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Abstract

Neural network (NN) model is an efficient and accurate tool for simulating manufactur-
ing processes. Various authors adopted artificial neural networks (ANNs) to optimize 
multiresponse parameters in manufacturing processes. In most cases the adoption of 
ANN allows to predict the mechanical proprieties of processed products on the basis of 
given technological parameters. Therefore the implementation of ANN is hugely benefi-
cial in industrial applications in order to save cost and material resources. In this chapter, 
following an introduction on the application of the ANN to the manufacturing process, 
it will be described an important study that has been published on international jour-
nals and that has investigated the use of the ANNs for the monitoring, controlling and 
optimization of the process. Experimental observations were collected in order to train 
the network and establish numerical relationships between process-related factors and 
mechanical features of the welded joints. Finally, an evaluation of time-costs parameters 
of the process, using the control of the ANN model, is conducted in order to identify the 
costs and the benefits of the prediction model adopted.

Keywords: modelling, simulation, control and monitoring of manufacturing processes, 
simulation technologies

1. Introduction

The use of artificial intelligence and specifically artificial neural networks (ANNs) has allowed 
yielding revolutionary advances in manufacturing. However, most of the applications of arti-
ficial intelligence in the production field concerned expert systems and fewer attentions were 
paid to neural networks (NNs). Most important characteristics of the ANNs are:

• the self-adaptive behaviour that allows to adapt the forecast to changing of the environ-

ment, in this way improve the networks’ ability to learn and to predict;

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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• the parallel computing architecture, that has a great impact in multiple disciplines and 
applications, from speech and natural language processing, to image processing or prob-

lems in bioinformatics and biomedical engineering.

Therefore, they could be of great help for today’s computer integrated manufacturing and in 
smart factories, according to Industry 4.0 paradigm. Currently, the nature of the manufactur-

ing process is changing with great speed, becoming more sophisticated and continuous varia-

tions are occurring due to changes in customer demand and reduced product life cycle. This 
requires manufacturing technologies that can easily adapt to such changes. In this context, 
artificial neural networks are a powerful technology to solve this problem. The use of ANNs 
is also widely used for process monitoring and control applications. The quality of a process 
can only be provided by in process monitoring through proper measurements. To ensure a 
high quality of a process, you must follow the following technological steps [1]:

• Identify the characteristic changes of a process;

• To estimate the changes of the product quality;

• Correct any process operations as a result of any anomalies detected from the comparison 
between the obtained and the desired quality.

These steps should be followed with minimal supervision and assistance from operators, if 
possible in unmanned manner. In addition, all processes should be implemented with special 
features such as: storing information, decision making, learning and integration. It should be 
noted that most manufacturing processes are regulated by many variable parameters and for 
this reason, such systems have a random, complex and uncertain nature.

This may be attributable to the fact that they are exposed to external disturbance and noise 
and often subjected to parameter variations. Furthermore, there is often a great interaction 
between variables and therefore it is not possible to properly define the final quality of the 
product and the variables that influence it. Due to these characteristics the quality often varies 
from product to product, impairing its uniformity and decreasing the yield of the product. 
So, all changes that may occur in manufacturing environments cannot be easily observed by 
an operator, so in recent years the use of neural networks applied to process monitoring and 
control has been of great interest. Indeed, it has been shown that the use of artificial intelli-
gence can overcome the above-mentioned problems [2]. The research efforts in this direction 
will be accelerated with greater interest in the future and will lead to the development of truly 
intelligent manufacturing systems that are capable of producing products without the super-

vision or assistance of human operators [1]. Figure 1 classifies the functionalities needed to 
imbed the artificial neural networks on manufacturing processes and summarizes the current 
developments in manufacturing application areas.

The real world applications here in manufacturing include the modelling, monitoring and 
control, identification, planning and scheduling associated with the processes. The purpose 
of this chapter is to present some applications of artificial neural networks in manufacturing 
process monitoring and control, among which particular attention will be paid to the study 
that has been published in international journals and that has investigated the use of the 

Advanced Applications for Artificial Neural Networks202



ANNs for the monitoring, control and optimization of a welding processes. Experimental 
observations were collected in order to train the network and establish numerical relation-
ships between process-related factors and mechanical properties of the welded joints. Finally, 
an evaluation of the time-cost parameters of the process, using the control of the ANN model, 
is conducted in order to identify the costs and benefits of the prediction model adopted.

2. Manufacturing applications

Due to many external disturbances and many variations in process parameters, many produc-
tion processes are complex and time-consuming. For these reasons, it is not always possible to 
identify the relationship between the product quality and the input variables of the process. 
Thus, there is interest to integrate the artificial intelligence into the production processes for 
storing, learning, reasoning and decision making. Such systems are able to adapt to changes 
in its environment and can truly realize unmanned operations of processes. The adoption of 
the neural network can be devoted to monitoring and to prediction of different parameters 
in many industrial areas, in order to solve issue relating to the manufacturing system design, 
process planning, as well as operational decision making. A summary of main NN applica-
tions field is shown in Table 1.

Figure 1. Functionality of the artificial neural networks and their manufacturing applications.
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Manufacturing information, such as the sequence of operations, lot size; multiple process plans 
were given special consideration in their approach to solve the generalized part family formation 
problem. Many authors also point out that the method of artificial neural networks is flexible and 
can be efficiently integrated with other manufacturing functions. Below, from the literature, some 
important artificial intelligence applications to particular production processes are described.

2.1. Injection moulding processes

Injection moulding processes are characterized by dynamic characteristics since process input 
variables are the melting temperatures, the velocity of the cylinder, the holding, the pressure 
that produces the polymer flow into the model cavity and they vary in a complex manner. The 
phenomena occurring in the process are very complex, time-varying, nonlinear and uncer-

tain. This complexity makes it difficult to relate the input operating variables to the product 
quality such as geometry accuracy and geometry surface smoothness. These processes have 
been implemented and optimized with the use of artificial intelligence with the use of multi-

layer perceptron which is found to be the most popular network and tries to model the process 
dynamics and based on this to predict the part quality [3–9].

2.2. Gas metal arc welding processes

In gas metal arc (GMA) welding processes [10–12], the flow of an electric current is generated 
by an electric arc that is maintained between the consumable wire electrode and the welding 
metal as shown in Figure 2.

Both the filling metal and the consumable electrode are automatically fed by a wire feeding 
device. A good quality of the welds is determined by the relatively high depth to width ratio of 
the molten welding pool. So, the monitoring and control of weld geometry and the surface tem-

peratures that are strongly related with the formation of the weld pool, are very important for the 
penetration depth or the back bead width. For this purpose, the temperatures by noncontact were 
measured. Infrared temperature sensing system and recent studies conducted the ANN multi-
layer perceptron to detect and control with great success all the surface temperature information.

Category Manufacturing

Application topic • Manufacturing system 
design

Author Ref. num. Moon and Chi [53]

Kaparthi and Suresh 
[54]

Lee et al. [55]

Moon [56]

Wu [57]

• Manufacturing process 
control

Cook and Shannon [58]

Wu [57]

• Robot scheduling Yih et al. [59]

• Manufacturing operational 
decision

Chryssolouris et al. [60]

Table 1. Summary of neural network manufacturing applications.
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2.3. Arc welding processes

The complexity of the relationship between the process variable and weld quality is the com-

mon factor in all manufacturing processes and in particular arc welding processes. For these 
reasons, the literature documents with some interesting researches, the use of ANNs for qual-
ity monitoring and control of the process. In this type of welding process, the ANN input data 
are generally the surface temperature, the welding voltage and the current and torch speed. 
The majority type of ANN employed for this case was, again, the multilayer perceptron [10, 
13–21]. Their use was found to be very satisfactory to predict the weld defects, the geometry 
such as bead width, head height and penetration.

2.4. Machining processes

To perform a correct quality control in all machining systems, it is very important to check 
particular parameters such as the cutting tool state, the vibrations, the forces and the tem-

perature obtained during real-time machining operation. To optimize this particular type of 
supervision of the cutting tool state, some authors document in literature the use of the ANNs 
which used the above-mentioned process data to classify the status of tool wear, prediction 
tool life and detect tool failure in an on-line manner. Examples of typical sensors are tool 
dynamometers, acoustic emission sensor accelerometers and thermocouples. In this process, 
the networks in frequent use are the multilayer perceptron and Kohonen [22–46].

2.5. Semiconductor manufacturing processes

The complexity of plasma etching processes in integrated circuits fabrication promoted 
the use of ANNs for monitoring and control. In this field, the use of artificial intelligence 
brings advantages that could not be achieved with traditional open loop controls. Where 
used the multilayer perceptron networks that are the most popular for this process. The 
ANNs use the fundamental parameters that affecting process dynamics, such as power, 
gas flow rate, dc bias voltage and throttle positioning. Proper use of networks in this field 

Figure 2. Characteristics of the GMA welding process.
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allows real-time monitoring and estimation of quality variables such as the etching thick-

ness and the etching time [47–52].

3. Development and implementation of ANN

The origin of artificial neural networks is based on learning technique that mimics the biologi-
cal learning process occurring in the brain. Neural networks present a robust way to predict 
an actual value after a learning activity from a supplied sample set [61]. The ANNs are based 
on a concept that combines a set of computational procedures with a theoretical basis in order 
to predict the unknown output parameter in various processes. Generally, neural networks 
are adopted to subordinate knowledge to observations or when data or activity is so complex 
that is not allows to identify an optimal solution in a reasonable time. It is difficult in each 
field of application and even for each task, to compare the use of neural networks versus other 
prediction techniques (e.g., statistical methods or a support vector machine) because, on the 
contrary to the conventional computational techniques, they are able to solve nonlinear and 
ill-defined problems. Many factors underlie this trend, most of them are related to reliability of 
the predictions, to the robustness and adaptability of the results as well as the learning ability 
of the neural process. In many cases the forecasts generated by ANNs, if correctly designed, 
significantly improve with increasing of dataset used as training subset. Consistently, in last 
years, the adoption of the ANNs in many business areas is increased exponentially and the 
number of publications, in high-level journals, was grown [62] (Figure 3).

Figure 3. Distribution of ANN-papers by year.
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Under engineering perspective, a ‘good’ ANN is based on models able to imitating the propri-
eties of natural systems, such as cognitive capabilities, flexibility, robustness, ability to learn 
and fault tolerance. At this scope the structure and the behaviour of the ANN required a study 
characterized by different hierarchical levels of organization as neurons, layers, synapses and 
cognition-behaviour functions. Different areas of application are interested by the ANNs, 
some of them are astronomy, mathematics, physics chemistry, earth and space sciences, life 
and medical science and engineering. In recent years USA and EU countries, have approved 
different initiatives for the study of the human brain in these cases, the ANN, in various forms 
and at different levels, has been included in thesis research projects. The inter-disciplinary 
given by system adopted for dataset analysis and by the complexity computational required 
by the elaboration of the data, allows to design and simulate systems capable to satisfying 
the needs and the challenges of the real world. Japan in 2014 has been developed a project 
based named as Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/
MINDS) [63], that will be integrated with new biomedical technologies and neural network 
systems. In Australia, a specific programme has also been set up with preliminary funds of 
around $250 million over 10 years with the goal of developing the world’s first bionic brain 
(AusBrain) [64] based on multilayer perceptron (MLP) system. There is also another ambi-
tious initiative in China (Brainnetome) [65], the goals of this are to simulate the brain net-
works for perception, memory, emotion and their disorders as well as to develop advanced 
technologies to achieve these goals.

3.1. Designing the ANN

An ANN is a computational model that establishes a relationship between process factors and 
output variables. Artificial neurons are combined through weights, which work as adjustable 
coefficients. There are many programs and frameworks, either of general purpose or that 
simulates functions or neural structures (e.g., IQR, NeuroSpaces, NNET, etc.) but there is not 
a specific simulator that is currently being used by the whole community since some different 
approaches are more suitable than others, on the basis of the research task being addressed. 
Moreover, most simulators can take full advantage of their computational capabilities on the 
basis of the features of the computer hardware to which it is installed [66].

This correlation depends by the fundamental features of the network, which define the 
way input and output are connected to each other [67]. The network includes input layer, 
output layer and a certain number of hidden layers. The fundamental features of the net-
work are:

• Dataset splitting, which identifies the subset data to be adopted for the training, the testing 
and the validation of the ANN development;

• Architecture, which determines the connections between layers and neurons;

• Learning algorithm, which determines the weights of the links between neurons.

In the following sections the data splitting strategy, the architecture design approach and the 
learning algorithm identification, is described.
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3.1.1. Dataset splitting

The appropriate data splitting can be handled as a statistical sampling problem. Therefore, 
various classical sampling techniques can be adopted in order to split the data in three subset 
for training, validation and testing of ANN, most commons are: Simple random sampling 
(SRS), Trial-and-error methods, Systematic sampling and Convenience sampling. The split-
ting strategy tries to overcome the high variance of the SRS by repeating the random sampling 
several times in order to minimize the mean square error (MSE) of the ANN. This technique is 
high time-consuming and requires significant computational costs. A subset (generally as big 
as 60% of the available experimental data composed by inputs/output pairs) is used for the 
ANN training. In this phase, the synaptic weights, which are the links between neurons, have 
a synaptic weight attached. They are updated repeatedly in order to reduce the error between 
the experimental outputs and the associated forecasts. A subset (generally as big as 20% of the 
available experimental data) is adopted for the ANN validation. In particular the validation 
sets allows to identifying the underlying trend of the training data subset. A subset (generally 
as big as 20% of the available experimental data) is adopted for testing the forecast reliability 
of the ANN in the learning phase. In order to deal with the overfitting problem that occurs 
when the network has memorized the training examples, but it has not learned to generalize 
to new situations, different approaches are suggested: reduce the number of hidden layers, 
improve the ‘quality’ of the training-subset adopted, introduce some noisy data into train-

ing set, etc. In Ref. [67] an efficient method is proposed for model establishment by means 
the identification of a low-dimension ANN learning matrix through the principal component 
analysis (PCA).

3.1.2. Network architectures

An ANN is a computational model that establishes a relationship between process factors and 
output variables. Artificial neurons are combined through weights, which work as adjust-
able coefficients. This correlation depends by the fundamental features of the network, which 
define the way input and output are connected to each other [67]. The network includes input 
layer, output layer and a certain number of hidden layers (Figure 4). The fundamental steps 
for the development of a network are:

• Dataset splitting, which identifies the subset data to be adopted for the training, the testing 
and the validation steps of the ANN development;

• Architecture, which determines the connections between layers and neurons;

• The learning algorithm, which determines the weights of the links between neurons.

Based on the connection pattern (architecture), ANNs can be grouped into two categories:

• Feed-forward networks (e.g., single-layer perceptron, multilayer perceptron, radial basis 
function nets) in which there are not network connection as loops (as shown in Figure 4);

• Recurrent (or feedback) networks, in which different loops occur in network connections 
(e.g., competitive networks, Kohonen’s SOM, Hopfield network, ART models).
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The first one network are considered “static”, in fact they produce only one set of output 
values rather than a sequence of values from a given input, and they worked in memory-less 
condition, this means that their response to an input is independent of the previous network 
state. The ‘recurrent networks’, on the other hand, are dynamic systems, in which the input 
pattern leads the network to enter in a new state, when a new input is introduced. Most 
popular network architecture in use today is the multilayer perceptron neural network (feed-
forward network) where the output of a previous layer is the input to the next layer. In this 
case a biased sum of the weights assigned to different inputs, allows identifying the activation 
level that, through a transfer function, produces the corresponding output. The network thus 
has a simple interpretation as a form of input-output model, with the weights and thresholds 
(biases) the free parameters of the model [68]. The design of the ANN architecture consists 
of identifying the kind of the structure (between feed-forward and recurrent architectures) 
and identifies the number of hidden layers and the number of neurons for each layer. On one 
hand, many neurons can lead to memorize the training sets with lost of the ANN’s capability 
to generalize. On the other hand, a lack of neurons can inhibit the appropriate pattern clas-
sification. Many software allows to identify the best number of hidden layer and neurons (for 
each layer) through a ‘trial-and-error’ approach. In this case different architectures are itera-
tive tested by software and for each of them, the software provide a “fitness bar” based on 
the inverse of the mean absolute error (MAE) computed on the testing set. In most cases the 
higher “fitness bar” identifies the best architecture.

3.1.3. Learning algorithm

The purpose of the learning algorithm is to train the network to predict the output parameter(s) 
given one or more input parameter(s). There are many types of neural network learning rules. 
There are three kind of learning algorithm, the first is known as supervised learning, in this 

Figure 4. Structure of an ANN.
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case the algorithm allows to predict the output parameter on the basis of a set of known input-
output pairs [69, 70]. Second algorithm is unsupervised learning, in this case the output is not 
given, the aim consisting of inferring a function in order to describe a hidden structure (e.g., 
clustering, anomaly detection, etc.). Therefore the output parameters are considered ‘unla-

belled’ (the observations are not classified) and is not provided any evaluation about the pre-

diction reliability ensured by the ANN [71]. Third algorithm is named reinforcement learning, 
in this case a continue interaction between the learning system and the environment allows to 
identify the input-output mapping minimizing the performance scalar index. The approach 
is very similar to unsupervised learning (also in this case there are not given input-output 
pairs), reward or punishment signals are adopted for the prediction of output parameters 
[72]. In most cases, the unsupervised learning allows to ensuring lower cost function. Three 
different methods, usually considered to be supervised learning methods, are described in 
this work: Quick Propagation (QP), Conjugate Gradient (CG) and Levenberg-Marquardt 
algorithm (LM).

QP is a heuristic modification of the standard back propagation, the output of the mth output 
node for the pth input pattern is given by o

pm
 (Eq. (1)).

   o  
pm

   = f ( ∑ 
k=1

  
K

      ω ¯¯    
km

    o  
pk

  )   (1)

where f is the activation sigmoidal function (Eq. (2)),    ω ¯¯    km
    is the weight between the mth output 

neuron and the kth hidden neuron. The value of o
pk

 depends by two parameters: the first is 
given by the weight between kth hidden neuron and the nth input neuron (   ω ¯¯    nk

   ). The second 
parameter is x

pn
 given by pth input pattern of nth neuron.

  f (x)  =   
1
 ______ 

 (1 +  e   −x ) 
    (2)

All network weights are updated after presenting each pattern from the learning data set.

As far as concern CG method, the learning algorithm starts with a random weight vector 
that is iteratively updated according the direction of the greatest rate of decrease of the error 
evaluated as ω(τ) in Eq. (3).

  ∆  ω    (τ)   = − η∇ E  ω (τ) 
    (3)

where E is the error function evaluated at ω(τ) and η is the arbitrary learning rate param-

eter. For each step (τ) the gradient is re-evaluated in order to reduce E. The performance 
of the gradient descent algorithm is very sensitive to the proper setting of the learning 
rate, in case η is too high the algorithm can oscillate and become unstable, for η too small 

the algorithm takes too long to converge. In this case an adaptive learning rate allows to 
keep the learning step size as large as possible, ensuring, in this way, the learning rate 
stable. The LM algorithm allows to minimize the squares of the differences (E) between 
the desirable output, identified as y

d
(t), and the predicted output y

p
(t) [73]. ‘E’ is given by 

the follow equation:
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LM algorithm is also adopted, which blends the ‘Steepest Descent’ method and the ‘Gauss-
Newton’, therefore it can converge well even if the error surface is much more complex than 
the quadratic situation; ensuring, in many cases, speed and stability. LM algorithm can be 
presented as:

   w  
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T   J  
k
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k
    e  
k
    (5)

where J is Jacobian matrix, μ is the ‘combination coefficient’ (always positive), I is the identity 
matrix and e represents the error vector. When μ is very small (nearly zero), Gauss-Newton 
algorithm is used. On the other hand, when μ is very large, steepest descent method is used.

4. Case study: “Prediction of the Vickers microhardness and ultimate 

tensile strength of AA5754 H111 friction stir welding butt joints using 
artificial neural network”

Among the artificial neural networks applications to the production processes, this section 
describes the research of De Filippis et al. [74] in which a simulation model was developed for 
the monitoring, controlling and optimization of a particular solid-state welding process called 
friction stir welding (FSW). The approach based on the use of neural networks, using the FSW 
technique, has allowed identifying the relationships between the process parameters (input 
variable) and the mechanical properties (output responses) of the AA5754 H111 welded 
joints. The optimization of the technological parameters has been developed with the aim to 
produce a stable welding process that can provide welded joints with no defects. The experi-
mental plans that were tested have been constructed by varying the following parameters:

• Tool rotation speed;

• Travel tool speed;

• Position of the samples extracted from the weld bead;

• Thermal data, detected with thermographic techniques for on-line control of the joints.

The quality of welded joints was evaluated through the following destructive and non-
destructive tests:

• Visual tests;

• Macro graphic analysis;

• Tensile tests;

• Indentation Vickers hardness tests

• Thermographic controls.
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The simulation model was based on the adoption of artificial neural networks (ANNs) using 
a back-propagation learning algorithm. Different types of architecture were analysed, which 
were able to predict with good reliability the FSW process parameters for the welding of the 
AA5754 H111 in Butt-Joint configuration.

4.1. About the friction stir welding process

The process of friction stir welding (FSW) is a solid-state welding method based on frictional 
and stirring phenomena, which was discovered and patented by the Welding Institute of 
Cambridge in 1999. In this process, a rotating non-consumable tool that plunges into the work 
piece and moves forward produces the heat necessary to weld the parts together. Therefore, 
given the particular geometry of the tool used, as shown in Figure 5, the following actions are 
performed in the process:

• The tool shoulder generates heat with the base material,

• The tool pin generates plastic deformation and mixing of the material.

The much lower temperatures compared with those achieved in traditional welding processes 
by melting, determine the main advantages of this process. In fact, there is minimal mechani-
cal distortion, with minimal Heat Affected Zone (HAZ), and an excellent surface finish.

No crack formation and porosity right after welding thanks to the low input of total heat.

The main parameters of the friction stir welding process are the tool rotation speed (n) and 

the tool travel speed (v). The friction stir welding process enjoys major successful applications 

Figure 5. Schematic diagram of the FSW process.
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in many fields, such as aeronautics, aerospace, rail, automotive, computer science, marine, 
chemical and petrochemical industries. Important advantages are also documented in the 
application of FSW processes on dissimilar materials, Al alloys, Cu alloys, Ti alloys and steel. 
The main applications are on aluminium alloys because these materials, due to their high 
strength-to-weight ratio, low density, forming properties, low cost and recyclability, are the 
main metals used in automotive, marine and aerospace applications. An aluminium alloy of 
large aeronautical and automotive interest is the AA5754 H111; on this material, there are still 
few researches about the advantages to apply the FSW. It has been shown that the mechani-
cal properties of the AA5xxx friction stir welded joints depend mainly on the grain size and 
the dislocation density, due to the phenomena of plastic deformation and recrystallization 
occurring during the FSW process. To study and optimize properly the friction stir weld-
ing process, it is necessary to know the influence of process parameters on the mechanical 
properties of the joints. In general, the traditional process control techniques cannot provide 
information about the performance of the process during welding and require lengthy testing 
times, making them feasible for the industrial field. Therefore, in the production engineering, 
the control and the optimization of the manufacturing processes is becoming increasingly 
important. For the FSW process is necessary to carry out a control of the significant variables, 
in addition to the use of thermographic techniques. This justifies the deepening and use of 
information technology for enhancing the quality of manufacturing systems. The implemen-
tation of numerical and analytical models can reduce time and cost for experiment and analy-
sis through quantitative solutions.

4.2. ANN simulation model for the monitoring of the friction stir welding process

The research interest to developing new technological tools for the control and optimization of 
manufacturing processes is growing. Such developments are crucial elements for the produc-
tion engineering. Within the FSW process, many experiments are needed to understand the 
process-related dynamics and to control all the significant variables and the thermographic 
techniques are a valuable help but it is necessary to increase and optimize control techniques 
with new information tools for enhancing the quality of manufacturing systems. The reduc-
tion in time and cost of the experiments can be reduced by the implementation of numerical 
and analytical models. Thus the relationship between the process parameters and the quality 
of the weld can be easily identified by a model based on the adoption of one or more artificial 
neural networks (ANNs). Neural networks software packages are very common among sci-
entists and manufacturing researchers. In particular, their applications in the field of welding 
have showed good success. As far as concern the FSW process, in scientific literature, there 
are only few papers that discuss the modelling of this welding process by a neural network 
[75–79]. In particular, a very interesting work is the study of Shojaeefard et al. [80] who stud-
ied the adoption of the neural network trained with Particle Swarm Optimization (PSO) for 
modelling and forecasting of the mechanical properties of the friction stir welding butt joints 
in AA7075/AA5083. A further contribution is provided by Asadi et al. [81], which with the use 
of ANN found a relationship between the grain size and the hardness of nanocomposites in 
FSW process. In this particular case study, an effective simulation model was developed for 
predicting, monitoring and controlling the mechanical properties of welded AA5754 H111 
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plates, using the ANNs with the FSW process parameters as input variables. The data set 
for training, testing and validation of the ANN were the results obtained by experimental 
cases [82–84], in which all welded joints were performed by non-destructive (visual inspec-
tion) and destructive testing (macrographic tests). These tests have been useful for detecting 
macro defects present on the surface and within the welded area. An accurate quantitative 
analysis of the FSW process was carried out using the results of the destructive tests of each 
welded specimen in terms of ultimate tensile strength (UTS) and Vickers micro hardness. 
Thermographic techniques were used to study the thermal behaviour of FSW process. In the 
thermal analyses, two thermal parameters were considered: the maximum temperature and 
the slope of the heating curve measured during the FSW process, along the two sides of the 
weld (MSHCRS and MSHCAS, respectively). The analysis established that there is a correlation 
between the data derived from the thermographic controls and the quality of the welded 
joints, in terms of UTS. Thus this work defines the importance and effectiveness of the use of 
infrared technology for monitoring the FSW process in a quantitative manner, giving impor-
tant information on the thermal behaviour of joints during the process. Finally, the purpose 
of this case study was to correlate the mechanical properties of welded joints in terms of UTS 
and microhardness to the thermal parameters with the use of the ANN. The results obtained 
have defined a model with the use of the neural networks that can predict quantitatively the 
mechanical behaviour of the FSW joints, as shown in Figure 6.

Figure 6. Approaches used for evaluating the quality of FSW process through destructive and non-destructive tests.
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The results of all tests are summarized in Table 2 and the same data were used to train the 
ANN.

In order to establish a relationship between the mechanical properties of the FSW joints and the 
process parameters, a simulation model was developed. In the development of the model two 
different ANNs were used, as follows: in the first network, called “ANNHV”, was used as output 
variable, Vickers micro hardness of HAZ; in the second network, called “ANNUTS” was used as 
the output variable the ultimate tensile strength. Both have used process parameters as inputs. 
The ANNs were implemented using Alyuda NeuroIntelligence™-Neural networks software 
(2.2, Alyuda Research Company, LLC., Cupertino, CA, USA). The first network ANNHV was 

developed with five input nodes (n, v, p, MSHC
RS

, and MSHC
AS

) and only one response node 

Input Output

n1[RPM] v2[cm/min] p3[mm] MSHC
RS

4 [°] MSHC
AS

5 [°] HV
haz

6 HV
haz norm.

7 UTS8[MPa] UTS
norm.

9[MPa]

20 500 20 86,05 85,83 60,88 0,50 166,69 1,00

30 700 20 87,37 87,37 61,93 0,70 70,25 0,21

20 700 20 87,12 87,92 63,33 0,97 120,75 0,62

30 500 20 86,88 86,85 61,72 0,66 80,05 0,29

20 500 120 87,25 86,80 60,88 0,50 90,66 0,38

30 700 120 88,14 88,15 61,93 0,70 44,29 0,00

20 700 120 87,23 87,91 63,33 0,97 56,06 0,10

30 500 120 87,97 87,91 61,72 0,66 71,99 0,23

20 500 20 86,60 86,16 62,02 0,72 132,43 0,72

30 700 20 87,74 88,23 62,72 0,85 114,87 0,58

20 700 20 86,53 88,00 58,23 0,00 51,86 0,06

30 500 20 89,07 87,23 63,50 1,00 97,43 0,43

20 500 120 87,59 87,43 62,02 0,72 99,06 0,45

30 700 120 88,53 88,32 62,72 0,85 59,95 0,13

20 700 120 87,48 87,74 58,23 0,00 46,55 0,02

30 500 120 87,58 88,45 63,50 1,00 113,98 0,57

1Tool rotation speed.
2Tool travel speed.
3Position of the sample along the welding direction.
4Maximum Slope of Heating Curve of thermal profiles evaluated on the surface of joints along the retreating side.
5Maximum Slope of Heating Curve of thermal profiles evaluated on the surface of joints along the advancing side.
6Vickers microhardness values measured in the HAZ.
7Vickers microhardness normalized values measured in the HAZ.
8Ultimate tensile strength values.
9Ultimate tensile strength normalized values.

Table 2. Measured data used to train the ANN.
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(output node), identified as the micro hardness of the Heat Affected Zone of the welds, HVhaz. 
“Trial-and-error approach” was used to investigate and analyze more than 1000 different net-
work architectures to identify the best architecture for the first network (ANNHV). The network 
fitness score was calculated for each network with different design (number of hidden layers, 
number of nodes, etc.), based on the inverse of the mean absolute error (MAE) on the testing 
set. The best network architecture has been identified with the higher fitness score. The best 
accuracy and minimum prediction error was obtained by adopting an ANNHV characterized 
by only one hidden layer with 12 neurons as shown in Figures 7–9.

The second network (ANNUTS) was developed with six input nodes (n, v, p, MSHC
RS

, MSHC
AS

 

and HV
haz

) and one response node (output) identified as the ultimate tensile strength of the welds 
(UTS). Even in this second analysis the methodology chosen for identifying the architecture of the 
network are the same of the ANNHV. The “best” reliability of the prediction was achieved, adopting 
an ANNUTS characterized by only one hidden layer with four neurons, as shown in Figures 10–12.

The reliability of the estimation of the mechanical properties predicting by the ANN simula-

tion model was evaluated by comparing the data with the experimental results. For this pur-

pose, the mean absolute percentage error (MAPE) was calculated for the two ANNs modelled. 
Table 3 summarizes the results of this analysis that demonstrated that the values derived 
from ANN simulation have a higher level of reliability. Therefore, the neural networks were 
able to predict, with significant accuracy, the mechanical properties of the friction stir welding 
joints, under a given set of welding conditions.

Figure 7. Back-propagation neural network used to foresee the Vickers micro hardness of the Heat Affected Zone (HAZ).
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Starting from the results obtained in previous researches [84] where the most significant FSW 
process parameters for AA5754 H111 plates were identified, the development of this ANN 
model could be used to identify the optimal process parameter setting in order to achieve the 
desired welding quality.

Figure 8. Predicted Vickers HAZ micro hardness by ANN versus the experimental data.

Figure 9. Regression line at the training stage.
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Figure 10. Back-propagation neural network used to foresee the ultimate tensile strength.

Figure 12. Regression line at the training stage.

Figure 11. Predicted ultimate tensile strength by ANN versus the experimental data.
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5. Conclusions

The interest in ANN is growing so much that its models and algorithms are becoming standard 
tools in computer science and information engineering. This highlights the fact that after a long 
and productive youth, neural networks have formed a robust set of computation procedures 
with a robust theoretical base and undeniable effectiveness in solving real problems in differ-

ent fields of information processing. In case study discussed in this work, the analysis per-

formed has shown that the ANN simulation model can be used as a further effective method 
for predicting the FSW process. The MAPE obtained for the outputs micro hardness (HAZ) 
and ultimate tensile strength (UTS) were, respectively, 0.29% and 9.57%; R2 values were, in all 
cases, bigger than 0.90. Although the prediction of UTS was characterized by more high level 
of MAPE, if it is compared to HAZ estimated value, it was considered acceptable to ensure a 
model characterized by high reliability. The adoption of the simulation model can be very use-

ful for the friction stir welding process. In fact, the use of tools for predicting the mechanical 
properties of the welds and for controlling the welding process, allows the production of welds 
with fewer defects. This reduces the number of repairs and costs, associated with the reitera-

tion of the process. In the context of neural networks, the biggest question is “are we currently 
capable of building a human brain?” [85]. Undoubtedly, the achievement of these challenges 
is very ambitious, considering that the human brain has around 90 billion neurons shaping an 
extremely complex network, but in many cases the ANN can support the human behaviour, 
simplifying the decision making process, increasing the level cognition, under stress condi-
tions, and increasing the capacity in evaluation and analysis of complex processes.
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ANN model Input parameters Output parameters MAPE (%)

ANNHV - n

- v

- p

- MSHC
AS

- MSHC
RS

HVhaz
Vickers micro hardness of the Heat 
Affected Zone

0.29

ANNUTS (in cascade) - n

- v

- p

- MSHC
AS

- MSHC
RS

- HV
haz

 (predicted with the ANNHV 

model)

UTS
ultimate tensile strength

9.57

AA5754 H111 plates welded with the friction stir welding process.

Table 3. Mean absolute percentage error computed for hardness and ultimate tensile strength of AA.
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