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Abstract

Hydrogen peroxide (H
2
O

2
) and singlet oxygen (1O

2
) are important reactive oxygen spe-

cies (ROS) for biological and medicinal fields. Oxidation processes of chemical materi-
als by molecular oxygen are important H

2
O

2
 source, whereas photochemical reaction is 

important for 1O
2
 production. Reactivity and biomolecule damage by these ROS depend 

on the surrounding conditions and targeting molecules. In this chapter, production 
mechanisms of H

2
O

2
 and 1O

2
, biomolecule oxidation by these ROS, their detection meth-

ods, and production control of 1O
2
 are briefly reviewed.

Keywords: hydrogen peroxide, singlet oxygen, DNA damage, protein damage, 
photooxidation

1. Introduction

Biomolecule damage, for example, oxidation of DNA and/or protein, by reactive oxygen spe-

cies (ROS) is closely related to carcinogenicity [1–3] and/or toxicity [4–6]. Furthermore, oxida-

tive damage to unwanted tissue can be applied to the treatment of disease including cancer 
treatment [7–9], and similar reaction is applied to sterilization [10–14]. Hydrogen peroxide 
(H

2
O

2
) is a relatively long-lived ROS compared with a short-lived ROS such as superoxide 

anion radicals (O
2
•−) [15]. One of the most important producing mechanisms of H

2
O

2
 is a dis-

mutation of O
2
•−, which is easily formed though oxidation of various materials by dioxygen 

molecule (O
2
). Various carcinogenic chemical compounds produce H

2
O

2
 through their oxida-

tion processes. Relationship among molecular oxygen and ROS is shown in Figure 1. Oxygen 
molecules are easily reduced by surrounding materials, and various ROS and the intermedi-
ates are formed (Figure 1A). In the case of photosensitized reaction, excited states of oxygen 
molecules are produced (Figure 1B). Singlet oxygen (1O

2
), which is also an important ROS, can 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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be easily generated via photosensitized reaction [16–18]. The 1∑
g

+ state (1O
2
(1∑

g
+)) is mainly pro-

duced through the excitation energy transfer from the excited state, in general triplet excited 
(T

1
) state, of photosensitizer [16–18]. The 1O

2
(1∑

g
+) has higher energy, 1.6 eV, corresponding to 

the ground state of oxygen molecule (3O
2
). The lifetime of 1O

2
(1∑

g
+) is several picoseconds, and 

1O
2
(1∑

g
+) is rapidly converted to the 1Δ

g
 state (1O

2
(1Δ

g
)) [16–18]. Because the lifetime of 1O

2
(1Δ

g
) 

(several microseconds) is markedly longer than that of 1O
2
(1∑

g
+), 1O

2
(1Δ

g
) is a more important 

ROS. After that, 1O
2
 indicates 1O

2
(1Δ

g
) without explanation in this chapter. Visible light, other 

than ultraviolet radiation, has sufficient energy to produce 1O
2
 from the ground state of oxy-

gen molecule. Therefore, 1O
2
 production is an important mechanism of phototoxicity and/or 

photo-carcinogenicity under strong light illumination with phototoxic materials. The purpose 
of this chapter is a review of the ROS-mediated biomolecule damage and the related topics.

2. Hydrogen peroxide

Hydrogen peroxide itself is not strongly ROS. However, other ROS including hydroxyl radi-
cals (•OH) are produced from H

2
O

2
. In general, H

2
O

2
 is produced from the dismutation of 

O
2
•−, and, in vivo, production of H

2
O

2
 and O

2
•− occurs in mitochondria [19]. In this section, 

H
2
O

2
 formation from compounds, specifically artificial materials, is introduced.

2.1. Hydrogen peroxide formation through oxidation of chemical compounds

One of the most important processes of H
2
O

2
 production is a dismutation of O

2
•−. Various chemical 

compounds or metals can be oxidized by oxygen molecules. In the case of a simple electron trans-

fer-mediated oxidation, O
2
•− is produced by the electron extraction from chemical compounds or 

metals. The lifetime of O
2
•− in aqueous solution is about several milliseconds [15]. The produced 

O
2
•− in aqueous media is converted to H

2
O

2
 through the dismutation by proton (H+) as follows:

Figure 1. Relationship among ground-state oxygen molecule (3O
2
) and ROS (A) and the energy levels of oxygen molecule 

(B). HOMO and SOMO are the abbreviations of highest occupied molecular orbital and semi-occupied molecular orbital, 
respectively. The “arrows” in (B) indicate the electron spin.
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    2O  
2
     •−  +  2H   +  →  H  

2
   O  

2
   +  O  

2
    (1)

For example, hydroquinone, which is one of the metabolites of benzene, can produce H
2
O

2
 

through the autoxidation process (Figure 2) [20]. This process is markedly enhanced by the 
presence of metal ions, specifically Cu2+ ions [20]. In the presence of sacrificial reductants, for 
example, nicotinamide adenine dinucleotide (NADH), the oxidized form of hydroquinone, 
p-benzoquinone, is reduced to the parent hydroquinone. Consequently, the redox cycle is 
formed, leading to the production of H

2
O

2
 abundantly. It has been also reported that hydra-

zine analogues produce H
2
O

2
 through their autoxidation processes (Figure 3) [21–23].

2.2. Hydrogen peroxide production through photochemical processes

Photochemical processes also contribute to the formation of H
2
O

2
. Because the reorganization 

energy of the reduction of small molecule, such as O
2
 molecules, through electron transfer 

becomes large due to the Marcus theory [24, 25], the O
2
•− production through photoinduced 

electron transfer is energetically difficult [26, 27]. However, ultraviolet radiation to reductive 
photosensitizer, such as NADH (Figure 4), can produce O

2
•− as follows [28]:

 

Hydroquinone

(diol-form)

O2
•- (or M(n-1)+)

O2 (or Mn+)

O
2

O
2

•-

M(n-1)+ +  O2 Mn+ + O2
•-

Semi-quinone radical Benzoquinone

(oxidized form)

Figure 2. Autoxidation process of hydroquinone and ROS production.
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  NADH + hν →  NADH   ∗   (2)

   NADH   ∗  +  O  
2
   →  NAD   •  +  H   +  +   O  

2
     •−   (3)

where NADH* is the photoexcited state of NADH and NAD• is the radical form. NAD• 

undergoes further oxidation by oxygen molecules to NAD+, the final oxidized product. The 
formed O

2
•− is also converted to H

2
O

2
 through the dismutation process of Eq. (1).

Photocatalytic reaction can also produce H
2
O

2
 [29–34]. For example, the surface of titanium 

dioxide (TiO
2
) can reduce relatively oxidative molecules under ultraviolet A (UVA; wave-

length, 315–400 nm) irradiation [29–32]. Two crystalline forms of TiO
2
, anatase and rutile with 

band gap energies of 3.26 and 3.06 eV, respectively, are well-known semiconducting photo-

catalyst [29–32]. The adsorbed oxygen molecules on the TiO
2
 surface is reduced to O

2
•− by the 

electron of conduction band, which is excited from the valence band by UVA energy (Figure 5). 

analogues

Hydrazine 

•-O2O2

Mn+ M(n-1)+ O2
•-O2

R• +  N2

H+ H+ H+

O2
•-O2

R: i.e. H+, CH3, C6H5 , CONH2

Figure 3. Autoxidation process of hydrazine analogues and ROS production.

Figure 4. Structure of NADH.
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Similarly to the abovementioned reaction, O
2
•− is also converted to H

2
O

2
 through the dismu-

tation process of Eq. (1). In addition, oxidation reaction of TiO
2
 photocatalyst also produces 

H
2
O

2
. The formed hole (h+) in the valence band by UVA irradiation oxidizes water molecules 

on the surface of TiO
2
 to •OH. The reaction of two •OH species can produce H

2
O

2
 as follows:

   2   • OH →  H  
2
   O  

2
    (4)

Although TiO
2
 particles are barely incorporated into cell nucleus [35], cellular DNA damage 

was reported [36–39]. Because H
2
O

2
 has a transparency for nuclear membrane, the cellular 

DNA damage can be explained by H
2
O

2
-mediated mechanism [32]. The activation of H

2
O

2
 

and DNA damage by H
2
O

2
 are described later.

2.3. Secondary formation of hydrogen peroxide through photocatalytic reaction

Photocatalytic reaction can produce oxidized intermediates other than final oxidized prod-

ucts of chemical compounds. For example, photooxidized amino acids [40] and sugars [41] 

by TiO
2
 photocatalyst produce H

2
O

2
 through secondary oxidation reaction in the presence of 

metal ions (Figure 6). Titanium dioxide can photocatalyze the production of •OH, a strong 

oxidant, through the decomposition of H
2
O. The formed h+ in the valence band by UVA irra-

diation can also oxidize various materials adsorbed on TiO
2
 surface. Hydroxyl radicals and 

h+ can oxidize these biomolecules, resulting in the production of oxidized intermediates. The 
formation of partly oxidized molecules leads to the secondary H

2
O

2
 production in the pres-

ence of metal ions. This H
2
O

2
 production process may cause a remote H

2
O

2
 generation in cells.

It has been reported that the photooxidized phenylalanine and tyrosine by TiO
2
 produce H

2
O

2
 

in the presence of copper(II) ion [40]. Since TiO
2
 photocatalysis induces a hydroxylation of 

Figure 5. Photocatalytic production of ROS by TiO
2
.
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NH2 O

CH2 CH C OH

O2 O2
•-Cu+Cu2+

•OH

R = 

H+ H+

Figure 7. Tyrosine oxidation by TiO
2
 photocatalysis and the copper ion mediated ROS production. Phenylalanine is also 

oxidized by the similar processes, leading to the secondary ROS production.

aromatic compounds [42], the formation of benzenediol derivatives from these aromatic amino 
acids is possible (Figure 7). As mentioned above, hydroquinone can produce H

2
O

2
 through the 

autoxidation (Figure 2) [20, 43]. The amount of H
2
O

2
 production from the photooxidized phe-

nylalanine is significantly larger than that from tyrosine [40]. The difference of their autoxida-

tion rates should affect the H
2
O

2
 production. It has been reported that the autoxidation rate of 

1,4-form of benzenediol is markedly faster than that of 1,2-form [20]. Phenylalanine can be oxi-
dized into various types of benzenediol, including the 1,4-form; however, tyrosine cannot be 

converted to the 1,4-form. Consequently, phenylalanine can produce relatively large amount 
of secondary H

2
O

2
 through the photocatalysis of TiO

2
. Furthermore, other amino acids can be 

also oxidized by TiO
2
 photocatalyst and induce the secondary ROS production. Specifically, 

photocatalyzed cysteine by anatase form produces significantly large amount of secondary 
H

2
O

2
. In the case of sugar oxidation by TiO

2
 photocatalyst, the activity of secondary H

2
O

2
 pro-

duction by anatase form TiO
2
 is larger than that of rutile form [41].

Figure 6. The secondary production of ROS by TiO
2
 photocatalysis.
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3. DNA damage by hydrogen peroxide

Hydrogen peroxide itself barely induces DNA damage; however, it can oxidize nucleo-

bases and cleave sugar-phosphate backbone in the presence of metal ions. In this section, the 
sequence-specific DNA damage by the H

2
O

2
-derived ROS and its biological effect are briefly 

introduced.

3.1. Sequence-specific DNA damage by hydrogen peroxide

Hydrogen peroxide causes alkali-labile products at guanine, thymine, and cytosine in the 
presence of cupper ion (Cu2+) [44]. Since copper ions are associated with chromatin [45] to 

form stable complexes with DNA [46–49], Cu2+ can play an important role in the activation of 
H

2
O

2
 in cell nucleus. Polyacrylamide gel electrophoresis studies demonstrated that H

2
O

2
 itself 

cannot cleave and oxidize DNA [44]. However, the incubation of DNA with H
2
O

2
 and Cu2+ 

induce base modifications at guanine, thymine, and cytosine residues. These base modifica-

tion sites can be cleaved by hot piperidine treatment [20–22, 44]. The derived reactive species 
from H

2
O

2
, for example, copper-peroxyl species (Cu(I)-OOH), are responsible for this DNA 

damage:

   H  
2
   O  

2
   +  Cu   +  → Cu (I)  − OOH +  H   +   (5)

Cu(I)-OOH is not strongly reactive compared with •OH; however, its lifetime is rela-

tively long to induce DNA base modification. Single-stranded DNA is easier oxidized by 
these ROS. Therefore, DNA damage by H

2
O

2
 is enhanced by denaturation of DNA [44]. 

Abovementioned chemical compounds, benzenediol [20] and hydrazine [21], induce these 
base modification in the presence of Cu2+. In the case of relatively low concentration of TiO

2
 

particles, similar sequence-specific DNA damage was observed after UVA irradiation with 
Cu2+ [32]. DNA damage mediated by H

2
O

2
 is effectively inhibited by catalase [50], which 

is an enzyme to decompose H
2
O

2
 to H

2
O and O

2
. Chelating molecules for copper ions also 

effectively suppress this DNA damage. In addition, 3-methylthiopropanal (methional) is an 
effective inhibitor of Cu(I)-OOH [20, 32, 44]. Cu(I)-OOH cannot be scavenged by free •OH 

scavengers, such as sugars and alcohols [20, 22, 32, 44]. In the presence of Cu2+, UVA-irradiated 
NADH also induces DNA damage by the similar process through H

2
O

2
 production [28]. In 

general, photosensitized DNA damage could be explained by 1O
2
 formation mechanism or 

electron transfer-mediated oxidation [51]. The H
2
O

2
-mediated DNA is a rare case in the pho-

tochemical DNA damage.

Hydrogen peroxide and Cu2+ can induce tandem lesion at guanine and thymine residues [32]. 
Clustered DNA lesions including tandem damage have important mutagenic potential [52–

54]. Furthermore, the repair of such DNA damage is more difficult than single-base damage 
[55–60]. Therefore, oxidative DNA damage through H

2
O

2
 production may play an important 

role in carcinogenesis.
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In the presence of iron ions (Fe2+), •OH is formed as follows:

   H  
2
   O  

2
   +  Fe   2+  →      • OH +  OH   −  +  Fe   3+   (6)

Formed •OH induces base oxidation with non-sequence specificity, because •OH can oxidize 

all nucleobases [44, 61]. In addition, direct cleavage of sugar-phosphate backbone is caused 
by •OH. Hydroxyl radical-mediated DNA damage was reported by the case of ascorbate 
with Cu2+ [62]. As mentioned above, in the case of TiO

2
 photocatalysis, •OH is directly pro-

duced from water decomposition [29–32], and DNA damage without sequence specificity 
can be induced in the absence of metal ions [32]. Relatively high concentration of anatase 
form of TiO

2
 induce non-sequence-specific DNA damage under UVA irradiation without 

metal ions through •OH production [32]. DNA damage by •OH is effectively inhibited by 
sugars and alcohols [32, 44]. However, in the presence of metal ions, the addition of •OH 

scavengers rather enhances DNA damage through the secondary generation of H
2
O

2
 from 

the oxidized products of scavengers themselves by •OH [32, 41]. Base modifications can 
cause carcinogenesis. Because H

2
O

2
 can penetrate into nuclear membrane, DNA modifica-

tion can be induced by H
2
O

2
 originally formed in the sphere of outer cell nucleus through 

the assistance of metal ions.

3.2. Mutagenicity and cytotoxicity caused by hydrogen peroxide production

As oxidized products of nucleobases by the H
2
O

2
-mediated mechanism, 8-oxo-7,8-dihydro-

guanine (8-oxo-G; oxidized guanine, Figure 8) [63–65]; 5,6-dihydroxy-5,6-dihydrothymine 
(OH-thy; oxidized thymine, Figure 9) [58, 66, 67]; 5-hydroxyuracil (OH-Ura; oxidized cyto-

sine, Figure 9) [67, 68]; 5-hydroxyhydantoin (OH-Hyd; oxidized cytosine, Figure 9) [68], and 

5-hydroxycytosine (OH-Cys; oxidized cytosine, Figure 9) [67] are well-known compounds. 

NH

NN

N

NH2

R

NH

NN

N

O O

NH2

R

HOO

NH

NN

N

O

NH2

R

HO
NH

NN

H
N

O

NH2

R

O

1O2

8-oxo-G

Guanine

R: 2’-deoxyribose

Figure 8. Guanine oxidation by ROS. This scheme is an example of the guanine oxidation by 1O
2
 to 8-oxo-G. Other H

2
O

2
-

derived ROS, •OH and Cu(I))-OOH, also produce 8-oxo-G through the oxidation of guanine.
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In a certain case, oxidative DNA damage induces cell death [69, 70]. As a minor oxidized 
product of guanine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-G, Figure 10) can 

be formed by H
2
O

2
 and metal ions [63, 71]. Mutagenicity of Fapy-G is low [72]; however, a 

related product, methyl-Fapy-G formation, is a lethal lesion [73]. Furthermore, a theoretical 
study suggested that the formation of Fapy-G contributes to mutation [74]. Cytotoxicity of 
TiO

2
 photocatalyst can be explained by oxidative damage of membrane protein [75–77]. In 

addition, cellular DNA damage was also reported [78, 79]. Because H
2
O

2
 has a transparency 

for nuclear membrane, the cellular DNA damage by TiO
2
 photocatalysis can be explained 

by H
2
O

2
 production. The formed H

2
O

2
 through TiO

2
 photocatalysis is incorporated into cell 

nucleus and activated by endogenous metal ions, leading to oxidative DNA damage [32]. 
Examples of the mutations caused by the oxidized guanines are described in Section 4.

NH

N

O

O

R

R

R: 2’-deoxyribose

Thymine

Cytosine OH-Ura OH-HydOH-Cys

N

N

OH

OH

R

HO

N

H
N

O

R

HO

O

N

N O

R

HO

OH-Thy (Thymine glycol)

NH2

1O2

1O2

Figure 9. Oxidized products of thymine and cytosine by 1O
2
.

N

Figure 10. Structure of Fapy-G.
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4. Singlet oxygen

In general, the production mechanism of 1O
2
 involves photochemical processes. Various pho-

tooxidation processes can be explained by 1O
2
 production. In this section, the production 

mechanism of 1O
2
, its application, and biomolecule oxidation by 1O

2
 are briefly introduced.

4.1. General property of singlet oxygen

Singlet oxygen is an excited state of 3O
2
, ground triplet state of molecular oxygen [16–18]. 

In general, singlet excited (S
1
) states of O

2
 are 1Δ

g
 and 1∑

g
+; they have excitation energy of 

0.98 eV and 1.63 eV above 3O
2
, respectively [16–18]. Because of the short lifetime of 1∑

g
+ (a few 

picoseconds), 1Δ
g
, the lower S

1
 state of O

2
, plays an important role in various oxidation reac-

tions. In this chapter, 1Δ
g
 is denoted throughout as 1O

2
. The highest occupied molecular orbital 

(HOMO) of 3O
2
 is a semi-occupied molecular orbital (SOMO), whereas this molecular orbital 

of 1O
2
 becomes the lowest unoccupied molecular orbital (LUMO) (Figure 1B). The oxidative 

activity of 1O
2
 is stronger than that of 3O

2
 due to the vacant molecular orbital. Commonly, 1O

2
 

is produced through photosensitized reaction. Since the excitation energy of 1O
2
 is relatively 

small, which corresponds to the energy of photon with the wavelength of 1270 nm (smaller 
than that of visible light photon), photoexcited states of various dyes can sensitize the genera-

tion of 1O
2
 under visible light or ultraviolet irradiation. Various molecules become photosen-

sitizer (PST) to generate 1O
2
. In general, the photosensitized reaction of 1O

2
 generation is an 

electron exchange energy transfer (the Dexter mechanism) [80]. These processes are presented 
as follows:

  PST + hν →  PST   ∗  ( S  
1
  )   (7)

   PST   ∗  ( S  
1
  )  → PST + fluorescence  (8)

   PST   ∗  ( S  
1
  )  →  PST   ∗  ( T  

1
  )   (9)

   PST   ∗  ( T  
1
  )  +      3   O  

2
   → PST +      1   O  

2
    (10)

where PST*(S
1
) and PST*(T

1
) are the S

1
 and T

1
 states of PST, respectively. In general, since the 

lifetime of PST*(T
1
) is markedly longer (several microseconds) than that of PST*(S

1
) (several 

nanoseconds), 1O
2
 is produced by PST*(T

1
). However, the formation of 1O

2
 by PST*(S

1
) is not 

impossible. The lifetime of 1O
2
 (τΔ) is relatively long (Table 1). Generated 1O

2
 can oxidize vari-

ous materials, including biomolecules, within its long lifetime. The τΔ strongly depends on the 
surroundings, and a solvent deuterium effect on the reactivity of 1O

2
 is significant (Table 1). 

For example, the τΔ in deuterium oxide (D
2
O) is markedly longer than that in H

2
O, and the 

biomolecule oxidation by 1O
2
 is significantly enhanced in D

2
O compared with that in H

2
O.
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4.2. Photodynamic therapy

One of the most important medicinal applications of 1O
2
 is photodynamic therapy (PDT) 

(Figure 11) [7–9]. Photodynamic therapy is a promising and less invasive treatment for cancer 
[7–9] and photosterilization [10–14]. For cancer PDT, in general, porphyrins are used for pho-

tosensitizers, for example, porfimer sodium [87] and talaporfin sodium [88]. Photosterilization, 
antimicrobial PDT, is also carried out using dyes, for example, methylene blue (MB) [11, 14, 89]. 
The important mechanism of PDT processes including photosterilization is oxidation of biomole-

cules of cancer cell or bacteria through 1O
2
 production under visible light irradiation. Visible light, 

especially longer wavelength visible light (wavelength > 650 nm), is less harmful for the human 
body and can penetrate into the tissue deeply. As mentioned above, 1O

2
 can be generated by lon-

ger wavelength visible light. Administered photosensitizers, porphyrins, or other dyes produce 
1O

2
 through energy transfer to oxygen molecules with relatively large quantum yield (ΦΔ).

Solvent Photosensitizer τΔ/μs Reference

Water (H
2
O) Cationic porphyrin 3.5 [81]

Rose bengal 3.77 [82]

Phosphate buffer (pH 7.6) P(V) porphyrin 3.5 [83]

Ethanol (C
2
H

5
OH) Rose bengal 15.4 [82]

Ethanol/H
2
O (1/1) Rose bengal 6.37 [82]

Water (D
2
O) Berberine with DNA 72 [84]

Methylene blue 32 [85]

Phenalenone 64.4 [86]

Tris(bipyridine)Ru(II) 59.47 [82]

Chloroform (CHCl
3
) Phenalenone 232 [86]

Tetrachloromethane (CCl
4
) Phenalenone 34,000 [86]

Table 1. Solvent dependence of the lifetime of singlet oxygen.

Tumor

Optical fiber

Photosensitizer

(Porphyrin derivatives)

Elimination of cancer cells 

through 

apoptosis or necrosis

Figure 11. Scheme of the general procedure of PDT.
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4.3. Photocatalytic singlet oxygen generation

As mentioned above, TiO
2
 photocatalyzes the generation of various ROS. Singlet oxygen can 

be also produced through the photocatalysis of TiO
2
 [31, 90–96]. In general, photogenerated 

electron in the conduction band reduces the surface-adsorbed oxygen molecules to O
2
•−. 

Through the reoxidation of O
2
•−, 1O

2
 is formed. The possible reactions of photocatalytic 1O

2
 

productions are as follows:

    O  
2
     •−  +  h   +  →      1  O  

2
    (11)

and

    O  
2
     •−  +      • OH →      1  O  

2
   +  OH   −   (12)

The photogenerated h+ in the valence band and •OH can act as the oxidants to produce 1O
2
. 

In addition, hydroperoxyl radical (•OOH) generated from O
2
•− and H+ also produces 1O

2
 as 

follows:

    O  
2
     •−  +      • OOH +  H   +  →      1  O  

2
   +  H  

2
   O  

2
    (13)

The reported values of ΦΔ are depending on the experimental condition, for example, around 
0.2 (0.2, Degussa P25 in water [92], and 0.22, rutile particle in chloroform [95]). Other cases 
reported relatively small values, for example, 0.003 [96] and 0.02 [94]. In the cases of airborne 
1O

2
, quite small value (10−8–10−9) was reported [93]. It has been reported that the τΔ value of 1O

2
 

produced by Degussa P25 aqueous suspension is 5 μs [92]. Other photocatalytic materials, for 
example, zinc oxide (ZnO) can photocatalyze 1O

2
 production through the similar reaction of 

TiO
2
 photocatalysis [97]. Recently, carbon quantum dots, which have been paid attention as 

interesting nano-materials, also photocatalyze 1O
2
 production [33].

Singlet oxygen is an important ROS for PDT. Other than 1O
2
, H

2
O

2
 production can be also 

applied for PDT mechanism. Photocatalytic materials can produce these ROS under photoir-

radiation. Therefore, application of photocatalysts, specifically TiO
2
 nanoparticles, for PDT 

has been also studied [29, 98–101]. To realize the TiO
2
-utilized PDT, direct administration of 

small TiO
2
 powders into tumor assisted with an optical fiber was proposed [29]. In addition, 

it was reported that oral-administrated TiO
2
 nanoparticles are transported into the tumor 

of nude mouse skin transplanted from a human prostate cancer cell line [98]. As mentioned 
above, in general, TiO

2
 nanoparticles can be excited by UVA irradiation. To utilize visible light 

for TiO
2
 excitation, upconversion technique was also studied [100].

4.4. DNA oxidation by 1O
2
 and mutation

Singlet oxygen can oxidize only guanines without sequence specificity; however, it does not 
have the ability to induce the oxidation of other nucleobases or to cleave the sugar-phosphate 
backbone [44]. The main oxidized product of guanine by 1O

2
 is 8-oxo-G (Figure 8) [63–65]. 

Guanines undergo the Diels-Alder reaction by photoproduced 1O
2
, leading to the formation 
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of [4 + 2] cycloaddition product with the imidazole ring to produce an endoperoxide. Through 
the subsequent proton transfer, this peroxide is converted to 8-hydroperoxyguanine [102, 

103], which becomes 8-hydroxyguanine [63]. The keto-enol tautomerism produces 8-oxo-G 
from 8-hydroxyguanine. Because single-stranded DNA is easily oxidized by ROS, 8-oxo-G 
formation by 1O

2
 is increased by DNA denaturation [44]. The 8-oxo-G formation causes DNA 

misreplication (Figure 12), which can lead to mutations such as G-C:T-A transversion caused 
by the stable base-pair formation between 8-oxo-G and adenine [104, 105]. Since 8-oxo-G is 
more easily oxidized than guanine, 8-oxo-G undergoes further reaction, leading to the forma-

tion of imidazolone and oxazolone (Figure 13) [63, 106, 107]. Imidazolone forms more stable 
base pair with guanine than cytosine [106, 107]. Therefore, guanine oxidation by 1O

2
 may 

cause G-C:C-G transversion [108, 109] through imidazolone formation, a further oxidized 
product of 8-oxo-G. Indeed, it has been reported that UVA can induce these mutations [110].

4.5. Protein oxidation by 1O
2

Protein oxidation is also induced by 1O
2
. The following amino acids, tryptophan, tyrosine, 

cysteine, histidine, and methionine, can be oxidized by 1O
2
 [111]. In the case of tryptophan 

oxidation by 1O
2
, N-formylkynurenine (Figure 14) is a major oxidized product [112, 113]. 

The reported reaction rate coefficient between tryptophan and 1O
2
 is 3.0 × 107 s−1 M−1 [114]. 

Oxidation of tryptophan residue in a certain protein can be examined with a fluorometer 
[115]. For example, human serum albumin (HSA) has one tryptophan residue, and the intrin-

sic fluorescence of tryptophan at around 350 nm can be diminished by the oxidative dam-

age. Porphyrin phosphorus(V) complexes (Figure 15), of which the ΦΔ is larger than 0.5, can 
induce oxidative damage to the tryptophan residue of HSA [116]. Photosensitized HSA dam-

age is enhanced in D
2
O, in which the lifetime of 1O

2
 is markedly elongated compared in H

2
O 

(Table 1). Furthermore, sodium azide (NaN
3
), a strong physical quencher of 1O

2
 [117], effec-

tively suppresses this HSA damage. From the analysis of the effect of NaN
3
 on the HSA dam-

age, the contribution of 1O
2
-mediated oxidation to the total quantum yield of protein damage 

8-oxo-G R: 2’-deoxyribose

Adenine

Figure 12. Hydrogen bonding between 8-oxo-G and adenine.
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1O2

Tryptophan N-Formylkynurenine

H2N

Figure 14. Structures of tryptophan and N-formylkynurenine, an oxidized product of tryptophan by 1O
2
.

Cl-

R: i.e. CH3

CH2CH3

CH2CF3

Figure 15. Example of P(V)porphyrin photosensitizer.

Guanine

Imidazolone

Imidazolone Oxazolone

R: 2’-deoxyribose

Figure 13. Structures of imidazolone and oxazolone and the hydrogen bonding between guanine and imidazolone.
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can be determined [115]. Photosensitized 1O
2
 production by porphyrin phosphorus(V) com-

plexes induces the damage of tyrosinase, which is an enzyme to catalyze the hydroxylation of 
tyrosine, resulting in the deactivation of tyrosinase [118]. Oxidation of the amino acid residue 
by 1O

2
 can cause the deactivation of protein function. The protein oxidation photosensitized by 

porphyrins through ROS production is an important mechanism of PDT.

Photocatalyzed 1O
2
 production by TiO

2
 may not play an important role in the oxidation reac-

tion [31, 94]. Formed 1O
2
 on the TiO

2
 surface is quenched by TiO

2
 itself with relatively large 

quenching rate coefficient (e.g., 2.4 × 109 M−1 s−1 [95]). In the presence of bovine serum albumin, 
1O

2
 produced by TiO

2
 photocatalysis is effectively quenched, suggesting the protein oxidation 

[94]. However, in the case of TiO
2
 photocatalyst, other ROS are more important for protein 

oxidation than 1O
2
-mediated reaction [29–32].

5. Detection of ROS

ROS detection is an important theme to investigate a biological effect of ROS or evaluation of the 
activity of PDT photosensitizers [119–122]. Fluorometry is one of the most important and effec-

tive methods of ROS detection. For example, 5-carboxyfluorescein-based probe has been devel-
oped (Figure 16) [123]. This probe can detect H

2
O

2
 in the living cell. As an inexpensive method, 

the fluorometry using folic acid (Figure 17) was reported [23, 119, 124]. Folic acid can be decom-

posed by H
2
O

2
 in the presence of Cu2+, resulting in the fluorescence enhancement. The limit of 

detection (LOD, at signal/noise = 3) for this method was 0.5 μM H
2
O

2
. This method is based on 

the oxidative decomposition of folic acid by Cu(I)-OOH. In the presence of Fe2+, •OH slightly 
induces the folic acid decomposition; however, the effect of •OH on this folic acid decomposi-
tion is negligibly small because of the very short lifetime [125, 126]. In addition, O

2
•− does not 

HO O O

COOH

O
O

NH2

Figure 16. Structure of 5-carboxyfluorescein-based fluorescence probe for H
2
O

2
 [123].
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N HN

NH N

N

H3C
N
CH3

CH3

CH3

H3C
N
CH3

Figure 18. Example of the reported pH-responsive porphyrin [129].

have the activity of folic acid decomposition. Using folic acid or its analogue, 1O
2
 can be also 

detected [124]. Specifically, in D
2
O, folic acid or methotrexate (Figure 17), an analogue of folic 

acid, is effectively decomposed by 1O
2
, resulting in the fluorescence enhancement [124]. Using 

this method, the values of ΦΔ of various water-soluble photosensitizers can be determined.

6. Control of singlet oxygen production

Control of photosensitized 1O
2
 is an important theme for biology or medicine, for example, 

to realize target-selective PDT [127] or “theranostics” (therapy and diagnosis) [128]. The pH-
dependent control [129] and target-selective control [127, 128, 130–132] methods have been 
reported. It has been reported that free base porphyrins were synthesized to control their 
photosensitized 1O

2
 generating activity by pH (Figure 18) [129]. The S

1
 state of this porphyrin 

Folic acid

Methotrexate

H2O2 + Cu2+

or 1O2

Folic acid analogue (less fluorescent)

Oxidative decomposed products

(Strongly fluorescent pteridine analogues)

R1: OH, NH2

R2: COOH, CHO, CH2OH

Figure 17. Structures of folic acid and methotrexate and the fluorometry of ROS [119, 124].
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is quenched by the electron-donating moiety in neutral or alkali solution. However, proton-

ation of this electron-donating moiety under acidic condition suppresses the electron transfer, 
leading to the recovery of the 1O

2
 production activity of porphyrin ring. Because cancer cell 

is slightly a more acidic condition compared with normal cells [133–135], this pH-based con-

trol of photosensitized 1O
2
 production can be applied to cancer-selective PDT. DNA-targeting 

control of photosensitized 1O
2
 generation has been also reported [127, 128]. For example, 

electron donor-connecting porphyrins have been studied (Figure 19) [81, 130–132]. These 
compounds can be photoexcited by visible light irradiation, and their S

1
 states are effectively 

quenched through intramolecular electron transfer. The charge-transfer state energy can be 
raised through the binding interaction with DNA, an anionic polymer, resulting in the inhibi-
tion of the intramolecular electron transfer and enhancement of 1O

2
 generation.

7. Conclusions

Hydrogen peroxide is easily produced from the oxidation processes of chemical compounds 
by oxygen molecules. In addition, UVA-irradiated NADH and semiconductor photocatalytic 
materials can also produce H

2
O

2
. Formed H

2
O

2
 in cells can be incorporated into cell nucleus 

and activated by endogenous metal ions. Copper ion induces Cu(I)-OOH formation from H
2
O

2
, 

Figure 19. The examples of DNA-targeting porphyrins: Ant-P [81], Pyr-P [130], Phen-P [131], and Nap-Ps [132].
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whereas •OH is produced from H
2
O

2
 and iron ion. These ROS cause base oxidation, and •OH 

can induce strand break of DNA. Base modifications lead to carcinogenesis or lethal effect. 
Photoirradiation to various sensitizing materials induces 1O

2
 production. Visible light has suf-

ficient energy to produce 1O
2
. Therefore, 1O

2
 is easily produced by various dyes under photo-

irradiation. Photocatalytic 1O
2
 formation through reoxidation of O

2
•− is also possible. Formed 

1O
2
 can oxidize guanine residues of DNA without sequence specificity and several amino acid 

residues of protein within its lifetime, which depends on the surroundings. Various detection 
methods of these ROS have been developed. In addition, the target-selective or condition-
selective productions of ROS become important strategies for PDT and cancer “theranostics.”
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