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Abstract

Nowadays, oral and maxillofacial surgeons face serious difficulties in reconstruction of 
large defects caused by trauma, cancer, or congenital deformities. Considering each part 
of oral and maxillofacial region consisting of several tissues, it is necessary to recon-
struct these architectures layer by layer. Through years surgeons use different forms 
of grafts to reconstruct these defects. As these grafts and techniques are well described 
and used routinely, it should have been noticed that they are not without complica-
tions. This is where idea behind tissue engineering steps in. “Tissue engineering” due 
to its multi-aspect properties can be defined as application of methods and science of 
engineering toward the understanding of structure-function relationships of mamma-
lian tissues in both normal and pathological forms to improve and develop biologic 
substitutes to reach the main goal of restoring, maintaining, and stabilization of tissue 
function. From standpoint of surgery, tissue engineering is not considered as a potential 
step anymore, but as an available approach to reach the ultimate goal of reconstruction 
procedures. The aim of this chapter is to defne concepts and advances in tissue engi-
neering (TE). Also, review TE applications in the field of oral and maxillofacial surgery 
with bolding its clinical applications and complications based on novel and high-qual-
ity published researches.

Keywords: tissue engineering, scaffolds, bioprinting, stem cells, regenerative medicine, 
oral surgery, maxillofacial surgery
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1. Introduction

For the first time, Langer and Vacanti introduced the definition of tissue engineering [1] to 
explain the basics of functional substitutes for tissue damage and how to reconstruct and 
regenerate these tissues based on principles of biology and medical engineering. This new 
field in contrast to the former biomaterial thoughts presents incredible disciplines which 
diverse the goal of regeneration induction of traumatized or damaged tissue rather than sub-
stitution with inert parts. In recent decades, a number of articles were being published about 
the tissue engineering and regenerative medicine (TERM) field over 360 yearly just at the 
beginning of the twenty-first century. Just in 2010, the number of original articles in this field 
reaches 4000. This over-increasing attraction to this field—involving almost all tissues even 
whole organs—leads to researches across the world [2].

Herein, we review latest scientific researches and recent advances of tissue engineering in 
major field of oral and maxillofacial surgery by subtopics categorized by facial complex 
parts.

2. Basic principles of tissue engineering

Tissue engineering is composed of three pillars: the cells, scaffolds, and growth factors. The 
combination of cells in a suitable scaffold was designed by the appropriate biochemical sig-
nals that can facilitate and make possible growth, so it could be a treatment option that is 
very suitable for clinical application. Various studies have shown that one of the important 
issues is proper design of scaffolds and associated mechanical signals to regulate tissue that 
is engineered. Scaffold that can be temporarily or permanently used for three-dimensional 
porous can also be natural or artificial, which in any case must be biocompatible [3]. A bio-
compatible environmental issue is crucial importance because it facilitates progenitor cells 
for migration and differentiation [4]. Some of the important issues that include the physi-
cal properties of the scaffold such as biodegradability, porosity, hardness and strength to 
be as much in excess of migration, cell adhesion, and proliferation (such as osteoconduc-
tion), which reflects the influence of signals on the cell is followed by the clinical efficacy 
of chemical signals and ultimately success factor for the link to be followed. Perhaps the 
problem for surgeons and maxillofacial surgery is more important than other counterparts, 
being careful scaffold designing on human anatomy for the repair of any defects in the face. 
Various studies designed to use the computer in the exact scaffold have shown promising 
results and have built a biomimetic scaffold that has special significance [5].

To complement these three pillars, tissue, cell lines that require ease of access and availabil-
ity, differentiation capacity, and lack of stimulation of the immune system or have tumor 
genesis [6]. Choosing the right cell lines in tissue engineering is still under discussion. New 
research hopes to use stem cells and gene therapy with viral vectors to express growth factors 
in cultured cell lines successfully, but stem cell research is outside the scope of this topic [7]. 
Today, the laboratory of tissue engineering that leads clinicians to living tissue is a concept 
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that has the potential to create a great impact on the future treatments. One of the major 
obstacles to the proper functioning of the tissue outside the body is to understand the way in 
which cells can be set in niches under certain physical and chemical conditions which would 
be difficult [8, 9]. In this case, bioreactors can control the situation and imitate the natural 
environment. Bioreactor devices can control and adjust the physiological conditions. With 
advances in tissue engineering, scaffold design could put several layers of cells onto scaf-
folds for three-dimensional position. That purpose requires a microenvironment for growth 
in vitro. The mathematical model was able to calculate the fluid flow rate for scaffold to pro-

vide nutrients and remove wastes and release oxygen used. As well as other variables such 
as external mechanical force needed to stimulate the proliferation of osteoblasts and then 
followed it can also be provided. Another alternative method that involves the cultivation of 
graft in vivo using animal models or humans as a bioreactor to simulate the growth of cells 
is provided. The remainder of this chapter presents various examples discussed regarding 
various tissues of the jaw and face [9].

3. Oral and maxillofacial bone defects

3.1. Mandibular defects

The atrophic mandible presents its own unique set of challenges in reconstructive maxillofa-

cial surgery. A mandibular vertical height of less than 2 cm (20 mm) is universally considered 
atrophic and presents with characteristic anatomic and physiologic features, such as hypovas-

cularity, which might contribute to tooth and alveolar process loss. The atrophic resorption 
patterns also contribute to the consistent anatomic changes, such as prominent mylohyoid 
and internal oblique ridges, which are covered with a thin mucosal lining, contributing to 
an increased risk of soft tissue breakdown and dehiscence. These anatomic changes happen 
secondary to a deficiency in blood supply from the lack of muscle attachments in those areas, 
whereas the areas that have a healthy musculature show an increased blood supply, making 
it more resistant to postdental extraction resorption. An important concept that reconstruc-

tive surgeons need to understand is that atrophic mandibles depend heavily on periosteal 
blood supply because of the narrowing of the inferior alveolar artery [10–12].

Cawood and his group from the United Kingdom found that alveolar bone resorption seemed 
to have a predictable pattern:

• Class I, dentate

• Class II, immediately post-extraction

• Class III, well-rounded ridge form, adequate in height and width

• Class IV, knife-edge ridge form, adequate in height and inadequate in width

• Class V, flat ridge form, inadequate in height and width

• Class VI, depressed ridge form, with some basilar bone loss evident [13]
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This classification has more relevance to implant dentistry because it gives the operator an 
idea of whether an adjunctive bone graft would be necessary (classes IV and V).

Marx and colleagues [14] published a novel soft tissue matrix expansion also known as the 
“tent pole,” where the dental implants effectively “tent” the soft tissue envelope up to main-

tain the bone graft volume and prevent soft tissue collapse. The original description used an 
extraoral submental approach, and the bone graft material of choice was the anterior iliac 
crest bone graft, with four to five implants placed (each one 15 mm in height), with a 1-cm 
interimplant distance. Primary stability was obtained by engaging the inferior border of the 
mandible with the implants. Autogenous corticocancellous bone graft is then packed around 
the implants.

Patel et al. reported that the addition of rhBMP in the tent pole technique had a favorable 
impact on bone healing and allowed substitution of the posterior iliac crest as a donor site 
with the anterior iliac crest bone graft because of the enhanced osteoinduction that happens 
with rhBMP. Furthermore, the authors rarely use the classical anterior iliac crest bone grafting 
approach, instead opting for the trephine to harvest the bone from the anterior iliac crest, with 
excellent increase in vertical bone height and final implant placement. This translated to less 
donor-site morbidity and earlier mobilization [15].

Many surgeons have modified Marx’s original tent pole technique, and some have replaced 
dental implants with bone screws; this modification seemed to improve the buccolingual ori-
entation of the final implant placement, because the dental implants would be placed at a sec-

ond procedure, when all of the bones have been consolidated, and the position of the implants 
is more ideal. A second advantage of this modification is that it allows the use of surgical 
implant guides, especially if a maxillary prosthesis exists. Another commonly used method is 
the use of a titanium mesh to tent the soft tissue and maintain the bone graft and the contour 
of the ridge. However, the main disadvantage of this technique is that the surgical site must be 
reentered to remove the titanium mesh before implant placement. This has presented its own 
set of challenges, especially when the graft grows over the mesh, and the procedure requires 
excessive soft tissue reflection.

Another bioactive agent that has been studied in maxillofacial reconstructive surgery is 
recombinant human platelet-derived growth factor. This is a product of platelets and func-

tions as a chemotactic and mitogenic factor for osteoblasts and is critical for angiogenesis and 
thus can be applied to treating ridge defects [16]. This growth factor has been combined with 
several different types of grafting materials and carriers, such as mineralized and demineral-
ized FDBA [17], xenograft (specifically deproteinized bovine block graft), equine block graft 
[18], and bTCP [19], in multiple case series and has been shown to help produce intact woven 
and lamellar bone contributing to an increase in vertical ridge height in humans, which was of 
appropriate quality to accommodate the placement of dental implants at a second stage. The 
concept of engineered heterotopic bone formation has also been studied; however, this has 
not yet gained much notoriety. In 2004, it was studied in the reconstruction of large segmen-

tal mandibular defects by way of an engineered growth of a mandibular transplant within 
a muscular environment (in this case the latissimus dorsi muscle) with the help of BMPs, 
with subsequent free tissue transfer of the bone-muscle flap approximately 7 weeks later [20].  
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A prefabricated titanium mesh was filled with bone mineral blocks, BMPs, and the patient’s 
own bone marrow. Although a clinically successful result was obtained, this procedure may 
not be as cost-effective as some of the more traditional and established methods of free tissue 
transfer for mandibular reconstruction and does carry with it significant morbidity related 
to the surgery itself and potential complications, such as brachial plexus injury and shoulder 
drop [21]. Nonetheless, it certainly does open up a different aspect of tissue engineering and 
strategies for maxillofacial reconstruction [22, 23].

3.2. Maxillary sinus augmentation

It is challenging to reconstruct the edentulous posterior maxilla with dental implants due 
to insufficient bone height after crestal bone resorption and also maxillary sinus pneuma-

tization [24, 25]. In recent years, with aid of existing space in the maxillary sinus, clinicians 
introduced techniques for surgical augmentation that use to restore bone height and also 
create a sufficient implant bed area which seems to resolve patient’s treatment difficulties 
[26, 27]. Researchers suggested a variety of modifications in original sinus augmentation 
technique to ease different difficulties for clinicians and also patients [28, 29], but the basic 
principle of each technique remained unchanged which is to increase maxillary bone height 
with aid of placing graft material in the maxillary sinus after attending to detach the sinus 
membrane [25, 28, 29]. Nowadays, for rehabilitation of the posterior maxilla with dental 
implants, the use of maxillary sinus augmentation (MSA) is considered as a standard pro-

cedure [24, 25].

In original technique, before dental implant insertion, MSA was performed with the autog-

enous bone [25, 30]. Autogenous bone has usually been cited as the most eligible material to 
achieve predictable and favorable results in MSA. It is due to the fact that autogenous bone 
contains living cells and growth factors which cause osteogenic ability [25, 30]. In contrast, 
it should have been noticed that available supplies for autogenous bone are limited. Also, as 
disadvantage, harvesting autogenous bone is painful and includes procedures with risk of 
infection. With these in mind, it is necessary to investigate and develop alternative techniques 
to overcome these drawbacks [24, 25, 31–37].

Introduction of different osteoconductive biomaterials such as allogeneic bone [31, 32], xeno-

geneic bone [32–34], or alloplastic or composite materials [34, 35] which are cell-free and due 
to that require more time for bone healing. This is a disadvantage that none of mentioned 
materials have biological and structural properties similar to the native bone [24, 25, 34–37].

The modern science of bone tissue engineering, a fusion of recent discoveries in the field of 
molecular cell biology with the most innovative methods of reconstructive surgery, aims to 
overcome these boundaries [38].

In Table 1, studies of stem cell approach for tissue engineering dealing with sinus augmenta-

tion were illustrated.

A major disadvantage of potential bone substitutes is their inherent slow ability to induce 
new bone at a foreseeable rate. By advances and innovation in technology in tissue engineer-

ing, introduced alternative materials which are used as bone show significant advantages in 
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Study Control Type SC Scaffold Evaluation Follow-up Complications

Gonshor et al. Allograft MSC (bone 
marrow)

Allograft 
(Osteocel)

Histology after 
3–4 months

None

Voss et al. ABG MSC 
(periosteum)

Polymer fleece Radiography, 
histology on 18 
patients

24 months A

Shayesteh et al. None MSC (bone 
marrow)

HA/TCP Histology after 
3 months

12 months None

Yamada et al. None MSC (bone 
marrow)

PRP Radiography 2- to 
6.3-year

None

Rickert et al. 30% ABG 
and 70% 
BBM

MSC (bone 
marrow)

BBM Histology after 
13–16 weeks

None

Schimming 
et al.

None MSC 
(periosteum)

Polymer fleece Histology after 
3 months

6 months in 
9 patients

B

MacAllister 
et al.

None MSC (bone 
marrow)

Allograft 
(Osteocel)

Histology after 
4 months

None

Mangano et al. Calcium 
phosphate

MSC (bone 
marrow)

Polymer fleece Histology after 
6 months, CT 
scan

C

Zizelmann 
et al.

ABG MSC 
(periosteum)

Polymer fleece Radiography 
after 3 months

D

Ueda et al. None MSC (bone 
marrow)

PRP Radiography 2–5 years None

Sauerbier et al. MSC (bone 
marrow) vs. 
BMAC

MSC (bone 
marrow)

BBM Histology after 
3 months

12 months None

Fuerst et al. None Autogenous 
culture-expanded 
bone cells

BBM Histology after 
6 months

None

Trautvetter 
et al.

None MSC 
(periosteum)

Polymer fleece Histology after 
6 months

5 years None

Schmelziesen 
et al.

None MSC 
(periosteum)

Polymer fleece Histology after 
4 months

None

Hermund et al. 50% 
ABG + 50% 
BBM

Autogenous 
culture-expanded 
bone cells

50% ABG + 50% 
BBM

Histology after 
4 months

8 months None

Sauerbier et al. 30% 
ABG + 70% 
BBM

MSC (bone 
marrow)

BBM Histology after 
3–4 months

None

Springer et al. BBM MSC 
(periosteum) 
(l) Autogenous 
culture-expanded 
bone cells (2a)

Collagen [1]

BBM (2a)
Histology after 
6–8 months

None
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their bone-inductive capabilities. These results are similar to the result of study conducted 
by Neiva et al., which revealed favorable outcomes with the use of PepGen P-15 Putty. They 
conclude this result from initial osteogenesis of intervened group which is guided by the 
putty and achieved an additional mature trabecular pattern in shorter period of time compar-

ing to the control group. Earlier bone formation is evaluated and revealed in 3D radiographic 
assessment as early as 8 weeks [40].

A variety of study designs used in cellular studies on sinus grafting techniques outcome the 
square measure constituent. Briefly, most studies comparing cell therapy with a traditional 
grafting technique showed similar results [41–44].

3.3. Dorsal augmentation in rhinoplasty

As application of allografts for dorsal augmentation seems to have serious disadvantages [45], 

it appears that we might tend to observe the appliance of tissue engineering in rhinoplasty; 
Kim et al. in 2014 within the article made a case for the chondrocytes and porcine cartilage 
substance (PCS) construct as an attainable dorsal augmentation material in rhinoplasty cul-
tured with a porcine cartilage-derived substance (PCS) scaffold as a potential substitute for 
normal tissue use for augmentation in rhinoplasty. A scaffold is derived from decellularized 
and fine-grained porcine articular cartilage prepared. The use of the rabbit articular cartilage 
was due to ability to supply homologous chondrocytes, which for 7 weeks were enlarged and 
polite with the PCS scaffold. The chondrocyte-PCS constructs were then surgically implanted 
on the nasal dorsum of six rabbits. Four and 8 weeks after implantation, complete evaluations 
such as the gross morphology, radiologic pictures, and microscopic anatomy options of the 
location of implant were analyzed. The rabbits showed no signs of surgical inflammation and 
infection. The degree of dorsal augmentation was maintained throughout the 8-week surgi-
cal observation amount. Surgical examinations showed chondrocyte proliferation while there 
was no inflammatory response. However, neo-cartilage formation from the constructs was 
not confirmed. The biocompatibility and structural options of tissue-engineered chondrocyte-
PCS constructs indicate their potential as candidate dorsal augmentation material to be used 
in rhinoplasty [46].

Study Control Type SC Scaffold Evaluation Follow-up Complications

Beaumont 
et al.

None MSC 
(periosteum)

BBM + polymer 
fleece

Histology after 4 
and 6 months

18 months None

Adopted from Jakobsen et al. [39]

BBM, bovine bone mineral; HA/TCP, hydroxyapatite/tricalcium phosphate; NA, data not available; MSCs, mesenchymal 
stem cells; PRP, platelet-rich plasma; RCT, randomized clinical trial
A: 11 augmentations failed in test group, none in control group
B: Histology shows little or no bone formation in 8 of 15 patients, when a two-stage protocol was used.
C: Less bone and more medullar spaces were found in test group compared with control group.
D: 13 of 14 sinuses showed insufficient bone formation. Resorption 90% in test group after 3 months, 29% in control 
group

Table 1. Studies regarding cell-based sinus lift procedure.
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Cultured chondrocytes and porcine cartilage substance (PCS) constructs as an attainable 
dorsal augmentation material in rhinoplasty: preliminary animal study and, additionally 
Mendelson et al. in 2014 conferred this concept than designed nasal cartilage by cell homing: 
a model for augmentative and rehabilitative rhinoplasty. Bioactive scaffolds were developed 
that not solely recruited cells within the nasal dorsum in vivo, however, additionally induced 
chondrogenesis of the recruited cells. Bilayered scaffolds were fictional with alginate-contain-
ing gelatin microspheres encapsulating cytokines atop a porous poly(lactic-co-glycolic acid) 
base. Microspheres were fictional to contain recombinant human remodeling growth factor 
β3 at doses of 200, 500, or 1000 ng, with phosphate-buffered saline-loaded microspheres used 
as a bearing. A rat model of augmentation facelift was created by implanting scaffolds atop 
the native nasal cartilage surface that was scored to induce cell migration. Tissue formation 
and chondrogenesis within the scaffolds were evaluated by image analysis and microscopic 
anatomy staining with hematoxylin and eosin, toluidine blue, Verhoeff elastic-van Gieson, 
and aggrecan immunohistochemistry. Sustained release of increasing doses of remodeling 
growth factor β3 for up to the tested 10 weeks promoted orthotopic cartilage-like tissue for-
mation in an exceedingly dose-dependent manner. It appears that these findings represent 
the primary commitment to engineer cartilage tissue by the cell orientating for facelift and 
will doubtlessly function as an alternate material for augmentative and rehabilitative rhino-
plasty [46].

An important feature for rehabilitative and augmentative rhinoplasty is the ability of the graft 
to be tailored to the individual patient. Autologous graft area unit is stacked and sutured 
along in a very bundle before implantation. The bioactive poly(lactic-co-glycolic acid) scaf-
folds are simply changed to larger augmentations by varied the mold diameter wont to create 
the poly(lactic-co-glycolic acid) scaffold base. For associate degree off-the-shelf product, three 
totally different scaffolds can be generated with a variety of forms and sizes and simply cut 
for precise adjustments. Thus, the bioactive scaffolds might probably be used as completely 
unique various implant styles to current rhinoplasty treatment [46].

4. Skin

It seems that one of the important years for tissue engineering is 1975; in this year, some 
occurrence about skin engineering was evolved in this field even though the Washington 
National Science Foundation applied science panel meeting to formally adopt the term “tis-
sue engineering” for this field a decade later in 1987 [47] and Langer and Vacanti explained 
the definition of this field later in 1993 [1]. The first step is ascribed to the actions of two 
teams in the United States 40 years ago. Rheinwatd and Green were the first team who are 
unskilled and ignored cultivation of human epidermal keratinocytes in vitro [48]; they also 
created potentially the enlargement of those cultivation of cells into numerous epithelial 
cells for graft in 1975 [49] from a little skin diagnostic assay. Today, the work that was done 
in those days is called “skin epidermis tissue engineering.” At the same time, Yannas et al. 
worked on the features of scleroprotein and degradation mechanism [50] in 1975, which now 
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we believe that these efforts facilitate the way for the new generation of artificial dermal sub-

stitute, resulting in the “skin dermis tissue engineering” [51]. Fortunately, after 6 years, both 
of these groups independently revealed the clinical effect of tissue-engineered substitutes 
for the treatment of different grade burns, albeit in different approaches. The first graft of 
extensive burns with sheets of cultured epithelium (produced from epidermal cells which 
are autologous) was reported by O’Connor et al., two adult patients were experienced at the 
Peter Bent Brigham Hospital [52, 53]. Cultured epidermal autografts (CEA) were the next 
generation of cultured sheets which are autologous and also successively revealed to pre-

pare cover of full-thickness burns in pediatric patients [54]. Meantime, only a short time after 
O’Connor et al.’s study, Burke et al. revealed that artificial dermis had experienced func-

tional and physiological acceptable dermis in the treatment of extensive full-thickness burns 
on several patients [55]. These evidences resulted in randomized clinical trial for extensive 
burn injuries led by Heimbach et al. [56] about the application of artificial dermis; now new 
generation of artificial dermis is known as IntegraTM Dermal Regeneration Template. This 
study was done successfully by collaborating 11 centers, and other studies [57, 58] could 

inevitably demonstrate this dermal substitute a “gold standard” material treatment of full-
thickness burns [59].

But there are still challenges, and those two groups are still far from reaching the final goal of 
replacing autologous skin for coverage of permanent deep dermal or full-thickness injuries 
in extensive burns.

Table 2 demonstrates the current status of available tissue-engineered materials and tech-

niques for skin substitution.

Skin substitute/

surgical technique

Structure Advantage Disadvantage

Epidermal Cultured epithelial 
autograft (CEA)

Confluent autologous 
keratinocytes

In vitro 
expansion for 
large bum area, 
permanent

Fragility, infection, high 
cost, and variable take 
rate

CUONO’s method Extensive bums Two-stage procedure, 
precise grafting time 
coordination

CEA with meshed 
split-thickness skin 
autograft

Expansion 1:4, 
no rejection

Beyond 1:4 expansion: 
poor cosmetic 
and functional 
results, delayed 
reepithelialization

CEA with 
microskin 
autograft

Expansion 
1:9–15, no 
rejection, high 
take rate, shorter 
epithelization 
time

Time-consuming, labor-
intensive, hypertrophic 
scarring
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Skin substitute/

surgical technique

Structure Advantage Disadvantage

Dermal Artificial 
biological 
materials

Integra™ Cross-linked bovine 
tendon collagen-based 
dermal matrix linked with 
glycosaminoglycan (GAG)

Two-stage procedure, 
infection, hematomas, 
seromas

Integra™ with 
CEA

Good long-

term esthetic 
and functional 
outcome

High cost, poor adhesion

Integra™ with 
Meek

MatriDerm® Bovine non-cross-linked 
lyophilized dermis, 
coated with alpha-elastin 
hydrolysate

Composite skin 
substitute

MatriDerm as a template, 
seeded with expanded 
autologous skin fibroblast 
and keratinocytes

Full wound 
closure

Blobrane® Silicone membrane and 
nylon mesh impregnated 
with porcine dermal 
collagen

One-stage 
procedure, 
coverage of 
partial-thickness 
bums

Intolerant to 
contaminated wound bed

Natural 
biological

AlloDerm® Human acellular 

lyophilized dermis
Acellular, 
immunologically 

inert, provide 
natural dermal 
porosities for 
regeneration and 
vascularization 
on the wound 
bed

High cost, risk of 
transmitting disease, 
two-stage procedure

AlloDerm® with 
CEA

Multiple applications

Permacol™ Porcine acellular 
lyophilized dermis

Good esthetic 
and functional

Infection, hematomas, 
seromas

Synthetic 
materials

TransCyte® Porcine collagen-coated 
nylon mesh seeded with 
allogeneic neonatal human 
foreskin fibroblasts

Immediate 
availability, ease 
of storage

Temporary

Dermagraft® Bioabsorbable polyglactin 
mesh scaffold seeded with 
cryopreserved allogeneic 
neonatal human foreskin 
fibroblasts

Ease of 
handling, no 
rejection, chronic 
wounds—
diabetic ulcers

Poor ECM structure, 
infections, cellulitis,
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The happen which facilitates efforts is that combination between a skin allograft bank and profes-

sional laboratory which culture autologous epithelial cell sheet could be an important step, and 
also we should gather many scientists and engineers and absorb finance in this field. The only 
way that can create the demand of engineered tissue for patients is through working and col-
laborating with clinicians, and also this expert team brings us innovation, novel technologies, and 
cost management and realizes the challenges in advancement of skin tissue engineering [61–65].

5. Oral mucosa

There is a recognized lot to reconstruct and restore advanced craniomaxillofacial (CMF) soft 
tissues that are broken and/or disfigured as a consequence of automobile accident, trauma, 
burn injury, or tumor surgery. In trauma, injuries usually produce extraordinarily advanced 
geometric and avulsion defects, and also the anatomic and purposeful intricacies of CMF 
composite soft tissue structures like the lips, eyelids, and nasal advanced create the recon-

struction significantly difficult for maxillofacial surgeons (Table 3).

Kenji Izumi et al. in 2013 within the article evaluated the appliance of tissue engineering 
in oral mucosa [67]; the first objective of this study was to gauge the security of a tissue-
engineered human ex vivo produced oral mucosa equivalent (EVPOME) in intraoral graft 
procedures. The secondary objective was to assess the efficacy of the grafted EVPOME in 
manufacturing a keratinized mucosal surface epithelial tissue. Five patients World Health 
Organization based on inclusion criteria that defects in mucogingival region or an absence 
of gingiva which is keratinized on incisors and premolars teeth, together with radiographies 
of adequate bone height in interdental region, were used to expand the amount of keratin-

ized gingiva in the defect site. A specimen was taken by a punch biopsy from hard palate to 
accumulate oral keratinocytes, which were enlarged, associate degreed cultured on associate 
degree noncellular matrix of the dermis for make of an EVPOME.

Skin substitute/

surgical technique

Structure Advantage Disadvantage

Dermo-epidermal PermaDerm™ Collagen-
glycosaminoglycan 

substrates containing 
autologous fibroblasts and 
keratinocytes

Permanent 
replacement 
of both dermal 
and epidermal 
layers, one-step 
procedure

No clinical trial reported 
yet

DenovoSkin Plastically compressed 
collagen type 1 hydrogels 
engineered with human 
keratinocytes and 
fibroblasts

Near-normal 

skin architecture
Long culture time, no 
clinical series reported 
yet

Adopted from Chua et al. [60]

Table 2. Tissue-engineered materials and current surgical techniques for skin substitution.
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EVPOME grafts have special features which are used directly over associate degree healthy 
periosteal bed and preserved in situ. At 1 and at 7, 14, 30, 90, and 180 days postsurgery, Plaque 
Index and Gingival Index were recorded for every subject. Additionally, inquisitory depths, 
keratinized animal tissue dimension, and keratinized animal tissue thickness were recorded 
at baseline, 30, 90, and 180 days. Fortunately, there were no adverse outcomes or complica-

tions to EVPOME ascertained in all cases throughout the research. But the mean increased 
in keratinized animal tissue dimension was 3 mm (range, 3–4 mm), and no vital changes in 
depths were ascertained. According to our findings, we can terminate that EVPOME is useful 
for oral application and has the flexibility to reinforce keratinized gingiva. More randomized 
clinical trials in this field should be performed to demonstrate other dimensions of tissue 
engineering [67].

The maintenance of associate degree sufficient strip of attached gingiva includes a minimum 
of 2 mm of keratinized gingiva and has revealed that it could be necessary for preservation of 
periodontal tissue [68, 69]. Historically, FGGs’ associate degreed grafts which were taken from 
connective tissue are applied to gain sufficient strip of attached gingiva [70]. Unfortunately, 
clinical evidence about the use of autologous and allogenic products confronts to some prob-

lems about FGGs, i.e., problems about morbidity around donor region and also amount of 
tissue for graft which is restricted [71]. Nevins [72] applied treatment by bilayered cell for 
mucogingival region, and this research revealed that adequate keratinized tissue was gained; 
however, the amount was not more than it gained with FGGs. Interestingly, each research 
tried to prove that clinical evidence such as texture and color have better results when com-

pared with FGGs. Nevertheless, application of products that have allogenic cells could have 
important effect on the wound bed; the impact of treatment could be as a completely unique 
“biologic dressing” to motivate encompassing cells. One of the reliable materials was a scaf-
fold which is biodegradable with gingival autologous fibroblasts which are cultured [73]. 
Another research in this field used oral mucosa cells to transplant directly to the cornea [74]. 

Approach Advantages Disadvantages

Free grafts (full-thickness 
skin grafts, split-thickness 
skin grafts, etc.)

Simply harvested, vital tissue 
accessibility

Poor color match, donor-site morbidity, lack of 
bulk, no performance

Local advancement and 
motility flaps

Sensible color match, functional Restricted quantity, might need staged surgeries, 
will result in microstomia and associated 
purposeful deficits in speech and swallowing

Free vascularized tissue 
transfer

Wonderful tube peduncle, 
applicable tissue thickness, and a 
technique to suspend the lip with 
the incorporated tendon

Long recovery, donor-site morbidity, lack of 
performance, poor color match/esthetics, needs 
specialized surgical skills

Allogeneic tissue transfer/
face transplant

Sensible color match, purposeful 
tissue, esthetics

Needs long immunosuppression, facet effects 
of immunosuppression, long and troublesome 
recovery, donor accessibility, needs specialized 
surgical skills and facility

Table 3. The advantages and downsides of the contemporary approach to soft tissue reconstruction [66].
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Another researchers believed that the long time (more than 22 months) existence of the cul-
tured keratinocytes from oral cavity, expressed markers of stem cell. Also evidence tried to 
by pharmacologic approach produce cultured oral keratinocytes to produce stem cell popu-
lation; and now all efforts focus on clinical application of this technology that has a lot of 
simply for the event of a lot of strong EVPOME for intraoral graft procedures [75]. As a result 
of oral mucosa keratinocyte area unit simply getable and expand quicker in vitro than skin 
keratinocytes [76], they will be a lot of efficacious to be used in future clinical applications in 
regenerative medicine. This platform technique might produce other potential extraoral uses, 
like repair of facial skin [77], reconstruction of eyelids and nose, or in situ tissue layer substi-
tutes for the urethra and conjunctiva [78].

6. Temporomandibular joint disorders

The temporomandibular joint (TMJ) may be a synovial joint that has for articulator motion 
relative to the os base and distributes the traditional stresses of perform (chewing and speak-
ing) and parafunction (clenching and bruxism). It is usually noted as ginglymoarthrodial joint 
attributable to its slippy performance and hinging. The temporomandibular joint links the 
condyloid process (mandibular bone) to the temporal bone. The cartilage disc is the middle 
of mandibular condyle and the glenoid fossa eminence of the temporal bone and separates 
the joint area into inferior and superior compartments, each of that area unit crammed with 
synovial fluid [79].

Because of the advanced loading patterns that designed tissues can expertise within the TMJ, 
acquisition of complete style parameters from the native tissue is important. Significantly, 
TMJ disc, condyle, and condylar cartilage replacement area unit in nice demand attribut-
able to these tissues’ poor regenerative capability and high rate of involvement in TMD. In 
response, many studies characterizing the properties of those elements are performed [79]. 
Though glenoid fossa and articular eminence are the concern in TMD, they need not be abso-
lutely characterized. Within the following section, structural characteristics of the TMJ tissue 
area unit are summarized. Application of tissue engineering in the treatment of temporoman-
dibular joint defects is rising as a progressive choice to substitute and remove the pathological 
defects automatically in the near future. Historically, basics of regenerative medicine are three 
necessary elements, cells, stimulator factors, and scaffolds. But new technology introduced 
novel methodologies and recommends how to manage TMJ disk and stimulate relevant carti-
lage [80]. This approach includes the scaffold-free and cell-based methodology and cells and 
stimulators that work together. But another approach is to construct a structure and render 
appropriate form of engineered tissues, permitting well-designed structure and simple han-
dling [81]. Another mechanical feature may be appropriate for designed tissue. In the best 
manner the chemistry of scaffold that could be degradation with matrix synthesis. But the 
rate of scaffold degradation depends on the nature of scaffold and might be modified by 
manipulation. For induction of the mass of matrix synthesis, growth factors are added to the 
scaffolds. Today, all engineered tissue materials are used to regenerate condyle and TMJ disc; 
however, similar strategies for regeneration of mandibular fossa are not successful [82].
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7. Conclusion

Unfortunately, limiting factors still existed; most of them could be the differences of lab envi-
ronment and human body such as unknown exact dose of BMP and applicate high dose of 
this material to creation of bony scaffold [83]. On the other hand, unpredictable effects of BMP 
and complications about application of BMP together with oncogenesis. Based on these evi-
dences, Food and Drug Administration (FDA) restricted application of BMP to sinus alveolar 
process augmentation in the United States; other substitute materials in maxillofacial region 
should be considered moral issues even if these materials reveal high level of evidence in 
several experimentations [84].

Another problem like tissue transfer decreases the chance of high-quality and priced experi-
mentations [85], and also Ripamonti et al. study revealed that growth factor and signaling sys-
tems in animal and human are totally different and huge variation between them is observed. 
Unfortunately, there are few clinical trials in the maxillofacial region, but the question is what 
the obstacles are? The main obstacles are how to predict regenerate cells to not become onco-
genesis and produce our wanted cells, how to manage signaling factors to facilitate the proce-
dure of regeneration, and how to create the scaffold that permits cell growth in the best way. 
More clinical trials are needed to remove the obstacles [86].

Tissue engineering is the field that is surrounded by other fields like histology, medical engineer-
ing, and pathology that every progress in these fields could change principles of tissue engineer-
ing. Our goals are simple which are to know how to regenerate human tissues from host cells and 
somehow that these regenerates have desirable function and esthetics. To reach to this goal, we 
have long way, but today engineers progressed biocompatible scaffolds, increase the flexibility to 
3D tissue constructs, and designed complex tissue for the different facial areas. The latest prog-
ress guarantees that tissue engineering is the trustworthy choice for the treatment of maxillofa-
cial defects. In future, the role of tissue engineering will increase and become routine in surgeries.
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