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Abstract

It is important to monitor and assess the physiological strain of individuals working in hot
environments to avoid heat illness and performance degradation. The body core tempera-
ture (Tc) is a reliable indicator of thermal work strain. However, measuring Tc is invasive and
often inconvenient and impractical for real-time monitoring of workers in high heat strain
environments. Seeking a better solution, themain aim of the present studywas to investigate
the Kalman filter method to enable the estimation of heat strain from non-invasive measure-
ments (heart rate (HR) and chest skin temperature (ST)) obtained ‘online’ via wearable body
sensors. In particular, we developed two Kalman filter models. First, an extended Kalman
filter (EFK) was implemented in a cubic state space modelling framework (HR versus Tc)
with a stage-wise, autoregressive exogenous model (incorporating HR and ST) as the time
update model. Under the second model, the online Kalman filter (OFK) approach builds up
the time update equation depending only on the initial value of Tc and the latest value of the
exogenous variables. Both models were trained and validated using data from laboratory-
and outfield-based heat strain profiling studies in which subjects performed a high intensity
military foot march. While both the EKF and OKFmodels provided satisfactory estimates of
Tc, the results showed an overall superior performance of the OKFmodel (overall root mean
square error, RMSE = 0.31�C) compared to the EKF model (RMSE = 0.45�C).
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1. Introduction

Physically demanding tasks, environmental heat and humidity and various clothing require-

ments combine to create heat stress for workers. The associated physiological responses to that

stress, e.g. increased body core temperature (Tc), heart rate (HR) and sweating, are collectively

known as physiological strain. Physiological strain rises with the heat stress, and if not con-

trolled, may diminish the quality and productivity of job performance. Left unchecked, high

levels of heat strain may also result in increased accident rates and an increased risk of heat-

related disorders including unconsciousness and cardiac arrest. Heat casualties are a concern

to the military, first responders and industrial workers [1–3].

High Tc is one of the most reliable predictor of heat-related disorders and the ability to

accurately monitor this variable could help mitigate the risk of heat injuries [4]. However, the

measurement of Tc in an ambulatory setting is not straightforward. Traditional methods of

Tc measurement typically require probes (e.g. rectal and oesophageal) but these are impracti-

cal for an ambulatory setting. While ingestible thermometer capsules (e.g. Philips Respironics,

Murrysville, PA) have been used with success in laboratory and field settings, these instru-

ments are relatively expensive, are unsuitable for individuals with food and drug administra-

tion contraindications, and while still in the stomach or upper intestine can suffer acute

inaccuracies when cold fluids are ingested. This means that in many situations, the continuous

ambulatory monitoring of Tc is still impractical. Alternative Tc surrogate methods, which

seek some non-invasive core temperature correlate (e.g. surface heat flux), can be difficult

to use consistently across different environments and lose precision when predicting for

individuals [5].

Wearable activity trackers have emerged as an increasingly popular method for individuals to

assess their daily physical activity and energy expenditure through sensing of physiological

data, e.g. HR and surface skin temperature (ST) [6]. One means of overcoming Tc measure-

ment problem is to estimate Tc based on other more readily available data obtained from such

body worn sensors. From physiology, both HR and ST are closely related to work and heat

stress. Serial HR measurements contain information about heat production [7] and heat trans-

fer since HR is related to skin perfusion [8]. Similarly, because heat can be conducted from

deep tissues to skin, an increase in Tc can lead to an elevation of ST over time [9]. Previous

studies have also shown the promise of using HR and ST to estimate heat strain [10, 11].

Tapping on the wide availability of physiological measurements from increasingly ubiquitous

wearable activity trackers and the physiological basis of associations between Tc with HR and

ST, we applied the Kalman filter (KF) technique to track individual-specific Tc over time using

time series observations of HR and ST. KF-based methods utilise a prediction-correction

scheme to dynamically track and adjust both the system states (Tc for our application) and its

uncertainty to agree with measurements (HR and ST) as they are made [12]. The system model

expressed as a function of the state variable is used to iterate the distribution of Tc forward in

time to produce a prediction, which is then corrected to both adjust the prediction and collapse

its uncertainty.

The pursuit of reliable KF models to predict Tc is a subject of active investigation. Buller and

co-authors have used the KF technique to estimate Tc by capturing the linear or quadratic
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relationship between time-varying HR and Tc [13–15]. Their results have indicated that 95%

of all predictions fell within �0.48–0.63�C for different study cohorts. However, the develop-

mental datasets contained only a limited amount of data at high Tc (≥39�C) and thus most of

these statistics are based on the lower Tc values, which may limit the model’s ability to reliably

predict hyperthermic body temperatures. Further, the validity of the Tc estimates in human

subjects with differing demographics and working in a predominantly hot and humid climate

was unclear. We implemented an extended Kalman filter (EKF) model using a non-linear

(cubic) state space model (ST versus Tc) with a stage-wise, autoregressive exogenous model

(incorporating HR) as the time update model [11]. We showed that the EKFmodel predicted Tc

more precisely [root mean square error (RMSE) was 0.29�C] compared to KF models that relied

only on HR as an explanatory variable (RMSD = 0.33�C). However, our model was developed

using only laboratory data as developmental data and thus lacked assessment against data

measured in the field settings.

While practical, the aforementioned KF models require previous estimates of Tc for continuous

prediction of this latent variable. One major inherent limitation of such models is that when the

forecast horizon increases, errors in the prediction would accumulate, which would progres-

sively increase the prediction uncertainty even with the Kalman gains. This may give rise to

grave clinical consequences since large prediction errors at high core temperature zones (for an

individual who works continuously) could delay the application of cooling measures on heat

casualties.

The main aim of this paper was to develop and investigate the potential of using online

Kalman filter (OKF) models to improve the estimation of Tc over long time horizons as

encountered during extended duration high intensity physical tasks, e.g. foot march. The

OKF models comprised a time update equation that depends on the initial value of Tc and

time-current value of the measurable exogenous variables such that the value of Tc at any time

point is directly predicted. The second aim was to assess the comparative accuracy of Tc

predictions by the EFK and OFK models vis-à-vis-observed Tc.

2. Methods

2.1. Data

Data for model development were derived from laboratory- and field-based heat strain profil-

ing studies that involved different participants. The study protocols used in all studies were

approved by the Institutional Review Board. All volunteers were briefed on the purpose, risks

and benefits of the study and each gave their written informed consent prior to participation.

2.1.1. Study 1 (laboratory study)

A total of 29 male volunteers [mean (range); age = 30 (26–33years), bodyweight = 68.4 (48.9–

87.6 kg), height = 1.71 (1.61–1.81 m), body mass index (BMI) = 23.7 (17.3–28.0 kg/m2), body

surface area (BSA) = 1.80 (1.52–2.07m2)] performed a military 16 km foot march in a climatic

chamber. During the trials, all participants donned a standard infantry full battle order (FBO),

comprising camouflage uniform, combat boots, body armour, load bearing vest with standard
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accessories, Kevlar helmet, rifle replica and a backpack filled with additional accessories, for

the foot march. All back packs used in the study were packed in the same configuration. The

foot march was composed of three rounds of 4 km followed by one round each of 3 km and

1 km marches on the treadmill at 5.3 km/h and 0% gradient, with each exercise bout separated

by 15 min seated rest. Water was provided ad libitum to all participants. Environmental condi-

tions in the climatic chamber represented those present in hot-humid environments, with a

mean dry bulb temperature of 32�C, relative humidity of 70%, solar radiation of 250 W/m2 and

wind speed of 1.5 m/s. The mean completion time of the full 16 km route march was 255 min.

2.1.2. Study 2 (field study)

A total of 43 male volunteers [age = 24 (18–33 years), bodyweight = 66.4 (49.9–89.3 kg),

height = 1.72 (1.58–1.92 m), BMI = 22.4 (17.7–27.6 kg/m2), BSA = 1.79 (1.54–2.09 m2)], outfitted

in FBO, performed a military 16 km foot march together as a group in the field. The foot march

was conducted in the morning with cloudy skies (mean dry bulb temperature, relative humid-

ity and wind speed during the trials were 27�C, 86% and 1.1 m/s, respectively). The foot march

was composed of three rounds of 4 km followed by one round each of 3 km and 1 km marches

on paved terrain, with each exercise bout separated by 15 min seated rest. All participants had

ad libitum access to fluid from their water containers, which were refilled during each recess

period. The total duration of the trials was approximately 285 min.

2.1.3. Physiological measures

For all heat profiling studies, Tc, HR and ST were recorded every 15 s using a chest belt

physiological monitoring system (Equivital EQ02 LifeMonitor®, Hidalgo Ltd., Cambridge,

UK) with an associated ingestible thermometer capsule (Philips Respironics, Murrysville,

PA). Participants ingested one thermometer capsule at least 8 h prior to the foot march in order

to ensure that the capsule had travelled far enough in the intestinal tract to avoid errors from

ingested fluids. Each participant’s real-time data were checked for accurate reporting of Tc, HR

and ST prior to the trials. Tc data were not used if there were evident signs of fluid signatures

(rapid decrease in Tc to below 32�C and slow recovery to normal body temperature).

For data modelling in the present study, Tc, HR and ST measured using the physiological

monitoring system were reduced to 1 min intervals by taking the median of four 15 s samples

for each 1 min epoch.

2.2. Assessment of model performance

Predictive performance of each model against data from study 1 and study 2 was assessed

separately using in-sample and out-of-sample analyses. Conducting an in-sample analysis

entailed using the model to estimate all observed Tc that formed the database for model

training. Out-of-sample analysis: estimating observed Tc time series that was not part of the

database for model training: was implemented using a four-fold cross-validation.

For cross-validation, the full dataset from study 1 and study 2 was randomly divided into four

groups, each containing 25% of the participants (Tc measurements belonging to the same

participant were kept in the same group). Four different subsets of three groups (i.e. 3 � 25%
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of the studied profiles) were constituted to form four different index groups. Each remaining

25% of the studied profiles constituted a separate test group, generating four independent test

groups. Then, a final model was separately identified using the four different index groups.

To assess the predictive performance of the final model, the parameter estimates from each of

the four subsets (i.e. index group) were used to predict the individual Tc time series in the

respective test group.

Various evaluation criteria were used to assess the model performance. These were RMSE,

Bland-Altman limits of agreement (LoA) [16] and percentage of prediction-data deviation (i.e.

error) that were within �0.1, 0.3 and 0.5�C [percentage of target attainment (PTA)].

The prediction error is computed using:

et, i ¼cTct, i � Tct, i (1)

,where cTct, i denotes the predicted value of Tc at time t for the ith participant and Tct,i is the

measured (based on the thermometer capsule) value of Tc.

RMSE, a measure of the precision in the predicted Tc, is computed using:

RMSE ¼
1

N

1

T

XN

i

XT

t

e2t, i

 !1=2

(2)

where N and T denote the total number of participants in the relevant dataset and the total

number of Tc measurements per participant, respectively.

LoA, which indicates the limits within which 95% of all prediction errors should fall assuming

that the errors are normally distributed, is computed using:

LoA ¼ biasþ 1:96� SD of et, ið Þ (3)

where bias mean errorð Þ ¼ 1
N

1
T

PN
i

PT
t et, i and SD is the standard deviation of the difference

between the predicted and observed Tc.

3. Kalman filter models

In this section, we describe the KF approaches proposed by Buller and his co-authors [13–15],

as well as the EKF [11] and the OKF models developed by our group. In the state-space

models, Tc is not directly observed but considered as a latent state variable, while the other

measurable physiological variables (e.g. HR, ST) are used as observable exogenous variables.

3.1. Kalman filter

The KF algorithm uses observed exogenous variables to estimate the latent or unobservable

variable. The algorithm recursively operates on streams of noisy input variables to produce
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statistically optimal estimate of the state variable in a hypothesised state system. Without loss

of generality, the system can be represented by a state-space model:

Observation : Xt ¼ h Ytð Þ þ vt,vt � N 0;Rð Þ, (4)

Time update : Yt ¼ ϕ0 þ ϕ1Yt�1 þ θ1Xt�1 þ θ2Ut�1 þ et, et � N 0;σ2
� �

, (5)

Transition : Yt ¼ g Yt�1;Ut�1ð Þ þ ωt,ωt � N 0;Qð Þ, (6)

where the functions h(�) and g(�) are differentiable for each state. The transition function is

derived from the observation function and the time update equations. The innovations vt, et
and ωt are assumed to follow a Gaussian distribution with mean zero and constant variance.

The partial derivatives of the Jacobian matrix can be derived as:

Gt ¼
∂g

∂Y

����by t�1,ut�1

(7)

Ht ¼
∂h

∂Y

����by∗

t

: (8)

The KF algorithm consists of two steps: predict and update. At any forecast origin t, we have.

Predict:

by∗

t ¼ g byt�1;ut�1

� �
(9)

P∗

t ¼ GtPt�1G
T
t þQ (10)

Update:

byt ¼ by∗

t þ Kt xt � h by∗

t

� �� �
(11)

Pt ¼ 1� KtHtð ÞP∗

t (12)

where the Kalman Gain Kt ¼ P∗

tH
T
t HtP

∗

tH
T
t þ R

� ��1
.

Buller et al. [13] proposed a KF model to predict Tc by tracking the observed exogenous HR

time series. The KF model is represented as:

Tct ¼ φ0 þ φ1Tct�1 þ et, et � N 0;σ2
1

� �
(13)

HRt ¼ α1 þ α2Tct þ vt,var vtð Þ ¼ R: (14)

To incorporate the nonlinear dependence between Tc and HR, Buller et al. [14, 15] further pro-

posed a quadratic state space model, which was found to provide better fit in real data analysis:

Tct ¼ φ0 þ φ1Tct�1 þ et, et � N 0;σ2
1

� �
(15)

HRt ¼ α1 þ α2Tct þ α3Tc
2
t þ vt,var vtð Þ ¼ R: (16)
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3.2. Extended Kalman filter

Our group extended the aforementioned work by proposing an EKF model in which both HR

and ST are considered in the time update function and the nonlinear dependence is used in the

time update function [11]. Moreover, work-rest regime-switching models were proposed to

describe the different Tc dependency on HR and ST during the march (work) and the recess

(rest) states. By permitting different formulations for the march and the rest time periods, we

were able to harness the a priori knowledge of the work-rest cycles in the developmental data

to enhance Tc estimates. Our EFK model is formulated as follows:

EKF:

March workð Þ : Tct ¼ φ0 þ φ1Tct�1 þ φ2HRt�1 þ φ3STt�1 þ et, et � N 0;σ2
1

� �

HRt ¼ α1 þ α2Tct þ α3Tc
2
t þ α4Tc

3
t þ vt,var vtð Þ ¼ R1

(17)

Recess restð Þ : Tct ¼ ϕ0 þ ϕ1Tct�1 þ ϕ2HRt�1 þ ϕ3STt�1 þ et, et � N 0;σ2
2

� �

HRt ¼ β1 þ β2Tct þ β3Tc
2
t þ β4Tc

3
t þ vt,var vtð Þ ¼ R2

(18)

3.3. Online Kalman filter

The classical KF-type models depend on the previous forecasts of Tc, which may introduce

significant uncertainty in the estimates when the forecast horizon increases and the prediction

errors accumulate. To avoid concatenating forecast errors, we propose using a direct predic-

tive model that relies on the dependence of Tc on its initial value and the latest information of

the observed exogenous variables. We name this direct predictive model the online KF (OKF)

model. Similar to the EFKmodel, the OKFmodel incorporated a regime-switching framework

to better account for the varying dependence of Tc on the observed exogenous variables

during work and rest periods. At each stage, the latest values of Tc, HR and ST are used to

predict Tc:

OKF:

March workð Þ : Tct ¼ φ0t þ φ1tTc0 þ φ2tHRt�1 þ φ3tSTt�1 þ e1t, e1t � N 0;σ2
1t

� �

(19)

Recess restð Þ : Tct ¼ ϕ0t þ ϕ1tTc0 þ ϕ2tHRt�1 þ ϕ3tSTt�1 þ e2t, e2t � N 0;σ2
2t

� �

(20)

The EKF and the OKF models were seeded with the actual starting Tc as measured by the

ingestible thermometer capsule, with the assumption that initial Tc during real-life events

could be either estimated or measured prior to the start of a physical activity.

4. Results

A total of 17,646 Tc-HR-ST data points were available for model development. The mean and

range of Tc were 38.2 and [32.0, 40.1] oC, respectively. Approximately 5% of all Tc measure-

ments were greater than or equal to 39.0�C.
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4.1. Final model

For the sake of illustration, parameter estimates for the final EKF and OKF models trained

using data from Study 1 (Laboratory Study) are reproduced in this paper. The EKF model is

described in the equations below.

March workð Þ : Tct ¼ 0:36630þ 0:98368Tct�1 þ 0:00038HRt�1

þ 0:00586STt�1 þ et, et � N 0; 0:00051ð Þ

HRt ¼ 6793:30385� 673:08458Tct þ 21:01836Tc2t � 0:20822Tc3t þ vt, var vtð Þ ¼ 280:36443

(21)

Recess restð Þ : Tct ¼ 0:32403þ 0:98296Tct�1 þ 0:00060HRt�1

þ 0:00604STt�1 þ et, et � N 0; 0:00126ð Þ

HRt ¼ 380042:09964� 29325:80131Tct þ 753:95823Tc2t � 6:45618Tc3t þ vt,var vtð Þ ¼ 292:55107:

(22)

The transition functions are:

March workð Þ : Tct ¼ 2:96438þ 0:72626Tct�1 þ 0:00804Tc2t�1 � 0:00008Tc3t�1

þ 0:00586STt�1 þ et, et � N 0; 0:00055ð Þ,
(23)

Recess restð Þ : Tct ¼ 228:97647� 16:66092Tct�1 þ 0:45362Tc2t�1

� 0:00388Tc3t�1 þ 0:00604STt�1 þ et, et � N 0; 0:00136ð Þ:
(24)

The equations for the final OKF model are provided below, with different values for the four

model parameters [φ0t,φ1t,φ2t,φ3t] at different time points. The corresponding author may be

contacted for values of these parameters.

March workð Þ : Tct ¼ φ0t þ φ1tTc0 þ φ2tHRt�1 þ φ3tSTt�1 þ e1t, e1t � N 0;σ2
1t

� �

(25)

Recess restð Þ : Tct ¼ ϕ0t þ ϕ1tTc0 þ ϕ2tHRt�1 þ ϕ3tSTt�1 þ e2t, e2t � N 0;σ2
2t

� �

: (26)

4.2. In-sample analysis

Figure 1 and Table 1 summarise the performance of the final EKF model and the final OKF

model on the study 1 data. Figure 2 and Table 2 summarise the performance of the final EKF

model and the final OKF model on the study 2 data.

For both study 1 and study 2, the agreement between the observed and predicted Tc across the

range of Tc was greater in the OKF model compared to the EKF model. For instance, under

study 1, the LoA attained with the OKF model was [�0.49, 0.49]�C while that derived from the

EKF model was [�0.70, 0.74]�C. For Study 2, the scatter plot of the observed versus predicted

Tc departed from the line of identity markedly (observed Tc = 0.42 � predicted Tc + 22.15;

units =
�

C) under the EKF model. By contrast, the scatter plot of the observed Tc versus the

OKF model-predicted Tc for the same set of data was randomly distributed along the line of
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identity. Combined across study 1 and study 2, the OKF model reduced the RMSE by 0.18�C.

In addition, for both study 1 and study 2, the proportions of prediction errors within �0.1, 0.3

and 0.5�C under the OKF model were also higher compared to those under the EKF model. In

particular, the PTA �0.3�C under the OKF model was 75%, which was about 25% higher

compared to the PTA �0.3�C under the EKF model. Collectively, the results indicated that the

overall performance of the OKF model was superior to that of the EKF model based on the

developmental data.

Figure 1. Diagnostic plots for assessment of the EKF (A) and OKF (B) models trained using study 1 data. For each model,

the left side subplot shows the scatter plot of observed Tc versus predicted Tc together with the line of identity (black line)

and the loess smooth plot (gray dashed line); the middle subplot shows the Bland-Altman plot showing bias (solid line)

and �1.96 � SD (dashed line); and the right side subplot shows the histogram of prediction error.

Model RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

EKF 0.37 0.02 � 0.72 24 60 82

OKF 0.25 0.00 � 0.49 40 78 95

Table 1. RMSE, LoA and PTA for the final EKF and OKF models trained using study 1 data.
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4.3. Out-of-sample analysis

Tables 3–6 report the RMSE, LoA and PTA �0.1, 0.3 and 0.5�C obtained in each of the four

index sets under study 1 and study 2 based on the EKF and OKF approaches. Similar to the in-

sample analysis, the comparison between the observed and predicted Tc showed a smaller

RMSE and a greater agreement under the OKF model compared to the EKF model.

When averaged across all the index sets and both study 1 and study 2, the RMSE fell by 0.03�C

and the PTA increased by 13% under the OKF model vis-a-vis the EKF model. In addition, the

overall agreement between the observed and predicted Tc was closer under the OKF model.

Figure 2. Diagnostic plots for assessment of the EKF (A) and OKF (B) models trained using study 2 data. For each model,

the left side subplot shows the scatter plot of observed Tc versus predicted Tc together with the line of identity (black line)

and the loess smooth plot (gray dashed line); the middle subplot shows the Bland–Altman plot showing bias (solid line)

and �1.96 � SD (dashed line); and the right side subplot shows the histogram of prediction error.

Model RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

EKF 0.51 0.07 � 0.99 18 49 70

OKF 0.27 0.00 � 0.54 33 75 92

Table 2. RMSE, LoA and PTA for the final EKF and OKF models trained using study 2 data.
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These trends were also evident at the index set level. Using index set 1 of study 1 dataset as an

example, the RMSE under the EKF model was 0.41�C, which was larger compared to the OKF

model’s RMSE (0.23�C). As a further indication of the superior performance of the OKF model,

Index Set RMSE (�C) LoA (�C) PTA � 0.1 �C (%) PTA � 0.3 �C (%) PTA � 0.5 �C (%)

1 0.53 0.00 � 1.04 27 70 87

2 0.45 0.18 � 0.81 26 61 83

3 0.39 �0.06 � 0.75 31 68 87

4 0.56 �0.06 � 1.09 24 65 84

Overall 0.48 0.01 � 0.92 27 66 85

Table 6. RMSE, LoA and PTA for the four different study 2 index sets derived using the OKF model.

Index Set RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

1 0.23 �0.06 � 0.43 40 80 98

2 0.45 0.08 � 0.87 23 57 75

3 0.31 �0.08 � 0.58 32 69 89

4 0.34 0.05 � 0.65 29 74 91

Overall 0.33 0.00 � 0.63 31 70 88

Table 4. RMSE, LoA and PTA for the four different Study 1 index sets derived using the OKF model.

Index Set RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

1 0.47 �0.02 � 0.92 21 55 76

2 0.47 0.25 � 0.78 17 48 70

3 0.43 �0.08 � 0.83 23 57 80

4 0.58 0.07 � 1.12 12 36 59

Overall 0.49 0.06 � 0.91 18 49 71

Table 5. RMSE, LoA and PTA for the four different study 2 index sets derived using the EKF model.

Index Set RMSE (�C) LoA (�C) PTA � 0.1�C (%) PTA � 0.3�C (%) PTA � 0.5�C (%)

1 0.41 0.19 � 0.71 33 62 72

2 0.42 0.04 � 0.82 18 57 78

3 0.30 0.06 � 0.58 34 69 87

4 0.37 �0.13 � 0.68 20 53 87

Overall 0.38 0.04 � 0.70 27 60 81

Table 3. RMSE, LoA and PTA for the four different study 1 index sets derived using the EKF model.
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the LoA under the OKF model was narrower compared to that under the EKF model [(�0.49,

0.37)
�

C versus (�0.52, 0.9)
�

C].

Figure 3 shows a comparison between the mean observed and EKF/OKF-predicted Tc time

series for study 1 and study 2. The results showed that the mean Tc versus time profile

generated by the OKF model largely matched that of the observed mean Tc time series. By

contrast, mean Tc predictions produced from the EKF model were observed to deviate from

the observed mean Tc and lie outside of the 95% confidence interval of the Tc measurements at

various time periods during the foot march.

Figure 4 compares the mean error time series from the EKF and OKF models in study 1 and

study 2. While the mean errors (prediction bias) were observed to be generally stable and

contained to under approximately �0.1�C across all time instances for the OKF model, those of

the EKF model were comparatively larger in magnitude. In addition, the mean error from the

Figure 3. Comparison between the mean observed and predicted Tc time series for study 1 and study 2. For each study,

the mean observed, EFK model-predicted and OKF model-predicted Tc time series are plotted in continuous dashed and

dotted lines, respectively. The 95% confidence interval for the observed Tc time series is shown as a grey area.

Figure 4. Comparison between the mean error time series generated from the EKF model and the OKF model for study 1

and study 2. For each study, the mean error time series produced by the EFK model and the OKF model are plotted in

dashed and dotted lines, respectively.
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EKF model was also observed to expand in magnitude with increasing time for both the

laboratory and field datasets.

5. Discussion

In this study, the EKF and OKF models were validated against Tc measurements obtained from

volunteers who participated in a high intensity foot march typically performed in the military.

When pooled across study 1 and study 2, approximately 5% of all Tc measurements were equal

to or greater than 39�C. This represented a respectable data volume for model assessment at the

high thermal work zone. Using only measures of HR and ST, our results showed that the

models estimated Tc with a small overall bias of 0.03�C, which was within the individual

physiological variation of �0.25�C [17]. In addition, the overall RMSE of the EKF and OKF

models (0.31 and 0.45�C) were also comparable to those found in other comparisons of differ-

ent measures of human core temperature (rectal probe versus oesophageal probe, rectal probe

versus thermometer capsule and oesophageal probe versus thermometer capsule) [18].

The aforementioned observations notwithstanding, our results clearly indicated differences in

the accuracy of the EKF and OKF approaches in Tc time series prediction during the studied

high intensity foot march in both laboratory and outfield conditions. Classical Kalman filter

strategies fundamentally rely on known model and noise information. Consequently, as

depicted by results from the EKF approach, they cannot compensate for the effect of model-

process mismatch and concatenating noise uncertainty. Our results showed that the OKF

approach can estimate Tc continuously across time with less error than EKF model. Moreover,

prediction bias arising from the OKF model appeared to be more stable in magnitude over

time compared to that of the EKF model. This is significant in the practical settings because a

progressively larger prediction error under a longer forecast horizon may lead to more false

positives or false negatives for high thermal work strain. If the EKF model is deployed for

tracking individualised heat strain, healthy workers with no imminent heat injury risk may be

withdrawn from the physical activity prematurely (reducing work efficiency and processes) or

actual heat casualties may not be identified, with the second scenario (false negatives) a more

problematic one compared to the first (false positives). This makes the OKF method a more

promising approach than the EKF method for predicting Tc based on real-time wearable

sensor data in a continuous manner.

Technologies that reliably assess Tc in a non-invasive manner are expected to play a crucial role

in supporting the development of tools, methods and techniques to enhance productivity,

safety and well-being of military, first responders and industrial workers. During military

training and operations, real-time monitoring of Tc can allow each soldier’s thermo-

physiological state to be assessed, which permits commanders to take effective measures to

intervene and mitigate heat injuries. Monitoring of Tc of every firefighter in the fireground can

provide objective information to either empower the trooper to stay in longer to finish a job or
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warn the trooper to exit the fireground sooner. In addition, the use of physiological monitor-

ing, coupled with work physiology and ergonomics concepts, can foster the creation of inno-

vative workforce management procedures allowing enhancements not only in productivity,

but also in civilian workers’ well-being and safety.

The main limitation of the present study is the usage of only Tc measurements from the

military foot march for modelling. Such developmental data may limit the model’s ability to

reliably calculate Tc of human subjects in non-military tasks, e.g. first responders operating in

uncompensable heat stress environments, civilian construction workers and professional

sports athletes geared with light clothing. In the future, the strong influence of ST on Tc in our

mathematical model will be verified in human subjects operating in clothing systems that

either severely limit heat dissipation or facilitate sweat evaporation under less humid condi-

tions. The current study did not assess the reliability of the model on repeated Tc measures

derived on different trial occasions. Future work will include testing our Kalman filter model’s

reliability and precision on different test occasions based on repeated measures data from the

same subjects. Last, while we showed that the OKF approach can estimate Tc with less error

than the EKF model, appreciable variability in the Tc still remains unexplained by HR and ST.

Future work will include the evaluation of breathing rate to improve Tc estimations since

hyperthermia has been shown to increase ventilation [19].

6. Conclusions

In this paper, we have reported two different Kalman filter approaches for predicting real-time

Tc trajectories of subjects engaged in a high intensity physical activity. In particular, we

introduced the OKF model where the time update equation depends only on the initial value

of Tc and time-current values of the exogenous variables. Both models leverage time-varying

values of ST and HR to predict subject-specific Tc. Overall, Tc predictions from the OKF model

matched the observed Tc better compared to those from the EFK models. Future work includes

testing and qualification of our model against additional heat strain datasets including those

derived from non-foot march tasks, and investigation of the influence of further exogenous

observations, such as body acceleration, on Tc. While this approach may not be a complete

replacement for direct Tc measurement, it offers a simple and promising new method to

estimate subject-specific Tc in a non-invasive manner, and is accurate and practical enough

for real-time monitoring of thermal work strain.
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