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Abstract

This chapter covers a number of kinematic performance indices that are instrumental in 
designing parallel kinematics manipulators. These indices can be used selectively based 
on manipulator requirements and functionality. This would provide the very practical 
tool for designers to approach their needs in a very comprehensive fashion. Nevertheless, 
most applications require a more composite set of requirements that makes optimizing 
performance more challenging. The later part of this chapter will discuss single-objective 
and multi-objectives optimization that could handle certain performance indices or a 
combination of them. A brief description of most common techniques in the literature 
will be provided.

Keywords: parallel kinematics manipulator, kinematic performance measures, 
optimization, workspace, Jacobian-based performance measures, stiffness, accuracy

1. Introduction

Serial kinematics mechanisms (SKMs) have been widely used for different applications. 
Although SKMs have many advantages, such serial mechanisms have many drawbacks 

such as low stiffness, accumulating pose error, low agility, low payload-to-weight ratio, and 
complicated inverse kinematics. Hence, to overcome these drawbacks, parallel kinematics 

mechanisms (PKMs) are used particularly for more demanding tasks such as high-speed 

and high-precision applications. In spite of their many advantages, the PKMs in general also 

have some drawbacks such as smaller workspace, complicated forward kinematics, and sin-

gularity issue. To alleviate these drawbacks, optimization with various techniques is com-

monly conducted to improve their drawbacks while maintaining their advantages. In terms 

of the number of objectives being optimized, the optimization can be either single-objective 
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or multi-objective. In most cases, there are more than one objectives required to be optimized. 

Furthermore, some objectives quite frequently are conflicting each other. For example, most 
PKMs usually require not only larger workspace but also stiffer structure with lower mass. In 
fact, enlarging the workspace usually requires longer links which results in the reduction of 

the stiffness and the increase of mass. In the multi-objective optimization, different objectives 
might be picked based on the priority of the objectives which depends on the application.

Therefore, in this chapter, a comprehensive review of a number of performance indices are 

defined and presented which are relevant for different applications. This is followed by a 
review of the optimization techniques used to design different systems to satisfy certain objec-

tive or multiple objectives. This is extremely important given the nonlinearity of the parallel 
link manipulator systems and the conflicting nature of the different performance indices that 
could be counter intuitive to optimize by trial and error and hence, mathematical schemes 

would be the solution.

2. Performance measures

There are quite many measures or indices to indicate the performance of a robot. Patel and 

Sobh [1] classified them into either local or global, kinematic or dynamic, and intrinsic or 
extrinsic. The local measures are dependent on the robot configuration, whereas the global 
measures evaluate the robot performance across the whole workspace. The global perfor-

mance index (GPI) can be obtained by integrating the local performance index P over the 
workspace W as given by Eq. (1). If the local performance index cannot be expressed analyti-
cally, discrete integration as given by Eq. (2) can be used. In the latter case, the accuracy of 
the integration depends on the number of points n being used for evaluation. If the inclusion 

of large number of points is very computationally expensive, less representative sampling 
points can be used.

  GPI =   
 ∫  

W
   P . dW

 _______ 
 ∫  

W
   dW

    (1)

  GPI =   1 __ n    ∑ 
i=1

  
n

     P  
i
    (2)

The kinematic measures indicate the kinematic behavior of the robot, whereas the dynamic 

measures are related to dynamic properties of the robot. The intrinsic measures indicate the 

inherent characteristics of the robot regardless of its task, whereas the extrinsic measures are 
related to the robot task. The widely used performance measures include workspace, close-

ness or avoidance from singularity, dexterity, manipulability, stiffness, accuracy, repeatabil-
ity, and reliability. Some of them are discussed below. The performance measures should be 

considered during design phase of the robot. Optimal design usually considers one or several 

performance measures as the objective function(s) to be optimized.
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2.1. Workspace

The workspace is the set of points (locations) which can be reached by the end effector. It is 
driven by the mobility of the robot which includes the number and types of its degrees of 

freedom (DOF), and constrained by the length of links, range of the joints, and interference 

between the components. The workspace evaluation usually includes its size (area/volume) 

and shape. The shape can be expressed by, for example, aspect ratio of the regular workspace. 
In general, larger and better-shaped workspace is required. Another way to characterize the 
workspace is by using workspace volume index [2] or footprint ratio [3] which is defined as 
the ratio between the workspace volume and the volume of the machine.

The first thing to determine in order to achieve better workspace before optimizing the geo-

metrical parameters is selecting better topology. For example, many mechanism designs 
include sliders (gliders) in order to get larger workspace, such as in Hexaglide, Linapod, 
Pentaglide, sliding H4, and Triaglide.

The robot workspace is commonly classified into several types as follows [2]:

• Constant orientation workspace (translation workspace) which defines reachable points 
with constant orientation of the moving platform.

• Orientation workspace which defines reachable orientations while the center tool point is 
fixed.

• Reachable workspace (maximal workspace) which defines reachable points with at least 
one orientation of the moving platform.

• Inclusive workspace which is reachable workspace in a given orientation range.

• Dexterous workspace which defines reachable points with any orientation of the moving 
platform.

• Total orientation workspace which is dexterous workspace in a given orientation range.

• Useful workspace (sometimes also called used workspace) which defines part of the work-

space to be used for a specified application. It is usually regular workspace such as rect-
angle, circle, cuboid, sphere, or cylinder.

The useful workspace is usually of the highest interest as it indicates part of the workspace 

which can be really utilized for application. Baek et al. [4] presented a method to find maxi-
mally inscribed rectangle in the workspace of serial kinematics manipulates (SKM) and paral-

lel kinematics manipulators (PKM).

A complete representation of the workspace requires six-dimensional space. However, graph-

ical representation is only possible up to three-dimensional space. For this reason, it is a com-

mon practice to represent the position workspace separately from the orientation workspace. 

Workspace of a planar mechanism can be plotted in a two-dimensional plot, whereas that of a 
spherical or spatial mechanism can be plotted in a three-dimensional plot. The workspace plot 
can be presented in either Cartesian or polar coordinate system in the case of 2D plot and in 
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either Cartesian, cylindrical, or spherical coordinate system in the case of 3D plot. Plotting the 
graphical representation of the workspace is easier in SKMs but is not always easy in PKMs. 

In the latter case, the graphical illustration of the workspace can only be applied for PKMs 
with no more than 3-DOF. For PKMs with more than 3-DOF, n – 3-DOF should be fixed in 
order to be able to graphically illustrate the workspace. Depending on which DOF to be fixed, 
the workspace will be different [2].

In general, there are three main ways to determine and plot the workspace: geometrical 

approach, discretization numerical approach, and non-discretization numerical approach. 

Early works on the workspace determination of PKMs are conducted by geometrical approach. 

Bajpai and Roth [5] investigated the workspace of PKMs and the influence of legs’ length to 
the workspace. Three years later, Gosselin [6] presented his work on the constant-orientation 

workspace determination of 6-DOF PKM followed by Merlet [7] who presented the orienta-

tion workspace determination, and Kim et al. [8] who proposed an algorithm to determine the 

reachable and dexterous workspace. As planar PKMs require different treatments, Gosselin 
and Jean [9] followed by Merlet et al. [10] presented the workspace determination of planar 

PKMs. All of the aforementioned works use geometrical approach.

In the geometrical approach, the true boundaries of a PKM workspace are obtained from 

the intersection of the boundaries of every open-loop chains which compose the PKM. This 

approach is fast and also accurate. To make it easier and much faster, CAD software might 

also be utilized such as the work proposed by Arrouk et al. [11]. One of the main drawbacks 

of this approach is its lack of general applicability since different robot topologies might need 
different techniques to apply this approach. In other words, this approach usually should 
be tailored to the considered robot. Another drawback of this approach is the difficulty to 
include all the constraints.

In the discretization numerical approach, a discretized bounding space which covers all pos-

sible points in the workspace is created and subsequently tested by utilizing the inverse kine-

matics along with the constraints whether it belongs to the workspace or not. This approach is 

sometimes called binary representation since it assigns binary numbers during the evaluation: 

“1” is assigned if it is reachable and therefore plotted and “0” is assigned if it is unreachable 
and therefore not plotted. The main advantage of this approach is its applicability to all types 
of PKMs as well as its intuitiveness. Moreover, this approach can include all the constraints. 

However, the accuracy of this approach depends on the size of the discretization steps. Also, 

small voids inside the workspace cannot be detected unless the discretization steps are small 

enough to capture the voids. A method similar to the discretization approach is Monte Carlo 

method [12, 13] in which a large number of discrete active joint points within the joint range 

are input to the forward kinematics and accordingly the end effector position points are plot-
ted. Further treatment to the Monte Carlo results in order to determine the workspace bound-

aries or compute the workspace volume can be conducted by putting the workspace points in 
discretized bounding space as being used in the discretization approach.

Some recent works using the discretization numerical approach includes Bonev [14] who pro-

posed a new approach to determine the three-dimensional orientation workspace of 6-DOF 

PKMs by using discretization approach. Castelli et al. [15] presented an algorithm based on the 
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discretization approach to determine the workspace, the workspace boundaries, the workspace 

volume, and the workspace shape index of SKMs and PKMs. Dash et al. [16] presented a dis-

cretization method to determine the reachable workspace and detect available voids of PKM.

Beyond the aforementioned two approaches, several works proposed non-discretization numer-

ical methods to determine the workspace of PKMs. Some of the methods are as follows [2, 17]:

• Jacobian rank deficiency method [18] but only practical for the determination of constant 

orientation workspace.

• Numerical continuation method [19, 20] can avoid singularity points but only practical for 

the determination of constant orientation workspace.

• Constrained optimization method [21] which is modified from the numerical continuation 
method.

• Boundary search method [17] which is based on constrained non-linear programming.

• Principle that the velocity vector of the moving platform cannot have a component along 

the normal of the boundary [22], but this method does not work for mechanisms with 

prismatic joints as well as it is difficult to include the mechanical limits and interference 
between links.

• Interval analysis method [23] which can deal with almost any constraints and any number 

of DOF.

Recently, Bohigas et al. [24] presented branch-and-prune technique which can determine all 

the workspace boundary points of general lower-DOF (3-DOF or lower) SKMs and PKMs. This 

technique overcomes the limitation of numerical continuation method. Furthermore, Gao and 
Zhang [25] proposed simplified boundary searching (SBS) method which integrates geometri-
cal approach, discretization method, and inverse kinematics model of a parallel mechanism. 

Saputra et al. [26] proposed swarm optimization approach to determine the workspace of PKM.

2.2. Jacobian matrix

The Jacobian matrix maps the relation between the velocities at the task space (moving plat-
form) and the velocities of the active joints. Furthermore, it also maps the relation between 

the active joint load and the task wrench. It is discussed here because it is related to many 

kinematic performance measures.

Given that the velocity kinematics of the robot is expressed by:

  A  q   .   + B  x   ̇   = 0  (3)

where   x   ̇    is the end effector twist and   q   ̇    is the actuator twist, then A is called forward Jacobian 

matrix, B is inverse Jacobian matrix, and the total Jacobian matrix J is given by:

  J = −  B   −1  A  (4)
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As long as the Jacobian matrix is unit-consistent (homogeneous), it can be directly used in 
the formulation of Jacobian-based performance measures such as Jacobian condition number 

and manipulability. The problem appears when the Jacobian matrix is unit-inconsistent (non-
homogeneous) and accordingly does not have appropriate physical meanings. To address 

this problem, there are several ways found in the literature to normalize inconsistent (non-

homogeneous) Jacobian matrix including the following:

• Using natural length or characteristic length [27–29]

• Using scaling matrix [30, 31]

• Using weighting factor [32]

• By using power transition concept [33]

• Point-based method [34–37]

• General and systematic method [38]

• Homogeneous extended Jacobian matrix [39]

2.3. Singularity

The simplest classification of singularity in PKMs is given by Gosselin and Angeles [40]. By 

considering only the behavior of the active joints and the end-effector, they classified the 
singularity in PKMs into two types which are mathematically determined by the singularity 

of the two Jacobian matrices in the kinematics of the robot given in Eq. (3). The three types of 

singularity are the following:

• Type 1 singularity (also called: direct kinematic singularity, forward kinematic singularity, 

serial singularity, or sub-mobility) occurs when the forward Jacobian matrix A is singular. 
When this kind of singularity occurs, it is not possible to generate some velocities of the 

end-effector. In other words, very small changes in the joint space do not affect the end-ef-
fector pose. In these configurations, the mechanism loses one or more degrees of freedom.

• Type 2 singularity (also called: inverse kinematic singularity, parallel singularity, or over-

mobility) occurs when the inverse Jacobian matrix B is singular. It corresponds to the ap-

pearance of uncontrollable mobility of the end-effector because it is possible to move it 
while the joints are locked. At the corresponding configurations, the mechanism gains one 
or more uncontrollable DOF. In other words, the end-effector can move without the joints 
moving. Equivalently, the stiffness of the PKM is locally lost.

• Type 3 singularity (also called: combined singularity) occurs when both the forward Jaco-

bian matrix A and the inverse Jacobian matrix B are singular. When this kind of singularity 
occurs, the end-effector can move when the joints are locked, and at the same time the end-
effector pose does not change due to very small changes in the joints.

Furthermore, singular configurations can be obtained by observing the Jacobian matrices or 
by geometrical approach.
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A more general discussion on the singularity was delivered by Zlatanov et al. [41] who included 

the passive joints in the singularity evaluation. They classified the singularity into redundant 
input (RI) singularity which corresponds to serial singularity, redundant output (RO) singu-

larity which includes parallel singularity as well as so-called constraint singularity [42], and 

so-called actuator singularity [43] which represents non-zero passive joint velocities while the 

actuators are locked and the end-effector has zero velocities. Moreover, higher order singular-

ity has also been discussed in some works, but it does not give much practical benefit [2].

2.4. Jacobian condition number

From its mathematical expression, the value of Jacobian condition number (or simply condi-
tion number) ranges from 1 to infinity, where infinity indicates singularity and 1 indicates 
isotropy of the Jacobian matrix. Alternatively, it can also be expressed by its inverse value, 
called inverse Jacobian condition number, the value of which ranges from 0 to unity where 0 

indicates singularity and unity indicates isotropy of the Jacobian matrix. When the Jacobian 
matrix is close to singularity, it is called ill-conditioned. On the other hand, the Jacobian matrix 
is called well-conditioned if it is far from singularity. Furthermore, when the Jacobian matrix 
is isotropic, it means that the velocity and force amplification is identical in all directions.

The commonly used norms to define the Jacobian condition number are as follows:

• 2-norm, which is given by the ratio of the maximum and minimum singular values of the 
Jacobian matrix.

• Frobenius norm, which is very advantageous because it is an analytical function of the ro-

bot parameters and hence will not give serious concern if its gradient is evaluated [44], as 

well as it avoids the computation of the singular values.

• Weighted Frobenius norm, which can be rendered to specific context by adjusting its 
weights [45] in addition to all of the mentioned advantages of the Frobenius norm.

The Jacobian condition number is a measure of kinematic dexterity (or simply called dexter-

ity). It indicates closeness to singularity, kinematic uniformity (isotropy), dexterity, and accu-

racy. The kinematic dexterity is defined as the capability of robot to move the end-effector 
in all directions with ease. In fact, the kinematic isotropy of the robot represents its dexter-

ity as more isotropy indicates that the robot can move with the same ease to all directions. 

However, this is still not a complete information about the dexterity as it only informs how 
equal the ease in different directions, but not how easy. It is possible that either the motion 
to all directions requires small effort or the motion to all directions require large effort. 
Manipulability which will be reviewed soon will give more complete information about the 

kinematic dexterity.

Another interpretation of the Jacobian condition number is how large the error in the task 

space will occur due to small error in the joint space. The more ill-conditioned the Jacobian 

matrix, the larger the error in the task space will occur due to small error in the joint space. 
Based on this fact, the Jacobian condition number indicates the accuracy of the manipulator.
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The Jacobian condition number is a local property. It depends on the robot configuration (pos-

ture). To evaluate globally, global condition number (or global condition index, GCI) is used. 
The GCI is obtained by integrating the local condition index (LCI) over the workspace. Since 
the Jacobian condition number is the common indicator of dexterity, GCI is also commonly 
called global dexterity index (GDI). A map showing the values of LCI over the workspace is 
commonly referred to dexterity map.

Since the manipulability is based on the Jacobian matrix, it faces unit inconsistency issue when 
translation and rotation are mixed. In this case, the Jacobian matrix should be homogenized.

2.5. Manipulability

Manipulability measure was first introduced by Yoshikawa [46] as a local measure (local 

manipulability index, LMI) which means that it is dependent on the robot configuration 
(posture) since it is based on Jacobian matrix. It can be evaluated globally by using global 
manipulability measure (GMI) which is the local manipulability measure integrated over the 
workspace. Another measure is uniformity of manipulability which represents how uniform 

the manipulability across the workspace [47]. Similar to the Jacobian matrix, the manipulabil-
ity faces unit inconsistency issue when translation and rotation are mixed. In the same token 
with the Jacobian condition number, the Jacobian matrix should be homogenized in such a 
case.

The manipulability is a measure of the input-output efficiency (the ratio of output perfor-

mance to input effort). In other words, it represents the quality of velocity and force transmis-

sion (amplification). The manipulability provides the information about the velocity and force 
amplification more than the Jacobian matrix condition number. The latter only tells how iso-

tropic the velocity and force amplification but not the magnitude, whereas the earlier informs 
the magnitude in addition to the isotropy of the velocity and force amplification.

Two kinds of manipulability are well known: twist (velocity) manipulability and wrench 

(force) manipulability. The earlier is commonly represented by velocity manipulability 

ellipse/ellipsoid whereas the latter by force manipulability ellipse/ellipsoid. In the velocity 
manipulability ellipsoid, the velocity minimum, velocity maximum, and velocity isotropy 
are represented by the ellipsoid axes length, whereas the manipulability is represented by 
the ellipsoid volume. The major axis of the manipulability ellipsoid indicates the direction 
along which the mechanism can move with the least effort, while the minor axis indicates 
the direction along which the mechanism is stiffest, i.e., the mechanism’s actuators can 
resist forces with minimum effort along this direction. The force manipulability uses dual-
ity relation between velocity and force (between differential kinematics and statics). Beside 
manipulability ellipse/ellipsoid, the manipulability can also be represented by manipula-

bility polytope.

Tanev and Stoyanov [48] have introduced the use of normalized manipulability index which 
is bounded between zero and unity. Doty et al. [49] proposed weighted twist manipulability 

and weighted wrench manipulability. Furthermore, a new manipulability measure for paral-

lel robot was introduced by Hong and Kim [50].

Kinematics8



2.6. Stiffness

Beside the workspace, stiffness or rigidity of a robot structure plays a very important role as 
it affects the accuracy and repeatability of the robot. Stiffness is defined as the ability of the 
robot structure to resist deformation due to wrench. A stiffness matrix relates deformation 
vector to wrench vector. Another term equivalent to the stiffness is compliance (flexibility). If 
a structure has high stiffness, it means that the structure has low compliance. A compliance 
matrix is simply the inverse of the stiffness matrix, and vice versa. The stiffness includes static 
stiffness and dynamic stiffness. For machine tool, high stiffness enables machining with high 
speed and feed while providing good precision, accuracy, and surface finish.

Stiffness of a mechanism depends on the robot topology, geometry, and material of the 
mechanism. The overall stiffness is comprised of the stiffness of the fixed base, the moving 
platform, the joints, and the links. The stiffness of the joints includes that of the active joints 
(actuators) and the passive joints. Many works discussed the influence of the passive joints 
on the robot stiffness. The stiffness of the links is usually defined in axial direction (axial stiff-

ness), transversal direction (bending stiffness), or both of them. To simplify stiffness model, 
rigid body assumption is frequently applied to one or several components of the robot. For 

example, joints can be considered elastic while the links are assumed to be rigid, or vice versa. 
A more realistic model usually consider both of the joints and the links as elastic. In hybrid 

machine tools, many works have proposed the use of parallel mechanism for the spindle 

platform and serial mechanism for the worktable, as the most flexible part of the machine is 
usually the spindle platform. Furthermore, some works have suggested the use of passive 

legs to increase the stiffness such as in Tricept and Georg V.

Stiffness is a local property. It depends on the robot configuration (posture). To evaluate glob-

ally, global stiffness measures are used. Furthermore, stiffness varies with the direction in 
which it is evaluated as well as the direction of the wrench. Therefore, stiffness can be identi-
fied in different directions, either translational directions (translational stiffness) or rotational 
directions (rotational stiffness).

In the literature, compliance which is the inverse of stiffness is sometimes used instead of 
stiffness. Several different expressions of stiffness have been used in the literature, including 
engineering stiffness, generalized stiffness matrix, and Cartesian stiffness matrix. The engi-
neering stiffness is a one-dimensional stiffness expression obtained by evaluating the dis-

placement in the same direction to the applied force [51]. The generalized stiffness matrix, 
according to Quennouelle and Gosselin [52], includes three contributions: stiffness of the 
unconstrained joints, stiffness due to dependent coordinated and internal wrench, and stiff-

ness due to external wrench. In other words, the generalized stiffness matrix is sum of the 
three stiffness components.

The Cartesian stiffness matrix is the most widely used expression of stiffness. Ruggiu [53] 

shows that Cartesian stiffness matrix of a mechanism is the Hessian of its potential energy 
expression. Cartesian stiffness matrix is symmetric and positive definite or positive semi-def-
inite. However, some researchers concluded that the Cartesian stiffness matrix of the elastic 
structure coupling two rigid bodies is asymmetric in general and becomes symmetric if the 
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connection is not subjected to any preloading. Different expressions of Cartesian stiffness 
matrix are mentioned by Klimchik [54] and Quennouelle and Gosselin [52]. The latter authors 
proposed a Cartesian stiffness matrix which can take into account non-zero external loads, 
non-constant Jacobian matrices, stiff passive joints, and additional compliances. Furthermore, 
the Cartesian matrix can be directly related to the generalized stiffness matrix by utilizing the 
Jacobian matrix.

In robots with translational and rotational DOF, the Cartesian stiffness matrix will be unit 
inconsistent. Consequently, evaluation of further stiffness indices such as stiffness condition 
number becomes nonsense. To deal with this problem, several approaches have been pro-

posed including the following:

• Homogenizing the Jacobian matrix (such as using characteristic length) and subsequently 
using the homogenized Jacobian matrix to calculate the stiffness matrix [55, 56].

• Eigenscrew decomposition of the stiffness or compliance matrix [57–60].

• Principal axis decomposition through congruence transformation was proposed by mak-

ing use of the eigenvectors of the translational entry in the stiffness matrix [61].

• Decomposition of the dynamic inertia matrix by transforming variables into dimensionless 
parameters, which can be applied to the stiffness matrix [62, 63].

• Decoupling of the stiffness matrix into translational parts and rotational parts [64–66].

Furthermore, to model the robot stiffness beyond using continuous model which works only 
for simple system, the following three different models are widely used in the literature:

• Jacobian matrix-based model; also called lumped parameter model or virtual joint method 
(VJM) model. A one-dimensional VJM was introduced by Gosselin [67], followed by Anatol 

et al. [68] who introduced multi-dimensional VJM. This model is widely used and pre-

ferred in robotics since it is analytical, and therefore the same expression works for all con-

figurations of the robot and it requires lower computational cost. However, it gives lower 
accuracy but still acceptable. For that reason, this method is good for initial estimates of the 

robot stiffness as well as for design optimization purpose.

• Finite element model (FEM). As opposite of the lumped parameter model, this model dis-

cretizes the mechanism into many elements and therefore can also be called distributed 

model which implies more closeness to the realistic, continuous model. It is widely used 

in structural mechanics due to its high accuracy. However, it requires high computational 

cost. Furthermore, it needs new mesh at every different configuration of the robot which 
makes it not practical. Due to its high accuracy, this model is usually used to verify another 

less accurate model such as VJM model.

• Matrix structural analysis (MSA) model. This model is actually a special case of FEM model 
because it uses one-dimensional finite elements such as beam elements instead of two or 
three dimensional elements such as brick elements. As a result, the computational cost de-

creases. This model gives trade-off between accuracy and computational cost [69].
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After that, modifications and improvements on the aforementioned methods have been con-

ducted, such as follows:

• Online FEM by utilizing MSA using generalized springs [70].

• VJM combined with FEM-based identification technique: high accuracy with low compu-

tational cost [71].

• Virtual spring approach: spring compliance is evaluated based on FEM concept; high ac-

curacy with low computational cost [71, 72].

Evaluation of stiffness can also be conducted by experimental method, i.e., from measure-

ment. In this case, the stiffness is obtained from the relation between measured wrench and 
measured displacement. Another way to evaluate the stiffness is by estimation or identifica-

tion of the stiffness model. Least squares estimation algorithm or other estimation algorithms 
can be utilized in the estimation based on measurement data.

As a performance measure, the robot stiffness is represented in the following different ways 
in the literature:

• Graphical representations including stiffness maps, by which the stiffness distribution can 
be plotted [67, 73], and other graphical representations such as iso-stiffness curves or sur-

faces (global) [2].

• Trace of the stiffness matrix.

• Weighted trace of the stiffness matrix [74].

• (Minimum, average, or maximum) eigenvalues (and eigenvectors) of the stiffness matrix 
[51]. For example, the evaluation of minimum and maximum eigenvalues across the work-

space by Li and Xu [56].

• Mean value of the eigenvalues [70].

• Determinant of stiffness matrix, which is the product of the stiffness matrix eigenvalues), 
and indicates the area/volume of a stiffness ellipse/ellipsoid. It also indicates how far from 
singularity.

• Norm of the stiffness matrix, which can be its Euclidian norm, Frobenius norm, or Cheby-

shev norm [75].

• Center of stiffness or equivalently center of compliance [76].

• Global compliance index which is given by mean value and deviation of generalized com-

pliance matrix [77].

• Virtual work stiffness index which is able to avoid the problem caused by different units of 
translation and orientation

• Collinear stiffness value (CSV) [78].
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2.7. Stiffness condition number

Stiffness condition number is a local measure. It depends on the robot configuration. In simi-
lar token to the Jacobian condition number, the stiffness condition number can take a value 
ranging from 1 to infinity. Alternatively, inverse of the stiffness condition number which takes 
value ranging from 0 to 1 can also be used. Since the stiffness condition number represents 
the isotropy or uniformity of the stiffness of any point in the workspace, stiffness ellipses/
ellipsoids are commonly used as the graphical representation.

Similar to Jacobian condition number, different definition of norms can be used to evaluate 
the stiffness condition number. The commonly used norms are 2-norm, Frobenius norm, and 
weighted Frobenius norm. The considerations in selecting any of them is explained earlier 
when the Jacobian condition number is discussed.

The global stiffness condition number is commonly expressed by global stiffness index (GSI) 
which is usually defined as the inverse of the condition number of the stiffness matrix inte-

grated over the reachable workspace divided by the workspace volume. It depicts the unifor-

mity of stiffness within the whole workspace.

3. Design optimization

In terms of the number of objectives being optimized, optimization can be either single-objec-

tive (also called single-criteria) or multi-objective (also called multi-criteria). The simplest way 

of design optimization is by trial and error in which we pick several values of design param-

eters based on intuition, knowledge, or experience, and compare the corresponding objective 
values. However, this approach is non-systematic as well as does not cover all possible values 

of the design parameters and therefore may not give optimum solutions. In the literature, per-

formance atlas and optimization algorithms are commonly used in the design optimization 

of mechanisms. The performance atlas presents graphically the relation between the design 

parameters (length of the links) and the performance measures. Several performance atlases 

such as atlas of workspace, atlas of GSI, and atlas of LSI have been used in the literature. 
For single-objective optimization, the use of performance atlas is easy and straightforward. 

However, a multi-objective optimization requires inspection of several atlases which might 

give inconvenience, particularly when some objectives are conflicting each other.

Beyond the use of performance atlas, various algorithms for optimization of PKMs and HKMs 

have been utilized. Based on the search principles, those techniques fall into two main categories: 

gradient-based optimization techniques and population-based optimization techniques. The first 
category is a local search algorithm. It is deterministic and can be linear or nonlinear depending 

on the problem. The latter category is stochastic and does not need gradient information. One of 
the most popular population-based techniques is the genetic algorithm which is an evolutionary 

optimization technique and works based on the idea of natural selection or survival of the fittest. 
The genetic algorithm can be implemented for both single-objective and multi-objective optimi-

zation. For the latter implementation, several techniques have been developed such as VEGA, 
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NPGA, NPGA-II, NSGA, NSGA-II, PAES, PESA, PESA-II, SPEA, SPEA-II, SPEA-II+, and many 
others [79–84]. Beyond the genetic algorithm, several global optimization algorithms have also 

been proposed in the literature, such as controlled random search (CRS) [85], differential evolu-

tion (DE) [86, 87], particle swarm optimization (PSO) [88–90], quantum particle swarm optimiza-

tion (QPSO) [91], and artificial neural network (ANN) [74]. The following will be showing more 

details on both types of optimization.

3.1. Single-objective optimization

Although single-objective optimization is straightforward, different algorithms might be 
used to search the optimal solution. For parallel mechanism, if only single-objective is to be 

optimized, then it would be usually the workspace since the main drawback of parallel mech-

anisms is their limited workspace.

Beyond the use of widely used gradient-based optimization algorithms, various algorithms 

have been proposed for single-objective optimization of PKMs. Hosseini et al. [32] used 

genetic algorithm to optimize the dexterous workspace of a Tricept PKM. Kordjazi et al. [92] 

used genetic algorithm combined with fuzzy logic algorithm to optimize the Jacobian matrix 
isotropy of PKM and showed that the result is better than using genetic algorithm alone. 
Arana [93] proposed a methodology to enlarge the workspace of parallel manipulators by 

means of non-singular transitions. Ghao and Zhang [25] proposed the use of particle swarm 

optimization (PSO) to optimize the workspace of 3-DOF spatial parallel mechanism.

3.2. Multi-objective optimization

In most cases, there are more than one objectives required to be optimized. Furthermore, 

some objectives quite frequently are conflicting each other. For example, most PKMs usually 
require not only larger workspace but also stiffer structure with lower mass. In fact, enlarg-

ing the workspace usually requires longer links which results in the reduction of the stiffness 
and the increase of mass. Multi-objective optimization can be bi-objective or many-objective 

optimization. The earlier is simpler than the latter. The inclusion of more than two objectives 
generally requires more computational cost. It also gives more difficulty in the visual rep-

resentation. If more than three objectives are involved, graphical plots can only be done for 

three varying design parameters while the rest should be fixed. An alternative approach to 
reduce the number of objectives in the optimization is by putting performance index thresh-

old value as optimization constraint. However, this approach is only suitable if the need is 

only to satisfy the threshold.

In the multi-objective optimization, different objectives (criteria) might be picked based on the 
priority of the objectives which depends on the application. Two main methods commonly 

used for multi-objective optimization are:

• Scalarization method which is commonly conducted by putting the weighted multiple ob-

jective functions into one composite objective function. While transforming the problem into 

one objective function gives simplicity, the determination of appropriate weights is difficult, 
even for those who are familiar with the problem. This approach can be conducted through 
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gradient-based optimization methods as well as single-objective evolutionary methods 

(such as single-objective genetic algorithm).

• Pareto method which will give non-dominated solutions. This method can be conducted 

through multi-objective evolutionary methods (such as multi-objective genetic algorithm).

Different objectives, depending on the application needs, and various algorithms have been 
proposed for multi-objective optimization of PKMs. Hodgins [94] optimized the workspace, 

the stiffness, and the dexterity of a modified Delta robot by using weighted sum optimization 
method. Kelaiaia et al. [95] optimized the kinematic dexterity as well as the dynamic dexterity 
by using genetic algorithms. Wu [96] optimized the GCI and GDI of a 3RRR spherical parallel 
mechanism, which can be used as orienting device, by using genetic algorithm. Bounab [97] 

optimized the dexterous regular workspace and the stiffness of a delta mechanism by using 
genetic algorithm. Shijun [3] optimized GDI, GSI, and the ratio of the workspace to the work 
volume using genetic algorithm. Gao et al. [74] optimized the stiffness and dexterity by using 
genetic algorithm and artificial neural network. Abbasnejad et al. [91] implemented particle 

swarm optimization (PSO) and quantum particle swarm optimization (QPSO) to optimize the 

workspace and the dexterity as weighted sum objective, and showed that QPSO has faster 
convergence than PSO. Furthermore, Gao and Zhang [98] introduced a comprehensive index 
to integrate four different objectives.

4. Recommendations

It appears that mixed DOFs result in inconsistency of the indices while many PKMs should 
have mixed DOFs to do the required tasks. For this reason, the authors suggest that the intro-

duction of any new index in the future should be able to overcome this issue in a more natu-

ral way so that the physical insights of the index will be as sound and intuitive as possible. 
Furthermore, the authors have not found any published work discussing the optimization of 

a large number of performance measures. While a good number of attempts have been done 
to handle up to three or four objective functions, it will be practically useful yet challenging 

to handle larger number of objective functions. Knowing that the determination of appropri-

ate weights in the scalarization approach is not easy even for two to four objective functions, 

it definitely will be more difficult to put appropriate weights to larger number of objectives 
while it may be no more practical to use the Pareto approach for the larger number of objec-

tives. Therefore, the authors suggest the introduction of new approach or technique to reli-

ably optimize larger number of objective functions.

5. Conclusion

This chapter provided a comprehensive overview of the literature related to a good num-

ber of kinematic performance indices that designers would be interested in using during the 

design of parallel kinematics mechanisms. Kinematic performance indices such as workspace, 
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Jacobian condition number, manipulability, stiffness magnitude, and stiffness condition num-

ber are of a prime interest to designers to optimize parallel kinematic mechanism designs. 

However, many of these indices are conflicting such as the increase in workspace size could 
lead to a decrease in stiffness and/or would lead to reduced speed. Therefore, using optimiza-

tion techniques is the solution to accommodate such conflicting requirements by providing 
appropriate weights for the different objectives to reflect the designer’s interests and priori-
ties. Nevertheless, devising the proper objective function requires extensive experience and 
insight into the problem. The proper combination of objectives with the suitable weights will 

highly impact the design parameters results and hence should be chosen carefully. In sum-

mary, this paper attempted to provide comprehensive overview of what is needed by parallel 
kinematic mechanism designer to optimize their design and mechanism performance.
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