
Further, they allow the navigation agent to recognize hidden states of the state space it
navigates. This new approach allows the knowledge learned in the previous training to
be used to navigate new environments and, also, for retraining. Herein, navigation
episodes are designed to confirm the memory, learning policy and hidden-state recogni-
tion capabilities, acquired by the navigation agent through the use of LSTM.

Keywords: robot navigation, learning to search, reinforcement learning, LSTM
unstructured terrain, rough terrain, cost function

1. Introduction

Autonomous robot navigation in unstructured terrain allows a robot to move through an

environment for which the selection of traversable terrain is not a deterministic decision [1]. A

mobile robot must make decisions of when to traverse patches of terrain that could be dangerous

or that might consume too many resources.

Several approaches have been developed in order to solve this problem; some of them are

focused on classifying traversable terrain [2, 3], and others in coupling the perceptual and
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planning systems of the robot using functions that map features of the environment to scalar

values that represent the traversability of the terrain [1, 4, 5]. These works try to resolve the

task of autonomous robot navigation in unstructured terrain; however, these approaches do

not address the issue as an integrated system.

In most cases, a human expert provides information for cost map constructions heuristically. In

other cases, this information is then used to construct a cost function that automatically maps

features to costs; however, note that this cost function is established heuristically. The problem

with this methodology is that the traversability of a given feature for a robot is difficult to

quantify. In contrast, humans can determine traversal trajectories relatively easily.

An alternative to establishing cost functions is to use an algorithm that automatically con-

structs and tunes a cost function. Learning to Search (LEARCH) [1] is an algorithm that uses

learning from demonstration in order to construct a cost function. In this approach, a human

expert exhibits a desirable behavior (a sample path) over certain terrain; then, LEARCH

adjusts a cost function in order to match the behavior exhibited by the expert.

LEARCH has the advantage that the cost function to be constructed can be chosen from among

linear functions, parametric functions, neural networks and decision trees, to name a few [1].

In particular, neural networks and other learning machines such as support vector machines

(SVM) have exhibited considerable generalization capability in different scenarios [6].

However, as will be demonstrated in this paper, the LEARCH generalization capability

decreases as the number of sample paths increases; this is because the error decays over time

during training.

In this study, this problem with the LEARCH algorithm is addressed using a long-short-term

memory (LSTM) neural network and reinforcement learning (RL). Recurrent neural networks

are capable of finding hidden states, as shown in [7]. Therefore, we propose a complex learning

system that allows a navigation agent to learn navigation policies and determine complex

traversability cost functions. Furthermore, this system can retain the knowledge learned in

past navigation episodes in memory and generalize this knowledge for use in new episodes.

2. Learning to Search

This section presents an overview of the LEARCH algorithm, along with the results of gener-

alization tests conducted using LEARCH. The objective is to explain the need for memory for

this algorithm in order to improve its performance.

TheLEARCHalgorithm is basedon the concept of inverse optimal control [8],which addresses the

problem of finding a cost map such that a known trajectory through an environment is optimally

navigated using thismap. In addition, non-linearmaximummargin planning [1]with the support

vector regressionmachine [9] is used to learn behavior from an expert, that is, human expert.

Let S be a state space operated by a path planner. F is a feature space defined over S. Then, for

every x∈ S a corresponding feature vector Fx∈S exists. The Fx vectors are inputs for the cost
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function C, which maps F to scalar values. C is defined as the weighted sums of functions Ri∈R ,

whereR is a space of limited complexity that maps from the feature space to a scalar [1].

We define a path P as a sequence of states x∈S that lead from the start s point to the goal g. The

cost of each state is C(Fx); thus, the cost of the entire path is defined as

C Pð Þ ¼
X

x∈P

C Fxð Þ (1)

Consider a path provided by an expert, i.e. sample path Pe, which runs from a start state se to a

goal state ge. In order to learn from the expert demonstration, a cost function such that Pe is the

optimal path from se to ge is required. This task can be expressed as the following optimization

problem [1]:

MinO C½ � ¼ λREG Cð Þ þ
X

x∈P

C Fxð Þ �minbP
X

x∈bP
C Fxð Þ � Le xð Þð Þ

2

4

3

5 (2)

where λ is a term that scales the regularization term REG(C). bP is a path computed by a

planner over the cost space, and Le is a loss function that encodes the similarity between paths.

The latter is defined as

Le ¼
1 if x∈Pe,

0 otherwise

(

(3)

The sub-gradient is used to minimize O[C]. In the cost function space, the sub-gradient is

∇OF C½ � ¼ λ∇REGF C½ � þ
X

x∈Pe

δF Fxð Þ �
X

x∈P∗

δF Fxð Þ, (4)

where δ is the Dirac delta and P∗ is the optimal path for the actual cost map.

In order to avoid overfitting, a cost function space is considered. C is now defined as the space

of weighted sums of functions Ri∈R , where R is a space of functions of limited complexity,

which maps from the feature space to a scalar. The possible choices for R include linear

functions, parametric functions, neural networks and decision trees. Thus,

C ¼ CjC ¼
X

i

ηiRi Fð Þ, Ri ∈R , ηi ∈R

( )

R ¼ RjR : F ! R ∧REG Rð Þ < vf g

(5)

The functional gradient is projected onto the direction set by finding the element Ri∈R that

maximizes the inner product 〈�∇OF[C],R∗〉. This maximization can be regarded as a learning

problem. Here,
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R∗ ¼ arg maxR �∇OF C½ �;R∗h i

¼ arg maxR
X

x∈Pe ∩P∗

αxyxR Fxð Þ
(6)

where

αx ¼ ∇OFx C½ �j jyx ¼ � sgn ∇OFx C½ �ð Þ

As in [1] the projection of the functional gradient can be regarded as a weighted classification

problem. It can be seen that the regression targets yx are positive in regions of the feature space

for which the planned path visits more than the sample path and negative in the opposite case.

Here, this approach is viewed as minimizing the error induced by visiting states that are not in

the sample path. Then, the visitation count U is the cumulative count of the number of states

x∈P such that Fx =F. The visitation counts can be split into positive and negative components,

depending on whether they correspond to the current planned path or the sample path:

Uþ Fð Þ ¼
X

x∈P∗

δF Fxð Þ

U� Fð Þ ¼
X

x∈Pe

δF Fxð Þ
(7)

U Fð Þ ¼ Uþ Fð Þ �U� Fð Þ ¼
X

x∈P∗

δF Fxð Þ �
X

x∈Pe

δF Fxð Þ (8)

Ignoring the regularization term of Eq. (4), the regression targets and weights can be computed

as functions of the visitation counts. Then, the regressor targets can be obtained using these

visitation counts. Further, with this regressor, the cost function can be expressed as

Cj ¼ Cj�1
∗enjRj (9)

where j = {1, 2, 3,…, n}, with n being the number of iterations; R is the regressor; and η is the

learning rate.

2.1. Learning to Search experiments

This section describes the experiment conducted to test the LEARCH generalization capabilities.

Satellite-like images were selected for feature extraction. Further, patches of terrain were divided

into grid cells, with a vector being created for each cell. These vectors represented a value for each

of the following features of the environment in each dimension: the vegetation density, slope, the

presence of gravel or rocks and the presence of water; each scalar value represents an abstraction

of the feature; for example, the scalar value for vegetation represents its density, a patch of terrain

with grass would be represented with a low value, and a patch of terrain with a tree would be

represented with a high value of vegetation. In these experiments vectors of dimension 4 were

used, that is, for the patch of terrain with grass, the vector [0, 2, 0, 0] would be its representation.

A human expert-traced sample paths over the terrain, as shown in Figure 1.
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With this information a support vector regressor (SVR) was used to learn the cost function Ri of

Eq. (5). Note that, after LEARCH is executed, the trained SVR can map the features of the terrain

directly into traversal costs. Figure 2 shows a diagram of the algorithm used for training.

The procedure is explained as follows:

• A cost map M is constructed using a feature map and a cost function (C(F)).

• The path planner D∗ computes an optimal path P∗ from start point se to the goal point ge
over M.

• Using the sample path from the expert path Pe and P∗, the vector U indicating the

visitation counts is constructed as shown in Eq. (8).

• Using U, the regressor targets are computed, and this regressor is trained.

• The cost function is updated using Eq. (9).

• This process is repeated until Pe and P∗ are equal.

Figure 1. Left: Satellite like image. Right: Grid cells and lines with different colours representing sample paths.

Figure 2. LEARCH diagram. F is the feature map, M is the cost map, se and ge represent the start and the goal points,

respectively, P* is the optimal path, Pe is the sample path, T is the vector of regressor targets values for training a regressor

R, C (F is the cost function and j = {1,2,3,…, n}, where n is the number of iterations needed to train the cost function.
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The traversal costs can be color coded for demonstration purposes, as shown in Figure 3,

where values near 20 represent the patches with the highest crossing difficulty and those near

zero represent terrain that is easy to traverse.

In this experiment, in order to prove the generalization capabilities of LEARCH (i.e. its ability

to use policies learned in past navigation episodes during new episodes), we employed the

following methodology. First, we trained the LEARCH system described in Figure 1 using an

initial map and one sample path. Then, we incrementally added to this learned knowledge

(using the same initial map) by incorporating more paths to be learned by LEARCH (one by

one). The results of these experiments are shown in Figure 4, where the image (a) of the figure

shows the cost map obtained with a cost function trained using one sample path and the image

(b) shows the results obtained by adding a path to the training, and so on until five sample

paths are used. The image (f) of Figure 4 shows the cost map obtained with a cost function

trained using eight sample paths.

From the cost map (e) of Figure 4, in comparison with the cost map (f), it is apparent that

information from the environment is missing after the cost function is trained with more

sample paths. That is, some states are no longer recognized as states with a high traversal cost.

It is important to note that the costs that are most affected are those furthest from the sample

paths, in comparison with the costs of the corresponding states on the original path; therefore,

the generalization capability of the LEARCH system is very poor. This problem renders the

task of finding the optimal path difficult. In addition, the path planner could compute a path

that traverses dangerous terrain. Further, note that, the use of only a few sample paths is not a

solution to the problem of obtaining a systemwith knowledge of a greater number of area costs

than those attached to the sample paths. This is because such sample paths cannot contain all

the information necessary for a good and complete representation of the environment.

Figure 3. Example of a cost map which belongs to the real map shown in Figure 1.
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Figure 4. Costs maps obtained using different numbers of paths of terrain.
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In this study, other experiments to prove the limitations of LEARCHwere performed, in which

we trained the system using nonrepresentative environment paths. That is, the paths taught by

the expert traversed many cells of the environment that did not contain sufficient representa-

tive features of the environment or cells that did not have significant differences in cost.

Figure 5 shows examples of these paths, which allowed the LEARCH system to acquire

nonrepresentative knowledge that was then generalized over the cost map. The cost map at

the left of Figure 5 is less generalized compared with the more descriptive costs shown on the

map at the right of Figure 5.

Therefore, in order to address the problems with the LEARCH system, we propose the use of

an LSTM as part of the system. Inclusion of an LSTM allows the navigation agent to learn

navigation policies and complex traversability cost functions and, furthermore, to retain mem-

ory of the knowledge learned in the past navigation episodes for reuse during new episodes.

The latter capability allows expensive retraining to be avoided when the navigation environ-

ment is similar to those already explored by the agent and allows hidden states of the

extremely large state space represented by a nonstructured or rough terrain to be recognized.

We present the LSTM in the next section.

3. Long-short-term memory neural network

LSTM is a recurrent neural network architecture originally designed for supervised time-series

learning. It addresses the problem that errors propagated back in time tend to vanish in

multilayer neural networks (MLPs). Enforcing a constant error flow in constant error carousels

(CEC) is a solution for vanishing errors [7].

These CECs are processing units having linear activation functions that do not decay over

time. CECs can become filled with useless information if access to them is not regulated;

therefore, specialized multiplicative units called input gates regulate access to the CECs.

Further, their access to activation of other network units is regulated by multiplicative units

called output gates. In addition, forget gates are added to CECs in order to reset information

Figure 5. Left: cost map computed with five representative paths. Right: cost map computed with five non representative

paths.
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that is no longer useful. A combination of a CEC and its input, output and forget gates is called

a memory cell (Figure 6).

The activation updates at each time step t in this type of neural network are computed as

follows. For the hidden unit activation yh, the output unit activation yk, the input gate activa-

tion yin, the output gate activation yout and the forget gate activation yφ, we have

yi tð Þ ¼ f i

X

m

wimy
m t� 1ð Þ

 !

(10)

where wim is the weight of the connection from unit m to unit i. For the activation function fi, the

standard logistic sigmoid function for all units is chosen, except for output units, for which it is

the identity function [7]. The CEC activation, also known asmemory cell state, is calculated using

scv
j
tð Þ ¼ yφj tð Þscv

j
t� 1ð Þ þ yinj tð Þg

X

m

wcv
j
my

m t� 1ð Þ

 !

(11)

where g is a logistic sigmoid function scaled to the [�2, 2] range and scv
j
0ð Þ. Finally, the

activation update for the memory cell output is calculated from

Figure 6. Graphic representation of a memory cell.
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y
cv
j tð Þ ¼ yout tð Þh scv

j
tð Þ

� �

(12)

The learning process implemented for LSTM in this paper is a variation of real-time recurrent

learning (RTRL), as described in Ref. [7] which is a variation of [9]. In this variant, when the

error arrives at a cell, it stops propagation further back in time. However, the error is used to

update incoming weights when it leaves the memory cell through the input gate.

4. Reinforcement learning y long-short-term memory neural network

In order to teach the LSTM to navigate an unstructured terrain, RL was implemented as

described in Ref. [7]. In this approach, an LSTM approximates the value function V of the RL

algorithm, which teaches a robotic agent how to navigate a T-shaped maze environment.

This problem is a partially observable Markov decision process, in which the agent is unaware

of the full state of the environment and must infer this information using current observations.

In this study, these observations are the same feature vectors of the environment that were

used for previous LEARCH experiments, and these vectors are the input for the LSTM.

The LSTM outputs represent the advantage values A(s, a) of each action, where a is the action

taken in state s. They are used to compute the value of the state V sð Þ ¼ maxa A s; að Þ, which

represents the action with the higher advantage value.

To perform weight updates, truncated backpropagation through time was implemented with

RL. A function approximator’s prediction error at time step t, ETD(t), is computed using

Eq. (13) and is propagated one step back in time through all the units of the network, except

for the CECs, for which the error is backpropagated for an indefinite amount of time [7]. Thus,

ETD tð Þ ¼ V s tð Þ þ
r tð Þ þ γV s tþ 1ð Þð Þ � V s tð Þð Þ

k
� A s tð Þ; a tð Þð Þ

� �

(13)

where r is the immediate reward, γ is a discount factor in the [0, 1] range and k scales the

difference between the values of the optimal and suboptimal actions. It is worth mentioning

that only the output associated with the executed action receives the error signal.

During the learning process, the agent can explore the environment using the state values;

however, directed exploration (i.e. exploration for which a predictor is used to direct the

exploration stage, so as to avoid clueless exploration of the entire state space) is important in

order to learn complex terrain navigation. When an undirected exploration is conducted, RL

tries every action in the same way over all states; however, in unstructured terrain, some states

provide ambiguous information about the environment rendering it difficult for the agent to

determine the state of the environment. Other states provide clear information; therefore, the

agent must direct its exploration to discover the ambiguous states. In order to explore the

environment, an MLP was implemented for directed exploration. This MLP input was the

same as the LSTM, and the MLP objective was to predict the absolute value of the current

temporal difference error, i.e. ETD(t). This aided prediction of which observations were
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associated with a larger error. The desired MLP output was obtained using Eq. (14), and

backpropagation was employed to train the MLP:

yvd tð Þ ¼ ETD tð Þ
�

�

�

�þ βyv tþ 1ð Þ (14)

The MLP output yv(t) is used as the temperature of the Boltzmann action selection rule, which

has the form

eAðs; aÞ=y
v tð Þ

P

n

b¼1

eAðs; aÞ=y
v tð Þ

(15)

where n is the number of actions available to the agent.

The complete learning process and the manner in which the LEARCH and RL-LSTM systems

are connected is shown in Figure 7. The entire process occurs offline. First, the LEARCH

,

F computes ∗ computes ∗

∗

Visitation 
count

Compute 
reg. target

Train 
regressor

Update cost
function

+1( )

LSTM
Obsrve

environment

Compute ( )

MLP
Compute 

action

Compute action’s
rewardCompute cost

to reward

Compute

Compute ∆ LSTM∆ MLP

∆ LSTM

Compute ∆ MLP

( )

( , )

( , )

( )

( )( )
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values to Navigation
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Current cost map to
costs of the

environment

F

Figure 7. LEARCH-RL-LSTM system showing the manner in which the two systems are connected to train the LSTM.

The entire process occurs offline. First, the LEARCH algorithm iterates until the required cost map M is obtained. Then,

the RL-LSTM algorithm begins the process of training the LSTM using the costs converted into rewards r. The feature map

F is obtained from the robotic agent and used by both systems.
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algorithm iterates until the required cost map M is obtained. Then, the RL-LSTM algorithm

begins the process of training the LSTM using the costs converted into rewards r. The feature

map F is obtained from the robotic agent and used by both systems.

In order to prove the generalization and long-term memory capabilities of LSTM, training was

performed using patches of terrain containing representative features of rough terrain. That is,

an entire map is not used to train the LSTM (Figure 8). In this way, an efficient training phase is

achieved by taking advantage of the above-mentioned capabilities. In the next section, we

show the results of the experiments conducted to confirm these capabilities. In addition, we

prove the efficacy of the LSTM for mapping tasks that require inference of hidden states, i.e.

smoothing or noise recognition.

The LEARCH algorithm builds a cost function; however, as noted in Section 2, the cost

function capability for generalization is limited and decays as the number of training paths

grows. As the motivation for employing a cost function is to obtain the cost of traversing a

patch of terrain so that the path planning system can compute the optimal path with the

minimal traversal cost, we propose the extraction of terrain patches having descriptive charac-

teristics of rough terrain for navigation. Hence, the traversal costs for these environment

features can be determined using LEARCH, and the costs can be transformed to rewards for a

RL algorithm [10].

5. Results

In this section, the results of the experimental tests are presented. Five environments were

designed for navigation policy learning using the LEARCH-RL-LSTM system shown in Figure 7.

Here, each environment was modeled as a grid, and each model was referred to as a map. Each

map was a grid having dimensions of 20� 20 cells. Further, each cell represented a patch of

terrain, and this patch was represented by a vector of dimension 4, where each dimension was a

scalar value representing the vegetation density, terrain slope, rock size or the presence of water.

Figure 8. (a) Example of a real environment modelled as a grid map. (b) Patches of terrain used for training are marked

with an orange box.
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Figure 9 shows in the lower right corner the color code used to illustrate the manner in which

this environment was designed. Each environment differed by 5% from the previous one, i.e.

20% of the states in map 5 differed from those of map 1. These maps are shown in Figure 9.

Table 1 lists the results of experiments conducted using the LEARCH system alone to learn the

navigation policies and cost functions of the five maps. In order to test the capability of

LEARCH to reuse knowledge learned in previous navigation episodes, the following process

was employed. Once LEARCH learned the navigation policies and cost function of map 1, this

knowledge was used as initial knowledge to start navigation episodes involving the remaining

maps. As is apparent from the first row of Table 2, it was not necessary to retrain the LEARCH

row shows, and it was not necessary to retrain the LEARCH system to learn the demonstrated

behavior and cost function of map 2. In other words, the LEARCH system could apply the

knowledge learned from map 1 to map 2. However, this behavior did not occur for the other

maps. For maps 3, 4 and 5, and when attempting to reuse the knowledge learned from map 1,

it was necessary to retrain the LEARCH system. In these learning episodes, an increased

number of iterations were necessary in order to acquire the new knowledge (as is apparent

when Table 1 is compared with row one on Table 2, it can be concluded that the previous

knowledge learned using map 1 is even detrimental to the system performance when new

Start

Goal Goal

Start

Goal

Start

Start

Goal Goal

Start

Plain terrain
Grass
Low slope
Gravel
Trees
Water
High slope
Low slope with grass
High slope with rocks

Figure 9. Maps used in experiments. Lower right corner of the second row: colour code used to represent environment

features.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

119



maps are processed, even if the new maps are very similar to map 1. Therefore, the LEARCH

system was shown to have a very poor generalization capability.

When RL-LSTM was integrated with LEARCH to improve the capability for reusing knowl-

edge learned from previous navigation episodes, there was no need to retrain the system. This

is apparent from the second row of Table 2, where all the demonstrated behavior for maps 2 to

5 could be learned using the knowledge learned from map 1 only. It is important to note that,

although the results were obtained from relatively small maps, it was necessary to retrain the

cost function using LEARCH in each of these cases. Further, when LEARCH-RL-LSTM was

employed, retraining was unnecessary when the patches of terrain were similar, because this

system can generalize knowledge from previous navigation episodes. Note that, when the

agent navigates in real time, even small retraining episodes are computationally expensive.

Further, the agent is required to stop navigating until the retraining episode ends. However,

for LEARCH-RL-LSTM, retraining is unnecessary when the environment is similar to those

already known from previous navigation episodes.

Another set of environment maps was also used to test both algorithms. For these new

environments, features that were not observed in previous scenarios were included. In this

experiment, map 6 was the base of knowledge, and two new features were included in maps 7,

8 and 9. The states differed in the same way as in the previous experiment, with 5% of the

states in each map being different from those of the previous maps. However, these differences

included new features in order to simulate a dynamic environment, i.e. we simulate that the

terrain of the map 6 suddenly changed when the agent navigates again on this map introduc-

ing new features on some cells of the grid of map 6. The maps used for this experiment are

shown in Figure 10.

The LSTM used in these experiments was trained offline. During agent navigation, an efficient

training episode was only executed if necessary, i.e. only if the action that LSTM learned to take

is dangerous for the agent. These training episodes were efficient, because only a fraction of

the environment was used (such as the patch of terrain shown in the lower right corner of

Figure 10 each time the robot encountered a new state or required navigation assistance.

Environment Map 1 Map 2 Map 3 Map 4 Map 5

Iterations 7 3 3 3 4

Table 1. Iterations needed to learn demonstrated behavior using LEARCH system.

Environment Map 2 Map 3 Map 4 Map 5

Iterations LEARCH 0 5 4 7

Iterations LEARCH-RL-LSTM 0 0 0 0

Table 2. Iterations needed to learn demonstrated behavior using knowledge of map 1, for LEARCH and LEARCH-

RL-LSTM system.
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5.1. Noise tests

In the previous experiments, we assumed that the agent could infer the current state of the

environment model based on the features observed by the agent. However, in a real scenario,

the agent must infer the actual state via a perceptual system based on data obtained through

noisy sensors such as cameras, a Global Positioning System (GPS) or LiDAR. In outdoor

environments, two states (patches of terrain) can be very similar; however, the same action in

these similar states could lead to different resultant actions. In case of noisy signals, one state

could be interpreted as another similar state or, alternatively, as a new state that is not

explicitly represented in the environment model, i.e. a hidden state.

To test these two systems in more realistic environment, a noise signal was induced to the

inputs of both systems. A real uniform distribution bounded to a maximum of [�1, 1] (20% of

noise) was used. Then, several runs of each system were conducted with an initial limit of

[�0.1, 0.1] (2% of noise) and increments of [�0.1, 0.1] in the noise signal, until the maxi-

mum limits where both systems failed to infer the real state for the agent were determined.

Tables 3 and 4 show the test results for both systems with noise; the noise range values are

Goal

Start

Goal

Start

Start

Goal

Start

Goal

Goal

Start

Figure 10. Maps used in second set of experiments to simulate dynamic environments. Lower right corner of the second

row: sample of a map with the patch of terrain used for retraining marked by an orange box.
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the maximum limits of the noise supported by the system using that map. Note that the

results of the maps 6–9 yielded by the LEARCH system are omitted, because this system

could not reproduce the desired behavior on these maps under the supplied noise levels.

6. Conclusion

LEARCH is an efficient method for learning a cost function that maps environment features to

traversal costs and can then be used to navigate an unstructured terrain. However, as demon-

strated by the experiments conducted in this work, this algorithm is incapable of reusing

knowledge in an efficient manner. Indeed, zero knowledge is sometimes preferable to reusing

previously learned knowledge.

We concluded that LEARCH cannot reuse knowledge because of a lack of memory; because of

this lack of memory, the cost function cannot correlate knowledge learned in earlier training

episodes with the new information provided by new environments; therefore, an LSTM was

proposed. The LSTM can relate knowledge using memory cells, and this knowledge can be

used to manage dynamic environments. This performance was demonstrated in experiment,

where a dynamic environment was simulated through addition of new features that were not

included in previous training episodes.

In addition, we implemented these two approaches to manage real scenarios in which noisy

signals were present. The experiments showed that LEARCH-RL-LSTM can reproduce the

desired behavior and navigate through the environment.
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Environment Map 1 Map 2 Map 3 Map 4 Map 5

Noise-supported LEARCH 2% 2% 2% 2% 6%

Noise-supported LEARCH-RL-LSTM 10% 8% 10% 8% 12%

Table 3. Maximumnoise supported byboth systems in testswhere the desired behavior could be reproducedwithmaps 1–5.

Environment Map 6 Map 7 Map 8 Map 9

Noise-supported LEARCH 0% 0% 0% 0%

Noise-supported LEARCH-RL-LSTM 10% 8% 8% 8%

Table 4. Maximumnoise supportedbyboth systems in testswhere thedesiredbehavior couldbe reproducedwithmaps6–9.
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