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Abstract

Mesenchymal stem cells (MSCs) can be isolated from many tissue types and following 
in vitro culture expansion, large numbers of patient-specific or allogenic cells can be pro-
duced for clinical applications. MSCs exhibit anti-inflammatory and immunomodula-
tory properties and are identified as lacking major histocompatibility complex (MHC) 
class II molecules. Cellular-based approaches using MSCs to enhance new blood ves-
sel formation have shown promise in preclinical models and preliminary clinical trials. 
Transplantation of MSCs in vivo has significantly enhanced the formation of new blood 
vessels and promoted the healing of chronic wounds. The proangiogenic potential of 
MSCs can be further enhanced through gene delivery such as vascular endothelial growth 
factor (VEGF) or endothelial nitric oxide synthase (eNOS) providing long-term therapeu-
tic expression. In this chapter, we review recent advances on the isolation and character-
ization of MSCs and in vivo applications for promoting angiogenesis. Enhancement of 
angiogenesis is also required for improved healing in myocardial infarction and cerebral 
ischemia, and the use of MSCs in these areas will also be reviewed. Furthermore, the 
combination of MSCs with biomaterials has greatly improved their survival and potency 
with improved vascularization of tissue-engineered constructs and integration within 
the host. In summary, this chapter provides an overview of both the basic science sup-
porting the proangiogenic properties of MSCs and their translational use.

Keywords: mesenchymal stem cell, angiogenesis, clinical trials, myocardial infarction, 
wound healing

1. Stem cells

Stem cells can be broadly described as a group of undifferentiated cells capable of self-renewal 
(cell division without differentiation) and can subsequently differentiate into specialized cell 
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types [1, 2]. Stem cell division can be described as symmetric and asymmetric [1]. Symmetric 

cell division yields two daughter cells showing the same characteristics of the parent stem 

cell and has the potential to differentiate into other lineage cell types [1]. On the other hand, 

asymmetric cell division yields differentiated cells through the development of lineage-spe-

cific intermediate progenitor cells [3]. Progenitor cells are generated as an intermediate state 

before the stem cell is converted into the fully differentiated cell type [2] and are regarded as 

being committed to differentiating along a particular cellular developmental pathway. There 
are two types of resident stem cells, which are categorized as embryonic stem cells (ESCs) or 

somatic/adult stem cells. ESCs are referred to as pluripotent, an ability to differentiate into 
all the cell types in the body, whereas adult stem cells are multipotent and demonstrate a 

restricted ability to differentiate into multiple lineages.

1.1. Embryonic stem cells

Embryonic stem cells (ESC) are a class of unspecialized cells derived from the inner cell mass 

of a blastocyst, which is an early stage of the embryo containing 200–250 cells [4, 5]. ESCs are 

pluripotent stem cells, which can differentiate into any cell type represented within three germ 
layers (mesoderm, ectoderm, and endoderm) [6]. In response to various stimuli during devel-

opment, ESCs can be differentiated into specialized cells, which have specific roles in the body 
[7, 8]. There are two key features, which characterize ESCs, pluripotency (the ability to differ-

entiate into all three germ layers, ectoderm, endoderm, and mesoderm) and self-renewal (the 

ability to go through numerous cycles of cell division while maintaining the undifferentiated 
state) whereby they are maintained as pure populations of undifferentiated cells in culture for 
extended periods of time, retaining a normal karyotype unlike tumor cell lines [6]. Over the past 

two decades, ESCs have been used as a model system for studying the basic processes in mam-

malian development and cellular differentiation events [9]. ESCs have also provided a valuable 

platform for regenerative medicine and tissue engineering for the development of future treat-

ments of human diseases. Furthermore, ESCs have been also used as a reference in vitro model 

for understanding key molecular mechanisms, which control cell fate and organogenesis [10].

2. Induced pluripotent stem cells (iPS cells)

To find an alternative pluripotent cell type to ESCs, in 2006, the Japanese scientists Shinya 
Yamanaka and Kazutoshi Takahashi demonstrated the groundbreaking discovery of induced 
pluripotent stem cells (iPSCs). iPS cells are artificially created embryonic-like stem cells gen-

erated by over expressing four transcription factors in somatic cells such as fibroblasts [11]. 

These iPS cells exhibited similar features to ESCs. Since iPS cells are artificially created cells, 
they do not have ethical and immunological problems associated with ESCs. Therefore, iPS 

cells show potential in cell biological research, including their application in cell therapy, 

drug screening, and disease modeling.

2.1. Generation of iPS cells

Differentiated cells can be reprogrammed into a pluripotent state by the transfer of nuclear 
contents into oocytes [12], and the fusion of somatic cells with embryonic stem (ES) cells can 
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also result in reprogramming to a pluripotent state [13]. These studies revealed that oocytes 

and ES cells contain factors, which may be responsible for the conversion of somatic cells to a 

pluripotency state. In 2006, Yamanaka and Takahashi demonstrated that, mouse embryonic or 
adult fibroblasts can be reprogrammed back to an embryonic-like state by the overexpression 
of four transcription factors, OCT4, SOX2, KLF4, and cMYC [10, 11]. They named these ES-like 
reprogrammed cells as induced pluripotent stem cells (iPSCs). In 2007, the same investigators 

demonstrated the generation of iPSCs from human fibroblasts [14]. Yu and colleagues have also 

reported the generation of human iPSCs from fibroblasts with a slightly different combination 
of transcription factors, in which KLF4 and cMYC were replaced with NANOG and LIN28 [15]. 

Both of these iPS cells exhibited similar features to ES cells including morphology, proliferation, 

ESC-specific gene expression profiles, and teratoma formation. This method of cellular repro-

gramming has been shown to be universal and can be applied to a variety of cell types such as 

B-cells [16], liver cells [17], and umbilical cord blood mononuclear cells [18]. Moreover, iPS cells 

have been generated from different species such as monkey [19], rat [20], and horse [21].

2.2. Limitations of iPS cells in clinical applications

Even though iPS cells have provided a solution for many of the obstacles raised with ESCs, 

iPS cells also have inherent disadvantages in terms of clinical applications, which include 

teratoma formation [22] and the use of oncogene cMYC as a reprogramming factor, which can 

lead to tumorigenesis [23].

A second issue associated with the therapeutic application of iPS cells is their immunogenicity. 
Transplanted iPS cells have been considered to be immune tolerant by the recipient. However, 
induction of T-cell-dependent immune response in recipients has been demonstrated [24].

3. Adult stem cells

Adult stem cells or somatic stem cells are multipotent stem cells, which can be found in spe-

cific cellular niches of organs and tissues. Adult stem cells are essential for maintaining the 
health of organs throughout a life time [25]. Somatic stem cells were first identified about 
40 years ago with the discovery of hematopoietic stem cells and bone marrow stem cells (mes-

enchymal stem cells) [26]. Adult stem cells can be found in many tissues such as brain [27], 

liver [28], heart [29], lung [30], and adipose [31]. Adult stem cells are multipotent; they can 
self-renew and differentiate to all the cell types in their tissue environment and as well as 
other lineages such as cardiomyocytes [32], neurons [33], and endothelial cells [34].

The use of adult stem cells in cell therapy applications is currently limited due to several factors:

1. Limited differentiation potential [35].

2. The results obtained in animal models may not be directly translated to humans [35].

3. Loss of proliferative capacity under standard culture conditions as well as the method for 
the delivery of adult stem cells to the patient may impact on their ability to survive post-

transplantation [35, 36].

The Proangiogenic Potential of Mesenchymal Stem Cells and Their Therapeutic Applications
http://dx.doi.org/10.5772/intechopen.68516

127



3.1. Mesenchymal stem cells

Mesenchymal stem cells (MSCs) or mesenchymal stromal cells were discovered by Friedenstein 

et al. in 1968 [26]. He observed many different types of cells in bone marrow cultures some of 
which were adherent to tissue culture plastic, showed fibroblastic morphology and formed colo-

nies. These cells were named as colony forming unit fibroblasts (CFU-F) [37] and were found to 

differentiate into bone, adipose, cartilage, and muscle tissue. Caplan coined the term “mesenchy-

mal stem cells” (MSCs) [38] and MSCs obtained from human bone marrow aspirates were char-

acterized [39]. The BM aspirate was first separated by density gradient separation and plated on 
tissue culture plastic and the attached cells were counted based on their colony formation ability. 
Approximately, 0.001–0.01% cells of total cells were found to be MSCs and expressed CD29, CD90, 
CD71, and CD106 surface markers and were negative for CD45, CD14, and CD34. Importantly, 
they found that these cells could undergo 40 population doublings in vitro over 10 weeks.

MSCs have now been isolated from many other tissue sources such as adipose tissue, umbilical 

cord blood, placenta, and even from dental pulp. Increasing research interest is in finding stem 
cells from different organs and focusing on strategies to repair the same organs with autologous 
stem cells. Interestingly, cell isolated from a variety of different tissues have shown different CD 
marker expression profile, cellular phenotype, and population doublings. While no definitive sin-

gle surface marker for MSCs had been described so far, an internationally accepted set of criteria 
has been established by the International Society for Cellular Therapy (ISCT) [40]. Accordingly, 
ISCT outlined that MSCs should be positive for CD73, CD90, and CD105, negative for CD19, CD34, 

CD45, CD11b, and HLA-DR. In addition, they should attach to the plastic tissue culture plates and 
demonstrate an ability to differentiate to adipocytes, chondrocytes, and osteoblasts in vitro.

For cell therapy applications, MSCs are remarkable since they show antiapoptotic and immuno-

modulatory features providing them with nonimmunogenic properties. MSCs release a variety 

of cytokines. Therefore, when MSCs were injected to the damaged tissues (kidney) in animal 
models, they could reduce the apoptotic rate of the surrounding cells, which was mediated 

by the secretion of several growth factors like VEGF, FGF2, and TGF-β from MSCs cultured in 
hypoxic conditions [41–43]. More specifically, these studies have shown that infusion of MSCs 
is important for revascularization, which contributes to the recovery from acute kidney injury in 
mouse models through the secretion of growth factors. Furthermore, proliferation of T-cells was 

inhibited when co-cultured with MSCs in vitro [44–46]. In addition to T-cells, the activity of other 

immune responsive cells such as natural killer cells, B-cells, and immature dendritic cells have 
also been modulated by MSCs [47–49]. In particular, MSCs can inhibit B-cell proliferation by 

inhibiting the G0/G1 phase through the release of paracrine factors that affect B-cell differentia-

tion and IgM, IgG, and IgA production. The immunomodulatory effects of MSCs on T-cells and 
NK cells have also been shown to be driven by cytokines such as TGF-β, PGE2, and IL10 [49–53].

Thus, MSCs are important candidates for cellular-based therapies as they feature the follow-

ing characteristics.

1. A repertoire of defined surface markers and an ability to produce relatively homogenous 
cultures.

2. Ease of in vitro expansion resulting in high cell concentration without significant loss of 
properties.
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3. Ability to differentiate into a variety of different cell types.

4. Possess immunosuppressive attributes, which contribute to their possible use in allogeneic 
grafting [47–49].

3.2. Clinical trials using mesenchymal stem cells

In the literature, there are many studies investigating the regenerative capacities of MSCs 

in different disease models generated by employing different nonhuman animal species. 
Cardiac regeneration, liver regeneration, kidney regeneration, autoimmune diseases, graft 
versus host disease (GvHD), neurological diseases, pulmonary diseases, osteogenic diseases, 
and cartilage repair are the most widely studied conditions. Moreover, MSCs are also being 

investigated extensively by clinical trials, mostly in United States, Europe, and East Asia, with 
trials investigating MSC use in neurological, liver, bone, heart diseases, GvHD, and some 
autoimmune diseases such as diabetes. In the following section, the clinical application of 

MSCs will be discussed and a particular attention will be given to their role in heart disease.

4. Mesenchymal stem cells in vascular repair

The formation of new vessels is the cornerstone of successful cardiac repair. There are three 

mechanisms of postnatal neovascularization: (1) angiogenesis, (2) arteriogenesis, and (3) post-

natal vasculogenesis [54] with progenitor cells migrating from the bone marrow and to site 

of sites of tissue damage resulting in the generation of new capillaries. Whether the forma-

tion of new capillary networks and vessel integration into neighboring tissue is associated 
with direct differentiation of MSCs to endothelial cells is still unknown or the importance 
of secreted factors [55, 56]. MSCs have been shown to exist in perivascular niches with simi-

larities to pericytes, which may account for their ability to promote vascularization [57]. 

Expression of MSC markers has also been detected on the surface perivascular cells without in 

vitro culture, which may point to a very localized depot of progenitors in vessels [58]. In vitro, 

MSCs express α-smooth muscle actin and β-actin filaments [59], whereas in vivo studies have 

shown that MSCs express an endothelial phenotype that can enhance microvascular density 

[60]. However, contrary evidence has shown that the number of vessels harboring progenitor/
adult stem cells is low and that the secretion of proangiogenic factors may be the dominant 

mechanism associated with vasculogenesis [61] and neoangiogenesis [62]. Interesting work 
by Chen and colleagues have shown significant increases in the levels of VEGF and basic 
fibroblast growth factor (bFGF) in MSC-treated rats, which resulted in angiogenesis follow-

ing intravenous injection 24 h after middle cerebral artery occlusion (MCAO). They further 
showed significant increases in newly formed capillaries at the boundary of the ischemic 
lesion in rats treated with MSCs compared with rats treated with phosphate buffered saline 
(PBS) [62]. Further evidence of MSC-supported neovessel formation, comes from Markel and 
colleagues [63] who showed that MSCs under-expressing VEGF have significantly less cardio 
reparative capabilities. In this work, female adult rats were subjected to ischemia-reperfusion 
injury and following injury, VEGF knockout MSCs or normal MSCs were infused into the 
coronary circulation. Following MSC treatment, it was observed that VEGF knockout MSCs 
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significantly impaired myocardial function while normal MSCs showed improvement high-

lighting the importance of VEGF as a paracrine factor associated with MSCs.

4.1. Neovessel formation

The process of neovessel formation is an important event during embryonic development and 

also in adult tissues following injury such as ischemic infarction. Neovessels from the neigh-

boring normal tissues are needed to form the vessel network and restore blood supply to the 
damaged tissues. Both ECs and SMCs are essential for the formation of blood vessels; how-

ever, the detailed mechanism of SMC migration and differentiation is not fully understood.

Until recently, it was accepted that vessels in adult ischemic tissues could only grow by angio-

genic mechanisms, in which the sprouting of mature ECs from pre-existing vessels was likely 
in response to angiogenic factors. However, recent studies have revealed that endothelial pro-

genitor cells (EPCs) circulate postnatally in peripheral blood. These may be recruited from the 

bone marrow and incorporate into sites of active neovascularization in ischemic hind limbs, 

ischemic myocardium, injured corneas, and tumor vasculature [64]. This process is termed 

postnatal vasculogenesis [65]. EPCs participate in vasculogenesis by the differentiation into 
endothelial cells (ECs) and thereby promote angiogenesis through the production of angio-

genic growth factors [66]. Accumulating evidence has shown that EPCs have a therapeutic 
potential for vascular repair through promoting the reendothelialization of damaged vessel 

walls and the neovascularization of ischemic tissues [67, 68].

Bone marrow–derived mesenchymal stem cells (BMSCs) and alternatively named multipo-

tent adult progenitor cells (MAPCs) can be induced to differentiate into endothelial-like cells 
in vitro and subsequently promote neoangiogenesis in vivo [69, 70]. The bioactivity of secreted 

molecules from BMSCs has been shown to increase collateral remodeling and perfusion in 

ischemic tissues in animal models, again highlighting the importance of paracrine mecha-

nisms following local delivery [71, 72].

Recently, it has been shown that adult BMSCs, under appropriate in vitro environmental cues, 

can be induced to undergo vasculogenic differentiation culminating in microvessel morpho-

genesis. When rat BMSCs were seeded onto a three-dimensional (3D) tubular scaffold, the 
maturation and co-differentiation into endothelial and SMC lineages, which led to success-

ful microvessel formation was observed [73]. A separate study showed that locally delivered, 
activated cardiac progenitor cells (CPCs) could generate coronary vasculature by dividing and 

differentiating into both ECs and SMCs, restoring blood supply to ischemic myocardium [74].

4.2. Mesenchymal stem cells in cardiac repair

Ischemic heart disease is associated with the highest mortality rate among all diseases 

(http://www.who.int). There is an urgent need for alternative cell-based therapies to treat 
cardiovascular diseases. Broadly, ischemic heart diseases are characterized by a shortage of 

blood supply to different regions of the heart, resulting in these regions undergoing necrosis 
and apoptosis. With a limited endogenous regeneration available to the mammalian heart, 
heart transplantation is often the only therapeutic option currently available.
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Cell therapy to regenerate damaged cardiac tissue is an exciting alternative to heart trans-

plantation. In 1995, Wakitani et al. reported the generation of cardiomyocytes in vitro from 

rat bone marrow-derived MSCs (rBMSCs) [75]. Following this, several studies reported the 

successful differentiation of MSCs into cardiomyocytes [76, 77]. Both of these studies demon-

strated the in vitro generation of beating cardiomyocytes from rat bone marrow MSCs.

Many in vivo studies have since been performed to investigate the efficacy of MSCs in cardio-

vascular regeneration. In 2002, Shake et al. demonstrated that swine bone marrow–derived 
MSCs could be differentiated into functional cardiomyocytes when injected into the infarcted 
swine myocardium [78]. On the other hand, when MSCs were injected intracardially in a 
canine model, the MSCs were differentiated into smooth muscle cells and endothelial cells 
[79] and further studies showed that, when MSCs were injected into a rat myocardial infarct, 
there was a significant reduction in the damaged area [80]. Moreover, genetic modification of 
MSCs to overexpress Akt, exerted a beneficial effect [81], suggesting that genetic modification 
of MSCs would provide a better platform for cardiovascular repair. It is also possible that 
Akt may activate mammalian target of rapamycin complex 1 (mTORC1) and forkhead box o3 
(Foxo3a), which are acted downstream of Akt to promote cardiomyocyte reprogramming [82].

4.3. Direct MSC stimulation of endogenous repair

MSC transplantation to the heart has been shown by multiple groups to stimulate prolif-

eration and differentiation of endogenous cardiac stem cells [83–85]. Neomyogenesis can be 

promoted by two related mechanisms through the stimulation of endogenous cardiac stem 

cells (c-kit + and other lineages such as cardiac fibroblasts) and enhancement of myocyte cell 
cycling [83]. To demonstrate this, GFP+ allogeneic MSCs were injected into infarcted swine 
hearts and allowed to form chimeric clusters of immature MSCs and endogenous c-kit+ car-

diac stem cells. These clusters exhibited cell-cell interactions mediated by connexin-43 gap 

junction formation and N-cadherin mechanical connections. Importantly, the endogenous 
c-kit+ cell population was increased by 20-fold in MSC-treated animals relative to controls; fur-

thermore, the c-kit+ cells showed a high capacity for myocyte lineage commitment [83]. It has 

been demonstrated that, when MSCs were co-cultured with rat ventricular myocytes, MSCs 

became actin-positive and formed gap junctions with the native myocytes [86]. Furthermore, 

an improvement in myocardial wall thickening in pigs with hibernating myocardium, which is 
a pathology when some segments of the myocardium exhibit abnormalities of contractile func-

tion, was induced upon MSC injection [85] compared with controls. This same study also found 

a fourfold increase in c-kit+ and CD133+ populations that co-expressed Gata4 and Nkx2.5 at 
3 days through to 2 weeks in animals receiving MSCs. In a preclinical study, the combination of 
human MSCs and c-kit+ cardiac stem cells showed enhanced cardiac regeneration [87].

5. Preclinical trials of MSCs for cardiac repair in animal models

Toma et al. showed that human MSCs were differentiated to a cardiac fate when injected into 
murine hearts [88]. In this study, MSCs labeled with lacZ were injected into the left ventricle of 
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the adult mice, and after 1 week post injection, the lacZ-labeled MSCs morphologically resem-

bled the surrounding host cardiomyocytes; furthermore, they expressed cardiac-specific genes 
such as α-actinin and cardiac troponin T. It has been shown that MSCs can modulate host 
immune responses when allogeneic porcine MSCs were injected (2 × 108 cells) intramyocar-

dially into 3-day-old immune-competent porcine-infarcted hearts, this resulted in long-term 

engraftment and a significant decrease in scar tissue without an inflammatory response [89]. 

MSCs have also been tested in numerous cardiovascular settings. In a separate study, where 
porcine MSCs were injected endomyocardially of one of three MSC doses (2.4 × 107, 2.4 × 108, 

4.4 × 108 cells) into the porcine heart 5 days after infarction, an improvement in ejection fraction 
(EF) and a reduction in scar formation were seen in MSC-treated animals [90]. The effect of 
MSC dosage was examined in ovine models of MI where different doses of ovine BM-derived 
MSCs (2.5 × 107, 3.75 × 107, 5 × 107 cells) were directly injected into sheep hearts 1 h post MI [91], 

and improvements in end-diastolic volume were only seen in animals receiving the two lower 

doses, although the EF increased regardless of the cell dosage [91] suggesting that there may 

be a therapeutic threshold relating to the total number of cells that can be injected and a benefi-

cial therapeutic outcome. In a study with a different species (canine), chronic myocardial isch-

emia was produced by the implantation of an ameroid constrictor in the proximal left anterior 

descending coronary artery (LAD) and diagonal branch ligation, followed by the injection of 
allogeneic canine MSCs (1 × 108 cells) into the heart resulted in increased EF, vascular density, 

and a decrease in scar tissue [79]. Furthermore, it has been reported that the region specific 
administration of allogeneic porcine MSCs (2 × 108 cells) to the border and to infarct zones of 

porcine myocardium 3 days after MI also reduced scar size by 50% [89] with improvements 

in EF, left ventricular end-diastolic pressure, relaxation time, and systolic compliance in the 

treated animals. Furthermore, in a model of acute myocarditis in rats myocardial inflamma-

tion was attenuated when autologous rat MSCs (3 × 106 cells) were injected into 10-weeks-old 
animals [92], together with the increased capillary density in MSC-treated animals.

6. Human clinical trials of MSC-based therapies for cardiac repair

6.1. Acute myocardial infarction

In a phase I randomized study, 53 patients received different doses of allogeneic human MSCs 
(0.5, 1.6, and 5.0 × 106 hMSCs/kg) 7–10 days post MI [93]. The MSCs were injected intravenously. 
Six months after infusion, clinical data showed fewer arrhythmic events, and an improved 

EF. Following the success of this pilot study, a phase II trial was established to investigate 

whether allogeneic MSCs were as safe and effective as autologous MSCs in patients with left 
ventricular (LV) dysfunction due to ischemic cardiomyopathy [94]. Upon intravenous infusion 
of allogeneic MSCs (2 × 107 cells) within 7 days of an acute MI, resulted in reduced cardiac 

hypertrophy, stress-induced ventricular arrhythmia, heart failure, LV end-diastolic volumes, 
and increased EF. Interestingly, allogeneic MSCs did not stimulate significant donor-specific 
alloimmune reactions. In a separate study, Chen and colleagues have injected autologous 
MSCs (1 × 1011 cells) intracoronarily in patients with subacute MI and observed decreased 

perfusion defects, improved left ventricular ejection fraction, and left ventricular remodeling 
3 months after therapy [95]. Other clinical benefits attributed to MSCs include decreased per-

fusion defects and improved left ventricular ejection fraction and left ventricular remodeling 
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when MSCs were administered to patients with subacute MI [96]. In addition to bone marrow 

MSCs, adipose-derived MSCs have also been used to treat acute MI. A trial with 14 patients, 
which tested the safety of intracoronary injection of freshly isolated adipose-derived MSCs 
after myocardial infarction [97] demonstrated improved cardiac function, accompanied with a 

significant improvement in perfusion defect and a 50% reduction in myocardial scar formation.

There are a reported 41 clinical trials in which MSCs have been applied in relation to cardiac 

injury and repair between 2010 and 2015 [98]. There is also an ongoing clinical trial using 

adipose-derived MSCs, in patients with chronic myocardial ischemia [71] where they used 

culture-expanded adipose tissue-derived MSCs. This study has been designed to investigate 

the safety and efficacy of intramyocardial delivery of VEGF-A165-stimulated autologous 
adipose tissue-derived MSCs to improve myocardial perfusion and exercise capacity [99]. 

Table 1 summarizes completed and ongoing clinical trials.

6.2. Phase III clinical trials

There are six ongoing phase III clinical trials using MSCs. Of note, one of these studies [100] 

applied autologous MSCs treated ex-vivo with cardiogenic growth factors (TGF-β, BMP4, 
FGF2, cardiotrophin, and α thrombin) to enhance their commitment to the cardiopoietic lin-

eage and investigators reported significant improvements in EF and end-systolic volume com-

pared with controls. Other phase III studies are currently underway, in which one in United 
States is treating 600 patients with chronic heart failure (https://clinicaltrials.gov/ct2/show/
NCT02032004) all the phase III clinical trials currently undergoing are also listed in Table 1.

Clinical trial ID Disease Phase No. of patients/

status

MSC source Country

NCT01076920 Chronic ischemic 

cardiomyopathy

I, II 10/completed Autologous France

NCT01219452 Idiopathic dilated 

cardiomyopathy

Phase I, II Unknown Unknown China

NCT01392105 Acute myocardial 
infarction

Phase II, III 80/completed Autologous South Korea

NCT01394432 Acute myocardial 
infarction

Phase III 50/recruiting Autologous Russia

NCT01392625 Dilated 

cardiomyopathy

Phase I, II 36/active, not 

recruiting

Autologous and 
allogenic

United States

NCT01449032 Myocardial ischemia 

(MyStromalCell Trial)

Phase II 60/completed Unknown Denmark

NCT01291329 Acute myocardial 
infarction (AMI)

Phase II 160/completed Autologous China

NCT01753440 Coronary artery 

disease and ischemic 

cardiomyopathy

Phase II, III 30/unknown status Allogenic Greece

NCT01759212 end-stage heart 

failure undergoing 

left ventricular assist 

device implantation

Phase II, III 5/unknown status Allogenic Greece
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Clinical trial ID Disease Phase No. of patients/

status

MSC source Country

NCT01739777 Cardiopathy in dilated 

stage, of different 
etiology

Phase I, II 30/completed Allogenic Chile

NCT01720888 Ischemic dilated 

cardiomyopathy

Phase II 80/active, not 

recruiting

Autologous Malaysia

NCT01957826 Idiopathic dilated 

cardiomyopathy

Phase I, II 70/recruiting Autologous Spain

NCT01709279 Ischemic heart failure Unknown 6/recruiting by 

invitation

Autologous Japan

NCT01557543 Revascularization for 
coronary artery disease 

with depressed left 

ventricular function

Phase I 24/active, not 

recruiting

Autologous United States

NCT01652209 Acute myocardial 
infarction

Phase III 135/recruiting Autologous South Korea

NCT01610440 Duchenne muscular 

dystrophy

Phase I, II 15/unknown status Unknown China

NCT01946048 Ischemic 

cardiomyopathy

Phase I 10/unknown status Allogenic China

NCT02013674 Chronic ischemic 

left ventricular 

dysfunction secondary 

to myocardial 

infarction

Phase II 30/active, not 

recruiting

Allogenic United States

NCT01913886 Ischemic 

cardiomyopathy

Phase I, II 10/unknown status Autologous Brazil

NCT01781390 Myocardial infarction Phase II 105/active, not 

recruiting

Allogenic Australia, 
Belgium

Denmark,New 
Zealand

NCT01770613 Myocardial infarction Phase II 50/active, not 

recruiting

Allogenic United States

NCT02398604 Hypoplastic left heart 
syndrome

Phase I 30/recruiting Allogenic United States

NCT02097641 Acute respiratory 
distress syndrome

Phase II 60/recruiting Allogenic United States

NCT02323477 Myocardial infarction Phase I, II 79/recruiting Allogenic Turkey

NCT02387723 Ischemic heart disease 

and heart failure

Phase I 10/completed Allogenic Denmark

NCT02032004 Chronic heart failure 

due to left ventricular 

systolic dysfunction 

of either ischemic or 

nonischemic etiology

Phase III 600/recruiting Allogenic United States
Canada

NCT02501811 Ischemic heart failure Phase II 144/recruiting Autologous United States
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7. Direct reprogramming of adult stem cells

With increasing use of MSCs in clinical trials, improving the ability of MSCs to become 
cells of interest has been the main focus of reprogramming. Genetic modification is one 

approach to convert an adult cell from one developmental lineage to another and this is 

Clinical trial ID Disease Phase No. of patients/

status

MSC source Country

NCT02472002 Coronary graft disease 

in heart transplant 

patients

Phase I, II 14/recruiting Autologous France

NCT02439541 Ischemic 

cardiomyopathy

Phase I, II 40/recruiting Unknown China

NCT02408432 Recent onset 
anthracycline-

associated 

cardiomyopathy

Phase I 45/recruiting Allogenic United States

NCT02509156 Anthracycline-induced 
cardiomyopathy

Phase I 36/recruiting Allogenic United States

NCT02460770 A pilot study to 
investigate bone 

marrow-derived 

mesenchymal 

stem cells (MSC) 

administration from 

left ventricular assist 

device

Phase I 4/recruiting Autologous France

NCT02467387 Nonischemic heart 

failure

Phase II 23/active, not 

recruiting

Allogenic United States

NCT02503280 Chronic ischemic 

left ventricular 

dysfunction and heart 

failure secondary to 

myocardial infarction

Phase I, II 55/Active, not 
recruiting

Allogenic United States

NCT02568956 Ischemic heart disease Phase I, II 64/active, not 

recruiting

Autologous Unknown

NCT02368587 Ischemic 

cardiomyopathy

Phase II 160/active, not 

recruiting

Unknown Unknown

NCT02462330 Chronic ischemic 

cardiomyopathy 

and left ventricular 

dysfunction

Phase II 90/recruiting Autologous France

NCT02635464 Chronic ischemic 

cardiomyopathy

Phase I, II 45/recruiting Allogenic China

NCT02504437 Ischemic heart disease Phase I, II 200/active, not 

recruiting

Allogenic Unknown

Table 1. Clinical trials of MSCs for cardiovascular repair.
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mainly achieved by overexpression of lineage-restricted transcription factors and various 

gene transfer methods have been used.

7.1. Gene delivery of reprogramming factors via retroviral vectors

Retroviral vectors are commonly used as gene delivery systems since they are well char-

acterized and they have a high transduction efficiency. For gene delivery approaches, rep-

lication of defective viral vectors is used. In these vectors, coding regions for the genes 

necessary for additional rounds of virion replication and packaging are deleted. Viruses 
generated from replication-defective vectors can infect their target cells and deliver genes 

of interest, but avoid triggering the lytic pathway, which would result in cell lysis and 

death. Replication-defective retroviral vectors can usually package inserts of up to 10 kb. 
The major disadvantage of the retrovirus-mediated gene delivery approach is the require-

ment for cells to be actively dividing to allow transduction by the viral vectors. Thus, 

slowly dividing or nondividing cells such as neurons are difficult to transduce efficiently 
with retroviruses. Stable integration of retroviral DNA into the host genome provides a 
platform for the persistent expression of transgenes; however, this may lead to insertional 
mutagenesis. Proviral integration could occur within a transcriptional active region of the 

host genome, which could result in dysregulation of gene expression. In a landmark study 
by Idea et al., using a Moloney murine leukemia virus (MMLV) retrovirus-mediated gene 
delivery approach, demonstrated that mouse cardiac and dermal fibroblasts could be repro-

grammed into cardiac muscle cells using three cardiac-specific transcription factors, Gata4, 
Mef2c, and Tbx5 [101]. In this expression vector, expressions of the transgenes were driven 

by the 5′MMLV long terminal repeat (LTR) promoter, which can be silenced by methylation 
[11]. This method has been used by several groups and the efficiency of reprogramming has 
been enhanced by using alternative transcription factors or small molecules (summarized 

in Tables 2 and 3). The reprogramming efficiency of the retrovirus-mediated gene delivery 
approach is partially dependent on the stoichiometry of the delivered transcription factors 

[102]. It was reported that a higher reprogramming efficiency than that achieved in the 
original GMT experiment when the stoichiometry of the transcription factors is altered 

[102]. In this investigation, six different polycistronic lentiviral vectors were constructed 
to cover all possible combinations of G, M, T with identical internal 2A sequences. Using 
this approach, it was shown that the splicing order of G, M, T resulted in distinct G, M, and 

T protein expression levels, when using a polycistronic vector that resulted in higher pro-

tein level of Mef2c with lower levels of Gata4 and Tbx5 (MGT vector), which significantly 
enhanced reprogramming efficiency compared to separate G, M, T transduction as evident 
by cardiac-specific gene expression such as cTnT. In addition, the MGT vector resulted in 
more than a 10-fold increase in the number of mature beating cardiomyocytes. On the other 

hand, addition of an extra transcription factor Hand2 has also resulted in enhanced repro-

gramming efficiency [103]. In addition, combinations of small molecules such as SB431542, 

CHIR99021, 6-bromoindirubin-3′-oxime (BIO), and lithium chloride (LiCl) to replace tran-

scription factors have also been reported to induce cardiac reprogramming [104]. Of note, 

CHIR99021 is a GSK3 inhibitor, which can up-regulate canonical Wnt signaling increased 
cardiac reprogramming efficiency.
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Species Cell types Reprogramming factors Delivery method References

Mouse Embryonic fibroblasts Gata4, Mef2c, Tbx5, Hand2, 
Nkx2.5

Lentivirus [109]

Mouse embryonic fibroblasts Gata4, Mef2c, Tbx5, miR133 Retrovirus/lentivirus miRNA 
transfection

[110]

Mouse Embryonic fibroblasts Mef2c, Tbx5, Myocd Lentivirus [111]

Mouse Embryonic fibroblasts Gata4, Tbx5, Mef2c, Myocd, 

Srf, Mesp1, Smarcd3

Lentivirus [112]

Mouse Embryonic and dermal 

tail tip fibroblast
Gata4, Mef2c, Tbx5, Hand2, 
Nkx2.5, TGFB inhibitor

Lentivirus [113]

Mouse Embryonic cardiac 

and dermal tail tip 

fibroblasts

Oct4, Sox2, Klf4 Retrovirus [114]

Mouse Neonatal cardiac 

fibroblasts
miR1, miR133, miR208, 
miR499, JAK inhibitor I

Plasmid [115]

Mouse Postnatal cardiac 

and dermal tail tip 

Fibroblast Fibroblasts

Gata4, Mef2c, Tbx5 Retrovirus [101]

Mouse Adult cardiac and 
dermal tail tip 

fibroblasts

Gata4, Mef2c, Tbx5, Hand2 Retrovirus [103]

Mouse Sca1+ side population 

CSCs

Gata4, Mef2c, Tbx5, Myocd Lentivirus [116]

Human Neonatal derma, 

cardiac and ESC 

derived fibroblasts

GATA4, MEF2C, TBX5, 
ESSRG, MESP1

Retrovirus [117]

Human Adult dermal and 
cardiac and fibroblasts

GATA4, MEF2C, TBX5, 
HAND2, miR1, miR133

Retrovirus [118]

Human ADSCs Gata4, Tbx5, Baf60c Lentivirus [32]

Human ADSCs GATA4, MEF2C, TBX5, 
ESRRG, MESP1, MYOCD, 
ZFPM2

Retrovirus [119]

Human ADSCs Gata4, Mef2c, Tbx5 PEI method [120]

Human Fibroblasts Small molecules Supplemented with medium [104]

Mouse Embryonic fibroblast MyoD transactivation 

domain fused Mef2c, Gata4, 

Tbx5, Hand2

Retrovirus [121]

Mouse Dermal tail tip, 

embryonic and cardiac 

fibroblasts

Akt1, Gata4, Mef2c, Tbx5, 
Hand2

Retrovirus [82]

Mouse Embryonic fibroblasts ROCK inhibitor, TGF-β 
inhibitor, Gata4, Hand2, 
Mef2c, Tbx5

Retrovirus, and AAV [122]

Table 2. In vitro cardiac reprogramming.
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8. Angiogenic properties of MSCs combined with biomaterials

Application of MSCs together with a biomaterial to improve vascularization of damaged 
tissue as in the case of myocardial infarction or to enhance wound healing is an attractive 
approach to maintain cell viability and localization. MSCs have been incorporated into a 

wide range of biomaterials including collagen-based hydrogels and cell sheet techniques. 

Angiogenesis is one component of successful wound healing, which includes wound clo-

sure, reducing inflammation, skin regeneration, and remodeling of the extracellular matrix 
(ECM). The proangiogenic properties within a wound environment include possible direct 

differentiation into endothelial cells and secretion of proangiogenic molecules. Murine MSCs 
seeded in a pullulan-collagen hydrogel enhanced healing time in a mouse excisional wound 

together with increased survival of transplanted cells and secretion VEGF [105]. In an alter-

native wound model, rats subjected to severe burns and treated with human umbilical cord 
MSCs showed increased healing accompanied with reduced expression of proinflammatory 
cytokines IL-1, IL-6, and TNF-alpha [106]. Efficient cell seeding of biomaterial constructs is 
important for clinical translation and it has been demonstrated that capillary-based uptake of 
adipose-derived stem cells into a pullulan-collagen hydrogel could be performed rapidly and 

these cell laden gels demonstrated increased in vivo wound healing and secretion of proangio-

genic factors. Comparison of the in vitro angiogenic capabilities of a range of adult stem cells 

has shown that bone marrow–derived MSCs were superior to adipose-derived MSCs in terms 

of tubule formation and VEGF secretion and interestingly placental chorionic villi-derived 

MSCs also showed promise. The ability of MSCs to show in vitro endothelial-like character-

istics is strongly dependent on culture conditions and underlying substrate, and the majority 
of studies only show endothelial-like trans-differentiation in the presence of low serum endo-

thelial media and the use of a matrigel-based extracellular matrix [107]. While nitric oxide 
has been shown to be an important modulator of the vasculogenic potential of MSCs [61] and 

nonviral ectopic expression of eNOS promotes endothelial transdifferentiation [108], eNOS, or 

NO does not appear to be expressed or produced in nondifferentiated MSCs. Adipose-derived 
MSCs engineered to express eNOS and seeded onto a decellularised human saphenous vein 

and implanted as an aortal bridge showed viability for up to 2 months in a rabbit model.

Species Reprogramming factors Vector Delivery method References

Mouse Gata4, Mef2c, Tbx5 Retrovirus Intramyocardial injection [123]

Mouse Gata4, Mef2c, Tbx5, Hand2 Retrovirus Intramyocardial injection [103]

Mouse Gata4, Mef2c, Tbx5, 

Thymosin β4
Retrovirus Intramyocardial injection [124]

Mouse miR1, miR133, miR208, 
miR499

Lentivirus Intramyocardial injection [125]

Mouse Gata4, Mef2c, Tbx5 Retrovirus Intramyocardial injection [126]

Rat Gata4, Mef2c, Tbx5, Vegf 

(121, 165, 189)

Lentivirus/adenovirus Intramyocardial injection [127]

Table 3. In vivo cardiac reprogramming.

Mesenchymal Stem Cells - Isolation, Characterization and Applications138



9. Conclusions

In conclusion, MSCs have been well documented to have both proangiogenic and myogenic prop-

erties and a significant number of clinical trials represent the current efforts to translate this thera-

peutic potential. Gene modification of MSCs represents a promising strategy with both viral and 
nonviral vectors to reprogram cells toward endothelial and cardiac lineages and improve the capa-

bility of transplanted MSCs to promote neovessel formation and repair of damaged myocardium.
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Author details

Nadeeka Bandara1,2, Shiang Lim2,4, Haiying Chen3, Shuangfeng Chen3, Le-Xin Wang1,3 and 

Padraig Strappe5*

*Address all correspondence to: p.strappe@cqu.edu.au

1 School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia

2 O’Brien Institute Department, St. Vincent’s Institute of Medical Research, Fitzroy, VIC, 
Australia

3 Central Laboratory, Liaocheng Peoples Hospital, Liaocheng, Shandong Province, China

4 Department of Surgery, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC, 
Australia

5 School of Health, Medical and Applied Sciences, Central Queensland University, 
Rockhampton, Qld, Australia

References

[1] Morrison SJ, Kimble J. Review article—Asymmetric and symmetric stem-cell divisions 
in development and cancer. Nature. 2006;441:1068-1074

The Proangiogenic Potential of Mesenchymal Stem Cells and Their Therapeutic Applications
http://dx.doi.org/10.5772/intechopen.68516

139



[2] Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: Origins, phenotypes, lin-

eage commitments, and transdifferentiations. Annual Review of Cell and Developmental 
Biology. 2001;17:387-403

[3] Knoblich JA. Mechanisms of asymmetric stem cell division. Cell. 2008;132(4):583-597

[4] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, et al. Embryonic stem cell lines 
derived from human blastocysts. Science. 1998;282:1145-1147

[5] Reubinoff BE, Itsykson P, Turetsky T, Pera MF, et al. Neural progenitors from human 
embryonic stem cells. Nature Biotechnology. 2001;19:1134-1140

[6] Keller G. Embryonic stem cell differentiation: Emergence of a new era in biology and 
medicine. Genes & Development. 2005;19(10):1129-1155

[7] Takasato M, Er PX, Becroft M, Vanslambrouck JM, et al. Directing human embryonic 
stem cell differentiation towards a renal lineage generates a self-organizing kidney. 
Nature Cell Biology. 2014;16(1):118-126

[8] Soh BS, Ng SY, Wu H, Buac K, et al. Endothelin-1 supports clonal derivation and expan-

sion of cardiovascular progenitors derived from human embryonic stem cells. Nature 

Communications. 2016;7:10774

[9] Huch M, Koo BK. Modeling mouse and human development using organoid cultures. 
Development. 2015;142:3113-3125

[10] Davidson KC, Adams AM, Goodson JM, McDonald CE, et al. Wnt/β-catenin signal-
ing promotes differentiation, not self-renewal, of human embryonic stem cells and is 
repressed by Oct4. Proceedings of the National Academy of Sciences of the United States 
of America. 2012;109(12):4485-4490

[11] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic 
and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676

[12] Wilmut I, Schnieke AE, McWhir J, Kind AJ, et al. Viable offspring derived from fetal and 
adult mammalian cells. Nature. 1997;385(6619):810-813

[13] Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells 
after fusion with human embryonic stem cells. Science. 2005;309(5739):1369-1373

[14] Takahashi K, Tanabe K, Ohnuki M, Narita M, et al. Induction of pluripotent stem cells 
from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872

[15] Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, et al. Induced pluripotent 
stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917-1920

[16] Wada H, Kojo S, Kusama C, Okamoto N, et al. Successful differentiation to T cells, but 
unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells. 

International Immunology. 2011;23(1):65-74

[17] Aoi T, Yae K, Nakagawa M, Ichisaka T, et al. Generation of pluripotent stem cells from 
adult mouse liver and stomach cells. Science. 2008;321(5889):699-702

Mesenchymal Stem Cells - Isolation, Characterization and Applications140



[18] Wang J, Gu Q, Hao J, Bai D, et al. Generation of induced pluripotent stem cells with high 
efficiency from human umbilical cord blood mononuclear cells. Genomics, Proteomics 
& Bioinformatics. 2013;11(5):304-311

[19] Liu H, Zhu F, Yong J, Zhang P, et al. Generation of induced pluripotent stem cells from 
adult rhesus monkey fibroblasts. Cell Stem Cell. 2008;3(6):587-590

[20] Takenaka-Ninagawa N, Kawabata Y, Watanabe S, Nagata K, et al. Generation of rat-
induced pluripotent stem cells from a new model of metabolic syndrome. PLoS One. 
2014;9(8):e104462

[21] Lepage SI, Nagy K, Sung HK, Kandel RA, et al. Generation, characterization, and multi-
lineage potency of Mesenchymal-like progenitors derived from equine induced pluripo-

tent stem cells. Stem Cells and Development. 2016;25(1):80-89

[22] Hong H, Takahashi K, Ichisaka T, Aoi T, et al. Suppression of induced pluripotent stem 
cell generation by the p53-p21 pathway. Nature. 2009;460(7259):1132-1135

[23] Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripo-

tent stem cells. Nature. 2007;448(7151):313-317

[24] Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. 
Nature. 2011;474(7350):212-215

[25] Yin T, Li L. The stem cell niches in bone. The Journal of Clinical Investigation. 
2006;116(5):1195-1201

[26] Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. 
Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 
1968;6:230-247

[27] Gonzalez-Perez O. Neural stem cells in the adult human brain. Biological and Biomedical 

Reports. 2012;2(1):59-69

[28] Fiegel HC, Lange C, Kneser U, Lambrecht W, et al. Fetal and adult liver stem cells for 
liver regeneration and tissue engineering. Journal of Cellular and Molecular Medicine. 
2006;10(3):577-587

[29] Zhang Y, Sivakumaran P, Newcomb AE, Hernandez D, et al. Cardiac repair with a 
novel population of mesenchymal stem cells resident in the human heart. Stem Cells. 

2015;33(10):3100-3113

[30] Schilders KA, Eenjes E, van Riet S, Poot AA, et al. Regeneration of the lung: Lung stem 
cells and the development of lung mimicking devices. Respiratory Research. 2016;23: 
17-44

[31] Bunnell BA, Flaat M, Gagliardi C, Patel B, et al. Adipose-derived stem cells: Isolation, 
expansion and differentiation. Methods. 2008;45(2):115-120

[32] Li Q, Guo ZK, Chang YQ, Yu X, et al. Gata4, Tbx5 and Baf60c induce differentiation 
of adipose tissue-derived mesenchymal stem cells into beating cardiomyocytes. The 

International Journal of Biochemistry & Cell Biology. 2015;66:30-36

The Proangiogenic Potential of Mesenchymal Stem Cells and Their Therapeutic Applications
http://dx.doi.org/10.5772/intechopen.68516

141



[33] Petersen GF, Hilbert BJ, Trope GD, Kalle WH, et al. Direct conversion of equine adipose-
derived stem cells into induced neuronal cells is enhanced in three-dimensional culture. 

Cellular Reprogramming. 2015;17(6):419-426

[34] Zhang R, Wang N, Zhang LN, Huang N, et al. Knockdown of DNMT1 and DNMT3a 
promotes the angiogenesis of human mesenchymal stem cells leading to arterial specific 
differentiation. Stem Cells. 2016;34(5):1273-1283

[35] Bang OY, Kim EH, Cha JM, Moon GJ. Adult stem cell therapy for stroke: Challenges and 
progress. Journal of Stroke. 2016;18(3):256-266

[36] Li L, Chen X, Wang WE, Zeng C. How to improve the survival of transplanted mesen-

chymal stem cell in ischemic heart? Stem Cells International. 2016;2016:9682757

[37] Lanotte M, Allen TD, Dexter TM. Histochemical and ultrastructural characteristics of a 
cell line from human bone-marrow stroma. Journal of Cell Science. 1981;50:281-297

[38] Caplan AI. Mesenchymal stem cells. Journal of Orthopaedic Research. 1991;9:641-650

[39] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, et al. Multilineage potential of adult 
human mesenchymal stem cells. Science. 1999;284:143-147

[40] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, et al. Minimal criteria for 
defining multipotent mesenchymal stromal cells. The International Society for Cellular 
Therapy position statement. Cytotherapy. 2006;8:315-317

[41] Togel F, Weiss K, Yang Y, Hu Z, et al. Vasculotropic, paracrine actions of infused mes-

enchymal stem cells are important to the recovery from acute kidney injury. American 
Journal of Physiology. Renal Physiology. 2007;292:F1626-F1635

[42] Parekkadan B, van Poll D, Suganuma K, Carter EA, et al. Mesenchymal stem cell-derived 
molecules reverse fulminant hepatic failure. PLoS One. 2007;2(9):e941

[43] Block GJ, Ohkouchi S, Fung F, Frenkel J, et al. Multipotent stromal cells are activated to 
reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells. 

2009;27:670-681

[44] Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, et al. Human bone marrow stromal 
cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic 
stimuli. Blood. 2002;99(10):3838-3843

[45] Krampera M, Glennie S, Dyson J, Scott D, et al. Bone marrow mesenchymal stem cells 
inhibit the response of naive and memory antigen-specific T cells to their cognate pep-

tide. Blood. 2003;101:3722-3729

[46] Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, et al. HLA expression and immunologic 
properties of differentiated and undifferentiated mesenchymal stem cells. Experimental 
Hematology. 2003;31(10):890-896

[47] Corcione A, Benvenuto F, Ferretti E, Giunti D, et al. Human mesenchymal stem cells 
modulate B-cell functions. Blood. 2006;107:367-372

[48] Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, et al. Interactions between 
human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74-85

Mesenchymal Stem Cells - Isolation, Characterization and Applications142



[49] Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, et al. Mesenchymal stem cells 
inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of 
indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111:1327-1333

[50] Gonzalez-Rey E, Gonzalez MA, Varela N, O’ Valle F, et al. Human adipose-derived mes-

enchymal stem cells reduce inflammatory and T cell responses and induce regulatory T 
cells in vitro in rheumatoid arthritis. Annals of the Rheumatic Diseases. 2010;69(1):241-248

[51] Tasso R, Ilengo C, Quarto R, Cancedda R, et al. Mesenchymal stem cells induce function-

ally active T-regulatory lymphocytes in a paracrine fashion and ameliorate experimental 

autoimmune uveitis. Investigative Ophthalmology & Visual Science. 2012;53:786-793

[52] Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, et al. Bone marrow stromal cells use 
TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. 

Proceedings of the National Academy of Sciences of the United States of America. 2010; 
107:5652-5657

[53] Qu X, Liu X, Cheng K, Yang R, et al. Mesenchymal stem cells inhibit Th17 cell differentia-

tion by IL-10 secretion. Experimental Hematology. 2012;40:761-770

[54] Asahara T, Kawamoto A, Masuda H. Concise review: Circulating endothelial progenitor 
cells for vascular medicine. Stem Cells. 2011;29:1650-1655

[55] Williams AR, Hare JM. Mesenchymal stem cells: Biology, pathophysiology, transla-

tional findings, and therapeutic implications for cardiac disease. Circulation Research. 
2011;109:923-940

[56] Premer C, Blum A, Bellio MA, Schulman IH, et al. Allogeneic mesenchymal stem cells 
restore endothelial function in heart failure by stimulating endothelial progenitor cells. 

eBioMedicine. 2015;2(5):467-475

[57] Cai X, Lin Y, Friedrich CC, Neville C, et al. Bone marrow derived pluripotent cells are 
pericytes which contribute to vascularization. Stem Cell Reviews. 2009;5:437-445

[58] Crisan M, Yap S, Casteilla L, Chen CW, et al. A perivascular origin for mesenchymal 
stem cells in multiple human organs. Cell Stem Cell. 2008;3:301-313

[59] Davani S, Marandin A, Mersin N, Royer B, et al. Mesenchymal progenitor cells differen-

tiate into an endothelial phenotype, enhance vascular density, and improve heart func-

tion in a rat cellular cardiomyoplasty model. Circulation. 2003;108(Suppl 1):II253-II258

[60] Psaltis PJ, Zannettino AC, Worthley SG, et al. Concise review: Mesenchymal stromal 
cells: Potential for cardiovascular repair. Stem Cells. 2008;26:2201-2210

[61] Gomes SA, Rangel EB, Premer C, Dulce RA, et al. S-nitrosoglutathione reductase 
(GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proceedings of the 
National Academy of Sciences of the United States of America. 2013;110:2834-2839

[62] Chen J, Zhang ZG, Li Y, Wang L, et al. Intravenous administration of human bone mar-

row stromal cells induces angiogenesis in the ischemic boundary zone after stroke in 
rats. Circulation Research. 2003;92(6):692-699

The Proangiogenic Potential of Mesenchymal Stem Cells and Their Therapeutic Applications
http://dx.doi.org/10.5772/intechopen.68516

143



[63] Markel TA, Wang Y, Herrmann JL, Crisostomo PR, et al. VEGF is critical for stem cell-
mediated cardioprotection and a crucial paracrine factor for defining the age threshold 
in adult and neonatal stem cell function. American Journal of Physiology. Heart and 
Circulatory Physiology. 2008;295:H2308-H2314

[64] Asahara T, Masuda H, Takahashi T, Kalka C, et al. Bone marrow origin of endothelial 
progenitor cells responsible for postnatal vasculogenesis in physiological and pathologi-

cal neovascularization. Circulation Research. 1999;85(3):221-228

[65] Luttun A, Tjwa M, Moons L, Wu Y, et al. Revascularization of ischemic tissues by PlGF 
treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-

Flt1. Nature Medicine. 2002;8(8):831-840

[66] Miyamoto Y, Suyama T, Yashita T, Akimaru H, et al. Bone marrow subpopulations con-

tain distinct types of endothelial progenitor cells and angiogenic cytokine-producing 
cells. Journal of Molecular and Cellular Cardiology. 2007;43:627-635

[67] Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascu-

larization and regeneration. Nature Medicine. 2003;9:702-712

[68] Kim J, Kim M, Jeong Y, Lee WB, et al. BMP9 induces cord blood-derived endothelial pro-

genitor cell differentiation and ischemic neovascularization via ALK1. Arteriosclerosis, 
Thrombosis, and Vascular Biology. 2015;35(9):2020-2031

[69] Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, et al. Postnatal bone marrow stro-

mal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Therapy. 

2003;10(8):621-629

[70] Reyes M, Dudek A, Jahagirdar B, Koodie L, et al. Origin of endothelial progenitors in 
human postnatal bone marrow. The Journal of Clinical Investigation. 2002;109(3):337-346

[71] Kinnaird T, Stabile E, Burnett MS, Lee CW, et al. Marrow-derived stromal cells express 
genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro 
and in vivo arteriogenesis through paracrine mechanisms. Circulation Research. 
2004;94(5):678-685

[72] Cai M, Shen R, Song L, Lu M, et al. Bone marrow mesenchymal stem cells (BM-MSCs) 
improve heart function in swine myocardial infarction model through paracrine effects. 
Scientific Reports. 2016a;6:28250

[73] Valarmathi MT, Davis JM, Yost MJ, Goodwin RL, et al. A three-dimensional model of 
vasculogenesis. Biomaterials. 2009;30:1098-1112

[74] Tillmanns J, Rota M, Hosoda T, Misao Y, et al. Formation of large coronary arteries by 
cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United 
States of America. 2008;105(5):1668-1673

[75] Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchy-

mal stem cells exposed to 5-azacytidine. Muscle & Nerve. 1995;18(12):1417-1426

[76] Makino S, Fukuda K, Miyoshi S, Konishi F, et al. Cardiomyocytes can be generated from 
marrow stromal cells in vitro. The Journal of Clinical Investigation. 1999;103(5):697-705

Mesenchymal Stem Cells - Isolation, Characterization and Applications144



[77] Bittira B, Kuang JQ, Al-Khaldi A, Shum-Tim D, et al. In vitro preprogramming of 
marrow stromal cells for myocardial regeneration. The Annals of Thoracic Surgery. 
2002;74:1154-1159

[78] Shake JG, Gruber PJ, Baumgartner WA, Senechal G, et al. Mesenchymal stem cell implan-

tation in a swine myocardial infarct model: Engraftment and functional effects. Annals 
of Thoracic Surgery. 2002;73(6):1919-1926

[79] Silva GV, Litovsky S, Assad JAR, Sousa AL, et al. Mesenchymal stem cells differentiate 
into an endothelial phenotype, enhance vascular density, and improve heart function in 

a canine chronic ischemia model. Circulation. 2005;111(2):150-156

[80] Tang J, Xie Q, Pan G, Wang J, et al. Mesenchymal stem cells participate in angiogen-

esis and improve heart function in rat model of myocardial ischemia with reperfusion. 

European Journal of Cardio-Thoracic Surgery. 2006;30(2):353-361

[81] Lim SY, Kim YS, Ahn Y, Jeong MH, et al. The effects of mesenchymal stem cells trans-

duced with Akt in a porcine myocardial infarction model. Cardiovascular Research. 
2006;70:530-542

[82] Zhou H, Dickson ME, Kim MS, Bassel-Duby R, et al. Akt1/protein kinase B enhances 
transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proceedings 
of the National Academy of Sciences of the United States of America. 2015;112(38): 

11864-11869

[83] Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, et al. Bone marrow mesenchymal stem 
cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research. 
2010;107:913-922

[84] Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stim-

ulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem 

Cell. 2011;8:389-398

[85] Suzuki G, Iyer V, Lee TC, Canty JM Jr. Autologous mesenchymal stem cells mobilize 
cKit+ and CD133+ bone marrow progenitor cells and improve regional function in hiber-

nating myocardium. Circulation Research. 2011;109:1044-1054

[86] Xu M, Wani M, Dai YS, Wang J, et al. Differentiation of bone marrow stromal cells into 
the cardiac phenotype requires intercellular communication with myocytes. Circulation. 

2004;110:2658-2665

[87] Williams AR, Hatzistergos KE, Addicott B, McCall F, et al. Enhanced effect of combining 
human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size 

and to restore cardiac function after myocardial infarction. Circulation. 2013;127:213-223

[88] Toma C, Pittenger MF, Cahill KS, Byrne BJ, et al. Human mesenchymal stem cells 
differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 
2002;105:93-98

[89] Amado LC, Schuleri KH, Saliaris AP, Boyle AJ, et al. Multimodality noninvasive imag-

ing demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. 

Journal of the American College of Cardiology. 2006;48:2116-2124

The Proangiogenic Potential of Mesenchymal Stem Cells and Their Therapeutic Applications
http://dx.doi.org/10.5772/intechopen.68516

145



[90] Hashemi SM, Ghods S, Kolodgie FD, Parcham-Azad K, et al. A placebo controlled dose-
ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial 
delivery after an acute myocardial infarction. European Heart Journal. 2008;29:251-259

[91] Houtgraaf JH, de Jong R, Kazemi K, de Groot D, et al. Intracoronary infusion of alloge-

neic mesenchymal precursor cells directly after experimental acute myocardial infarc-

tion reduces infarct size, abrogates adverse remodeling, and improves cardiac function. 

Circulation Research. 2013;113:153-166

[92] Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, et al. Transplantation of mesenchymal 
stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocar-

ditis. Journal of Molecular and Cellular Cardiology. 2007;42:88-97

[93] Hare JM, Traverse JH, Henry TD, Dib N, et al. A randomized, double-blind, placebo-
controlled, dose-escalation study of intravenous adult human mesenchymal stem cells 

(prochymal) after acute myocardial infarction. Journal of the American College of 
Cardiology. 2009;54:2277-2286

[94] Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, et al. Comparison of 
allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by 

transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON 
randomized trial. Journal of the American Medical Association. 2012;308:2369-2379

[95] Chen SL, Fang WW, Ye F, Liu YH, et al. Effect on left ventricular function of intracoro-

nary transplantation of autologous bone marrow mesenchymal stem cell in patients 

with acute myocardial infarction. The American Journal of Cardiology. 2004a;94:92-95

[96] Houtgraaf JH, den Dekker WK, van Dalen BM, Springeling T, et al. First experience 
in humans using adipose tissue-derived regenerative cells in the treatment of patients 

with st-segment elevation myocardial infarction. Journal of the American College of 
Cardiology. 2012;59:539-540

[97] Perin EC, Sanz-Ruiz R, Sanchez PL, et al. Adipose-derived regenerative cells in patients 
with ischemic cardiomyopathy: The precise trial. American Heart Journal. 2014;168:88-

95 e82

[98] Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: A detailed 
progress report of the last 6 years (2010-2015). Stem Cell Research & Therapy. 
2016;7(1):82

[99] Mushtaq M, DiFede DL, Golpanian S, Khan A, et al. Rationale and design of the percu-

taneous stem cell injection delivery effects on neomyogenesis in dilated cardiomyopa-

thy (the poseidon-dcm study): A phase i/ii, randomized pilot study of the comparative 
safety and efficacy of transendocardial injection of autologous mesenchymal stem cell 
vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomy-

opathy. Journal of Cardiovascular Translational Research. 2014;7:769-780

[100] Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, et al. Cardiopoietic stem cell 
therapy in heart failure: The c-cure (cardiopoietic stem cell therapy in heart failure) 

multicenter randomized trial with lineage-specified biologics. Journal of the American 
College of Cardiology. 2013;61:2329-2338

Mesenchymal Stem Cells - Isolation, Characterization and Applications146



[101] Ieda M, JD F, Delgado-Olguin P, Vedantham V, et al. Direct reprogramming of fibro-

blasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375-386

[102] Wang L, Liu Z, Yin C, Asfour H, et al. Stoichiometry of Gata4, Mef2c, and Tbx5 influ-

ences the efficiency and quality of induced cardiac myocyte reprogramming. Circulation 
Research. 2015;116:237-244

[103] Song K, Nam YJ, Luo X, Qi X, et al. Heart repair by reprogramming non-myocytes with 
cardiac transcription factors. Nature. 2012;485:599-604

[104] Cao N, Huang Y, Zheng J, Spencer CI, et al. Conversion of human fibroblasts into func-

tional cardiomyocytes by small molecules. Science. 2016;352(6290):1216-1220

[105] Rustad KC, Wong VW, Sorkin M, Glotzbach JP. Enhancement of mesenchymal stem 
cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 
2012;33(1):80-90

[106] Liu L, Yu Y, Hou Y, Chai J, et al. Human umbilical cord mesenchymal stem cells 
transplantation promotes cutaneous wound healing of severe burned rats. PLoS One. 
2014;9(2):e88348

[107] Aguilera V, Briceño L, Contreras H, Lamperti L, et al. Endothelium trans differentiated 
from Wharton's jelly mesenchymal cells promote tissue regeneration: Potential role of 
soluble pro-angiogenic factors. PLoS One. 2014;9(11):e111025

[108] Bandara N, Gurusinghe S, Lim SY, Chen H, et al. Molecular control of nitric oxide syn-

thesis through eNOS and caveolin-1 interaction regulates osteogenic differentiation 
of adipose derived stem cells by modulation of Wnt/β-catenin signalling. Stem Cell 
Research & Therapy. 2016;7(1):182

[109] Addis RC, Ifkovits JL, Pinto F, Kellam LD, et al. Optimization of direct fibroblast repro-

gramming to cardiomyocytes using calcium activity as a functional measure of success. 

Journal of Molecular and Cellular Cardiology. 2013;60:97-106

[110] Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, et al. MiR-133 promotes cardiac 
reprogramming by directly repressing Snai1 and silencing fibroblast signatures. The 
EMBO Journal. 2014;33:1565-1581

[111] Protze S, Khattak S, Poulet C, Lindemann D, et al. A new approach to transcription fac-

tor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. Journal of 
Molecular and Cellular Cardiology. 2012;53:323-332

[112] Christoforou N, Chellappan M, Adler AF, Kirkton RD, et al. Transcription factors 
MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, 
TBX5, and MEF2C during direct cellular reprogramming. PLoS One. 2013;8:e63577

[113] Ifkovits JL, Addis RC, Epstein JA, Gearhart JD. Inhibition of TGFbeta signaling increases 
direct conversion of fibroblasts to induced cardiomyocytes. PLoS One. 2014;9:e89678

[114] Efe JA, Hilcove S, Kim J, Zhou H, et al. Conversion of mouse fibroblasts into cardio-

myocytes using a direct reprogramming strategy. Nature Cell Biology. 2011;13:215-222

The Proangiogenic Potential of Mesenchymal Stem Cells and Their Therapeutic Applications
http://dx.doi.org/10.5772/intechopen.68516

147



[115] Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, et al. MicroRNA-mediated 
in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. 
Circulation Research. 2012;110(11):1465-1473

[116] Belian E, Noseda M, Abreu Paiva MS, Leja T, et al. Forward programming of car-

diac stem cells by homogeneous transduction with MYOCD plus TBX5. PLoS One. 
2015;10:e0125384

[117] JD F, Stone NR, Liu L, Spencer CI, et al. Direct reprogramming of human fibroblasts 
toward a cardiomyocyte-like state. Stem Cell Reports. 2013;1:235-247

[118] Nam YJ, Song K, Luo X, Daniel E, et al. Reprogramming of human fibroblasts toward 
a cardiac fate. Proceedings of the National Academy of Sciences of the United States of 
America. 2013;110:5588-5593

[119] Wystrychowski W, Patlolla B, Zhuge Y, Neofytou E, et al. Multipotency and cardio-

myogenic potential of human adipose-derived stem cells from epicardium, pericar-

dium, and omentum. Stem Cell Research & Therapy. 2016;7(1):84

[120] Park E, Takimoto K. A long-lasting cardiomyogenic gene expression by PEI-based 
transfection induces endogenous cardiac mRNAs in human adipose-derived stem cells. 
Biochemical and Biophysical Research Communications. 2016;479(1):12-16

[121] Hirai H, Katoku-Kikyo N, Keirstead SA, Kikyo N. Accelerated direct reprogramming 
of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. 
Cardiovascular Research. 2013;100:105-113

[122] Zhao Y, Londono P, Cao Y, Sharpe EJ, et al. High-efficiency reprogramming of fibro-

blasts into cardiomyocytes requires suppression of pro-fibroticsignalling. Nature 
Communications. 2015;6:8243

[123] Qian L, Huang Y, Spencer CI, Foley A, et al. In vivo reprogramming of murine cardiac 
fibroblasts into induced cardiomyocytes. Nature. 2012;485:593-598

[124] Srivastava D, Ieda M, Fu J, Qian L. Cardiac repair with thymosin beta4 and cardiac 
reprogramming factors. Annals of the New York Academy of Sciences. 2012;1270:66-72

[125] Jayawardena TM, Finch EA, Zhang L, Zhang H, et al. MicroRNA induced cardiac 
reprogramming in vivo: Evidence for mature cardiac myocytes and improved cardiac 

function. Circulation Research. 2015;116(3):418-424

[126] Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, et al. Induction of cardiomyo-

cyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circulation 
Research. 2012;111:1147-1156

[127] Mathison M, Gersch RP, Nasser A, Lilo S, et al. In vivo cardiac cellular reprogram-

ming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium 
with vascular endothelial growth factor. Journal of the American Heart Association. 
2012;1:e005652

Mesenchymal Stem Cells - Isolation, Characterization and Applications148


