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Abstract

In the presence of persistent perturbations in both unactuated and actuated dynamics of 
crane systems, an observer-based robust control method is proposed, which achieves the 
objective of trolley positioning and cargo swing suppression. By dealing with the unac-
tuated and unknown perturbation as an augmented state variable, the system dynamics 
are transformed into a quasi-chain-of-integrators form based on which a reduced-order 
augmented-state observer is established to recover the perturbations appearing in the 
unactuated dynamics. A novel sliding manifold is constructed to improve the robust per-
formance of the control system, and a linear control law is presented to make the state 
variables stay on the manifold in the presence of perturbations in unactuated dynam-
ics. A Lyapunov function candidate is constructed, and the entire closed-loop system is 
proved rigorously to be exponentially stable at the equilibrium point. The effectiveness 
and robustness of the proposed observer-based robust controller are verified by numeri-
cal simulation results.

Keywords: underactuated systems, overhead cranes, observer-based control, 
Lyapunov methods, motion control

1. Introduction

Underactuated systems [1–9] are now widely applied in modern industry. A crane system is 

a typical class of underactuated systems with strong state coupling. Due to inertia, when the 

trolley moves, the unactuated cargo swings back and forth, which affects the transporting 
efficiency and safety. Therefore, on the one hand, effective controllers are needed to transport 
the actuated trolley to desired positions. On the other hand, it is also necessary to eliminate 

residual vibrations of the unactuated cargo. Nevertheless, control problems of crane systems 

are still non-trivial and challenging since the system is underactuated without enough avail-

able control inputs.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In order to tackle control problems of crane systems, various control methods are proposed 

[10–38]. Specifically, Sun et al. [10, 11] present antiswing controllers to regulate the cargo posi-

tion to the desired location asymptotically in the presence of ship roll and heave movements 

for offshore crane systems applied in modern ocean transportation and logistics. Moreover, 
existing methods also include input shaping [12–15], feedback control [16–28], intelligent con-

trol [29–32], and trajectory planning method [33–36]. Specifically, several input shapers are 
designed to reduce payload swing of bridge crane systems [12–15]. In Ref. [16], an energy-

based output feedback control scheme is proposed, which achieves both precise trolley posi-

tioning and efficient payload swing elimination under control input constraints. In Ref. [17], 

a payload motion-based control approach is presented in the presence of system parameter 

uncertainties. In [18–20], non-linear controllers are designed on the basis of partial feedback 

linearization. In Ref. [21], visual feedback technology is used to achieve the control objective 

by using two handy cameras. Additionally, sliding mode control strategies are also widely 

applied to tackle crane system control problems [22–25]. For example, Almutairi and Zribi 

[22] achieved the asymptotic stability of the closed-loop overhead crane system by propos-

ing a sliding mode control scheme. Xi and Hesketh [23] addressed an integral sliding mode 

control method for discrete time crane systems with both matched and unmatched uncer-

tainties to ensure the existence of sliding mode in the presence of uncertainties. Based on 

second-order sliding modes, Bartolin et al. [24] guaranteed a fast and precise payload trans-

ferring and swing suppression. Ngo and Hong [25] developed an adaptation law with a 

varying control gain that transits the system into the designed sliding mode. Moreover, in 
practical applications, cranes always suffer from unknown or uncertain system parameters 
(e.g., payload weight changes, varying rope lengths, etc.). Then adaptive control schemes are 

applied to address these problems [26–28]. Sun et al. [26] addressed the crane antiswing and 

positioning problem in the presence of payload hoisting/lowering and uncertain parameters 

with simultaneous payload weight identification. Park et al. [27] proposed an adaptive sliding-

mode antisway control law with system uncertainties and high-speed hoisting motion. Sun 

et al. [28] designed an adaptive control scheme to deal with the control problem of tower 

crane systems with parametric uncertainties without approximating the non-linear dynamics. 

There are also some intelligent control methods applied in crane systems such as fuzzy control  

[29, 30], genetic algorithm [31], and neural network [32]. According to the operating experience 

of real cranes, it is also essential to design suitable trajectories for the system states (positions, 

velocities, and accelerations). Then, tracking controllers can be used to track the trajectories. 

In addition to closed-loop control design, many studies also focus on the trajectory planning 

part and achieve meaningful results [33–36]. Uchiyama et al. [33] generated an S-curve trajec-

tory numerically, which can suppress the residual vibration without measuring it. Sun et al. 

[34] obtained an analytical three-segment acceleration trajectory. For given transferring task, 

the proposed trajectory planning method provides a mechanism to determine the parameters 

to ensure that all the transportation indexes are met. More recently, in Ref. [35], an optimal 

trajectory is generated with optimal energy consumption by using the proposed optimal plan-

ner. There are also antiswing control strategies proposed for double pendulum cranes [37, 38].

However, most of the existing methods for underactuated crane systems tackle the control 

problem without considering the perturbations in the unactuated dynamics. In practical 

applications, perturbations widely exist in both actuated and unactuated dynamics, which 
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may be difficult to tackle by using existing methods. Note that in Ref. [23], integral sliding 

mode control method is proposed by considering perturbations in unactuated dynamics, but 

it is only designed for discrete-time systems by estimating the present disturbance signal with 

its past value. Therefore, in order to derive an effective method to achieve crane control in the 
presence of unknown persistent (even non-vanishing) perturbations in both unactuated and 

actuated dynamics, this chapter proposes an observer-based robust control method.

The main contribution of this chapter is as follows:

1. According to whether the perturbation in the unactuated dynamics is vanishing or not, the 

control problem is stated in two cases. The observer-based robust controller designed in 

this chapter can achieve the control objectives for both cases.

2. By dealing with the unactuated and unknown perturbation as an augmented state vari-

able, an augmented error system is established based on which we design a reduced-order 

augmented state observer for the crane system to recover the perturbations appearing in 

the unactuated dynamics.

3. Together with the observer, by constructing a new sliding manifold, a new observer-based 

sliding mode controller is developed.

The proposed controller is applicable to crane systems with unknown persistent perturba-

tions in the unactuated dynamics and achieves robust control effectively.

The rest of this chapter is organized as follows. Section 2 describes the crane dynamics with 

persistent (even non-vanishing) perturbations and transforms the dynamics into a quasi-

chain-of-integrators form for the convenience of controller design and stability analysis. Also, 

the control objective is stated in Section 2. Based on the model in Section 2, a reduced-order 

augmented-state observer and an observer-based control law are developed in Section 3. 

Then in Section 4, numerical simulation results are included to verify the effectiveness of the 
proposed controller. Section 5 summarizes the entire work of this chapter.

2. Problem formulation

The purpose of this chapter is to propose an effective method to achieve crane control in 
the presence of persistent (even non-vanishing) perturbations in both unactuated and actu-

ated dynamics. The crane dynamics can be represented by the following equations (shown 

in Figure 1):

   (M + m)  x ¨   + mL θ ¨   cos θ − mL   θ   ̇     2  sin θ = u −  f  
r
   +  d  

x
  ,  (1)

   mL   2  θ ¨   + mL cos θ x ¨   + mgL sin θ =  d  θ  .  (2)

The system parameters are defined in Table 1, and f
r
 denotes the rail friction force expressed 

as follows:
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   f  
r
   =  f  

r0
   tanh  ( x   ̇   / ϵ)  −  k  

r
   ∣  x   ̇   ∣  x   ̇  ,  (3)

where f
r0

, ϵ, k
r
 ∈ R are friction parameters, which can be identified by offline experimental tests 

and data fitting. d
x
(t) and dθ(t) denote the lumped term comprising external perturbations, 

unmodeled dynamics, the mismatch between the real girder friction and the friction compen-

sation model shown in Eq. (3), and so forth.

x

u

mg

M

Trolley

Cargo

Figure 1. The schematic diagram of an overhead crane system.

System parameter Physical significant Unit

M Trolley mass kg

m Cargo mass kg

L Cargo rotation radius m

g Gravity constant m/s2

x Trolley translational displacement m

θ Cargo rotational angle rad

u Control input N

Table 1. The system parameters of crane systems.
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Considering the practical physical constraints, though the exact expressions for the lumped 

perturbation terms d
x
(t) and dθ(t) are unknown, the following assumptions are reasonably 

made.

Assumption 1: The perturbation term d
x
(t) present in the actuated dynamics is bounded as  ∣  d  

x
   

(t)  ∣ ≤    d ¯¯    
x
   , where     d ¯¯    

x
    is a priori known. The unactuated perturbation term dθ(t) is differentiable 

up to the n-th order;  ∣  d  
θ
   ∣ ≤    d ¯¯    

θ
   ,  ∣  d  

θ
   (i)   (t)  ∣ ≤    d ¯¯    

𝜃i
  , i = 1, 2, ⋯ , n − 1 , where     d ¯¯    

θ
    and     d ¯¯    

𝜃i
    are priori known 

constants. It is also assumed that   d  
θ
   (3)   (t)  ≈ 0 .

2.1. Crane model transformation

Before proceeding to describe the control objective, we perform several steps of transformations 

for the original crane dynamics shown in Eqs. (1) and (2) for the convenience of carrying out con-

troller development and stability analysis in the subsequent section. Considering the fact of mL > 0, 
we divide both sides of Eq. (2) and make some arrangements to obtain the following equation:

   x ¨   = − g tan θ −   L θ ¨   _____ 
cos θ   +   

 d  θ   _______ 
mL cos θ  .  (4)

Then one can substitute Eq. (4) into Eq. (1) and make some arrangements to obtain

  −    (M + m  sin   2  θ) L
  ___________ 

cos θ   ( θ ¨   −  δ  
x
   −  δ  

𝜃a
  )  − mL   θ   ̇     2  sin θ −  (M + m) g tan θ = u −  f  

r
  ,  (5)

where δ
x
(t) and δθa(t) are defined as follows:

   δ  
x
   = −   

 d  
x
   cos θ
 ___________  

  (  M + m  sin   2  θ )   L
  ,  δ  θa

   = −   
 d  θ    (  M + m )   

 _____________  
  (  M + m si n   2  θ )   m L   2 

  .  (6)

Based on Assumption 1, the upper bounds for δ
x
(t) and δθa(t) are provided as:

  ∣  δ  
x
   ∣ ≤    δ ¯¯    

x
   =   

   d ¯¯    
x
  
 ___ 

Ml
  , ∣  δ  

𝜃a
   ∣ ≤    δ ¯¯    

𝜃a
   =   

   d ¯¯    θ   (M + m) 
 ________ 

 MmL   2 
  .  (7)

In the view of the explicit expression of Eq. (5), a feedback linearization controller can be 

proposed as follows:

  u = −    (M + m  sin   2  θ) L
  ___________ 

cos θ   v − mL   θ   ̇     2  sin θ −  (M + m) g tan θ +  f  
r
  ,  (8)

in which v(t) is a to-be-elaborated auxiliary control input. That is, once we derive the expres-

sion ofv(t), the ultimate controller u(t) can be conveniently obtained according to Eq. (8). By 

substituting Eq. (8) into Eq. (5), together with Eq. (4), the dynamic Eqs. (1) and (2) can be  

re-expressed in the following fashion:

   { 
 x ¨   = − g tan θ −   L θ ¨   _____ 

cos θ   +   
 d  θ   _______ 

mL cos θ  ,
    

 θ ¨   = v +  δ  
x
   +  δ  

𝜃a
  .
     (9)
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Further, we define the following coordinate transformations:

   

 φ  
1
   = x + L ln   (  sec θ + tan θ )   

    
 φ  

2
   = x + L θ ˙  sec θ

   
 φ  

3
   = − g tan θ   

 φ  
4
   = − g θ ˙    sec   2  θ

      (10)

Then, it is straightforward to obtain the following dynamic equations:

   

  φ   ̇    
1
    =  φ  

2
  ,

  
  φ   ̇    

2
   =  φ  

3
   − h ( φ  

3
  )   φ  

4
  2  +   

 d  θ   _______ 
mL cos θ  ,

    
  φ   ̇    

3
   =  ϕ  

4
  ,
  

  φ   ̇    
4
   = − g (v +  δ  

x
   +  δ  

𝜃a
  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ.

   (11)

In Eq. (11), the function h(φ
3
) is with the definition as  h ( φ  

3
  )  =   

l  φ  
3
  
 

_______
 

  ( g   2  +  φ  
3
  2 )    1.5 

   ⇒ ∣ h ( φ  
3
  )  ∣ ≤ 0.004L , where 

the value of the gravity constant is taken as g = 9.8 m/s2.

For practical applications, the cargo swing is always within 10 degrees, that is, ∣θ(t) ∣  ≤ π/18 

rad. In this case, the approximations of sinθ ≈ tan θ ≈ θ and secθ = cos−1θ ≈ 1 are valid. In this 
sense, φ

1
(t) in Eq. (10) can be approximated as follows:

   φ  
1
   (t)  ≈ x + L ln  (1 + θ)  ≈ x + L𝜃,  (12)

which is right at the horizontal position of the cargo. Also, the cargo swing angular velocity 

satisfies  ∣  θ   ̇   (t)  ∣ < < 1  rad/s; considering that the wire length L‘s order of magnitude is usually 

10 m,  h ( φ  
3
  )   φ  

4
  2  = 0.004  Lg   2    θ   ̇     2   sec   4  θ ≈ 0.384L   θ   ̇     2   sec   4  θ ≈ 0  holds; hence,  h ( φ  

3
  )   φ  

4
  2   is negligible and can be 

incorporated as part of the unactuated lumped perturbation δθu(t) that will be introduced 

later. For simplicity of denotation, we define

   φ  
1
   = x + L𝜃,  φ  

2
   =   φ   ̇    

1
  .  (13)

Therefore, the crane dynamics can be described by

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

  φ   ̇    
1
   =  φ  

2
  ,

  
  φ   ̇    

2
   =  ϕ  

3
   +  δ  

𝜃u
  ,
     φ   ̇    

3
   =  ϕ  

4
  ,  

  φ   ̇    
4
   = − g (v +  δ  

x
   +  δ  

𝜃a
  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ,

    (14)

wherein δθu(t) represents the unactuated lumped perturbation term mainly consisting of 

dθ/mL cos θ.
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2.2. Control objective

For crane control during the transportation process (between the hoisting and lowering 

stages), the kernel objective is to transfer the cargo from its initial position to the desired 

position (destination) and then keep it stationary right above the destination so that further 

actions (e.g., lowering) can be taken.

Hence, the preliminary task is to make the cargo reach the destination by appropriately con-

trolling the trolley motion, which can be mathematically depicted as follows:

   φ  
1
   = x + L𝜃 →  p  

dx
  .  (15)

To make this process smooth enough, instead of set-point control (i.e., directly using p
dx

 as the 

reference), we want the cargo to follow a smooth time-varying trajectory r
x
(t), which satisfies 

the following conditions:

   lim  
t→ t  

f1
  
     r  

x
   (t)  =  p  

dx
  , ∣  r  

x
   (i)   ∣ ≤ π, i = 1, 2, 3, 4,  (16)

where t
f1
 denotes the consumed time for r

x
(t) to reachp

dx
, and π

i
(i = 1, 2, 3, 4) stands for the cor-

responding upper bound for the i-th order derivative forr
x
(t), respectively.

When there are no external perturbations appearing in the unactuated dynamics (that is, 

δθu ≡ 0 in Eq. (14)), we need also to damp out the cargo swing θ(t) at the same time, namely,

  θ → 0 ⇒ x →  p  
dx

  .  (17)

However, in the case of persistent, non-vanishing perturbations in the unactuated component 

(i.e., δθu(t) ≠ 0), there does not exist any control action that can completely damp out θ(t) while 

keeping the cargo stationary right above the destination. Suppose that there exists such a 

controller u′(t) that could eliminate the cargo swing, namely,

  θ (t)  = 0,  θ   ̇   (t)  = 0 ⇒  ϕ  
3
   (t)  = − g tan θ (t)  = 0,  (18)

and make the cargo stay stationary at the destination in the sense that

   φ  
1
   (t)  =  p  

dx
  ,   φ   ̇    

1
   (t)  = 0,  φ  

2
   (t)  = 0,   φ   ̇    

2
   (t)  = 0, ∀ t ≥  t  

f2
  ,  (19)

with t
f2
 being the settling time, then it would follow, by inserting Eq. (18) and Eq. (19) into the 

second equation of Eq. (14), that

   δ  
𝜃u

   =   φ   ̇    
2
   −  ϕ  

3
   = 0,  (20)

which obviously contradicts with the fact that δθu ≠ 0; thus the existence of such a control-
ler u′(t) is impossible. This fact illustrates the great challenge that will be faced with when 
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controlling the crane system in the presence of persistent perturbations in the unactuated 

dynamics. On the other hand, since δθu(t) is usually unknown, the control problem becomes 

even more challenging.

Based on the analysis claimed above, in accordance with the fact whether δθu in the unactu-

ated dynamics is vanishing or not, the control objective of this chapter is stated as follows:

• Case 1. Non-vanishing perturbations in the unactuated dynamics. Drive the unactuated cargo to 

the desired destination and keep it stationary over the destination thereafter, that is,

   lim  
t→∞

     φ  
1
   (t)  =  p  

dx
  ,  lim  

t→∞
      φ   ̇    

1
   (t)  = 0.  (21)

• Case 2. Vanishing or no/negligible perturbations in the unactuated dynamics. Drive both the trol-

ley and the unactuated cargo to the desired destination, in the sense that

   lim  
t→∞

     φ  
1
   (t)  =  p  

dx
  ,  lim  

t→∞
    x (t)  =  p  

dx
  ,  lim  

t→∞
      φ   ̇    

1
   (t)  = 0,  lim  

t→∞
     x   ̇   = 0 ⇒  lim  

t→∞
    θ (t)  = 0,  lim  

t→∞
     θ   ̇   (t)  = 0.  (22)

To achieve the control objective, together with Eq. (16), let the following error signals be 

defined:

   e  
1
   =  φ  

1
   −  r  

x
  ,  e  

2
   =  φ  

2
   −   r   ̇    

x
  ,  e  

3
   =  ϕ  

3
  ,  e  

4
   =  ϕ  

4
  .  (23)

Thus, we are led to the following open-loop error system:

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

  e   ̇    
1
   =  e  

2
  ,

  
  e   ̇    

2
   =  e  

3
   +  δ  

𝜃u
   −   r ̈    

x
  ,
     e   ̇    

3
   =  e  

4
  ,  

  e   ̇    
4
   = − g (v +  δ  

x
   +  δ  

𝜃a
  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ,

    (24)

which is the basis for the observer-controller design and analysis in the section that follows.

3. Main results

In order to achieve the control objective claimed in the previous section, we will propose a 

perturbation observer-based robust control scheme. More precisely, to deal with the unac-

tuated unknown persistent perturbations, an augmented-state observer will be constructed. 

Then, we will present a novel robust control law, which can achieve superior control perfor-

mance and provide the corresponding theoretical stability analysis.

3.1. Observer design

The fact that the perturbation term δθu(t) is unactuated and unknown brings much difficulty 
for the controller design and analysis and it makes traditional robust control methods not 
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applicable. As a means to achieve the aforementioned control objective, it is required to figure 
out a suitable strategy that can deal with δθu(t). Toward this end, before controller develop-

ment, we will first construct an augmented observer which can recover the lumped perturba-

tion term δθu(t) appearing in the unactuated dynamics. Then, we treat δθu(t) as an augmented 

state variable. The benefit of doing so is that the perturbation observer design procedure 
would become more concise and clear. By following this line, the augmented error system for 

Eq. (24) is established as follows:

   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

  e   ̇    
1
   =  e  

2
  ,

  

  e   ̇    
2
   =  e  

3
   +  e  

5
   −   r ̈    

x
  ,

   

  e   ̇    
3
   =  e  

4
  ,

  

  e   ̇    
4
   = − g (v +  δ  

x
   +  δ  

𝜃a
  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ,

       e   ̇    
5
   =  e  

6
  ,  

  e   ̇    
6
   =  e  

7
  ,

  

⋮

  

  e   ̇    
n+1

   = 0,

  

y =  e  
1
  

     (25)

where we have considered δθu(t) as an augmented state variable e
5
(t) and its derivatives as 

e
6
(t), e

7
(t), ⋯, e

n + 1(t), and y(t) is the corresponding system output signal. In this chapter, the 

signals e
1
(t), e

3
(t) and e

4
(t) are measurable, and we merely need to fabricate an observer with 

the aim of recovering the lumped perturbatione
5
(t). In order to reduce the computational com-

plexity, noting also that θ
x
(t) and θθa(t) are unavailable for feedback, we intend to construct 

a reduced-order perturbation observer. For this purpose, consider the following subsystem:

   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

  e   ̇    
2
   =  e  

3
   +  e  

5
   −   r ̈    

x
  ,

   

  e   ̇    
5
   =  e  

6
  ,

  
  e   ̇    

6
   =  e  

7
  ,
  

⋮
  

  e   ̇    
n+1

   = 0,

  

 y   '  =  e  
2
  ,

     (26)

which is part of the augmented error system shown in Eq. (25), where y′(t) is regarded as the 

new output. It is not difficult to check that the reduced-order augmented-state system shown 
in Eq. (26) is observable, and the detailed analysis can be found in Appendix A. Based on the 

structure of Eq. (26), we design the following reduced-order augmented-state observer:

   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

   e ̂     ̇    
2
   =  e  

3
   +   e ̂    

5
   −   r ̈    

x
   −  λ  

2
   (  e ̂    2   −  y   ′ ) ,

    

   e ̂     ̇    
5
   =   e ̂    

6
   −  λ  

5
   (  e ̂    2   −  y   ′ ) ,

      e ̂     ̇    
6
   =   e ̂    

7
   −  λ  

6
   (  e ̂    2   −  y   ′ ) ,   

⋮

  

   e ̂     ̇    
n+1

   = −  λ  
n+1

   (  e ̂    2   −  y   ′ ) ,

     (27)
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where λ
2
, λ

5
, λ

6
, ⋯, λ

n + 1 denote the observer gains. Define the following error signals:

   ξ  
i
   =   e ̂    

i
   −  e  

i
  , i = 2, 5, 6, ⋯, n + 1,  (28)

and denote the corresponding error vector by

  ξ   (t)  =   [ ξ  
2
   (t)   ξ  

5
   (t)   ξ  

6
   (t)  ⋯  ξ  

n+1
   (t) ]    ⊤ .  (29)

Then, one can subtract Eq. (26) from Eq. (27) to derive the following observer error system:

    ξ   ̇   = Ω ξ,  (30)

where Ω ∈ R(n − 2) × (n − 2) is defined as:

  Ω =  

⎛

 ⎜ 

⎝

 

−  λ  
2
  

  

1

  

0

  

⋯

  

0

  

0

   

−  λ  
5
  

  

0

  

1

  

⋯

  

0

  

0

   
−  λ  

6
  
  

0
  

0
  

⋱
  

0
  

0
   

⋮
  

⋮
  

⋮
  

⋮
  

⋱
  

⋮
   

−  λ  
n
  

  

0

  

0

  

⋯

  

0

  

1

   

−  λ  
n+1

  

  

0

  

0

  

⋯

  

0

  

0

  

⎞

 ⎟ 

⎠

 .  (31)

As stated previously, the system shown in Eq. (26) is observable. Hence, without difficulty, 
we are admitted to choose a proper set of λ

2
, λ

5
, λ

6
, ⋯, λ

n + 1 conveniently via pole placement, 

such that Ω is a Hurwitz matrix with the eigenvalues’ real parts being different from each other. In 

this sense,

   ξ  
i
   =   e ̂    

i
   −  e  

i
   → 0, i = 2, 5, 6, ⋯, n + 1,  (32)

exponentially fast, which indicates that the designed perturbation observer shown in Eq. (27) 

can online recover the perturbations.

In addition, it can be obtained from Eq. (30) that the trajectories of the observer error signals 

are represented by

  ξ = exp  (Ωt) 𝝃 (0) .  (33)

Since we have rendered, by proper pole placement, that the poles (i.e., the eigenvalues of Ω) 
of the closed-loop system shown in Eq. (30) have different negative real parts, there exists an 
invertible matrix Γ ∈ R(n − 2) × (n − 2) that can transform Ω into a diagonal matrix, that is,

   Γ   −1  Ω𝛤 = Λ,  (34)

where Λ = diag {λ
1
, λ

2
, ⋯, λn - 2} with λ

i
, i = 1, 2, ⋯, n − 2 being the (n − 2) eigenvalues of Γ. There-

fore, we can rewrite the exponential matrix exp(Ωt) and  ξ (t) as [39]
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  exp   (  Ωt )    = Γ exp   (  Λt )    Γ   −1  ⇒ ξ = Γ exp   (  Λt )    Γ   −1  ξ  (  0 )   .  (35)

Taking the Euclidean norm for both sides of Eq. (35), we are led to the following results:

   
  ‖𝝃‖   

2
   =   ‖Γ exp  (𝛬t)   Γ   −1  𝝃 (0) ‖   

2
   ≤   ‖Γ exp  (𝛬t)   Γ   −1 ‖   

 m  ∞  
   ⋅   ‖𝝃 (0) ‖   

2
  
      

       ≤   ‖Γ‖   
 m  ∞  

   ⋅   ‖ Γ   −1 ‖   
 m  ∞  

   ⋅   ‖exp  (𝛬t) ‖   
 m  ∞  

     ‖𝝃 (0) ‖   
2
   ≤  (n − 2)  exp  ( λ  

max
   t)  ⋅   ‖Γ‖   

 m  ∞  
   ⋅   ‖ Γ   −1 ‖   

 m  ∞  
   ⋅   ‖𝝃 (0) ‖   

2
  ,   

  (36)

where λ
max

 = maxi = 1, 2, ⋯, n - 2{λi
}, ‖⋅‖

2
 denotes the Euclidean norm, ‖⋅‖

m∞ represents the m∞-

norm for matrices1, which are compatible norms2. It is further implied from Eq. (36) that

  ∣  ξ  
i
   (t)  ∣ ≤   ‖ ξ‖   

2
   ≤   ξ ¯¯   ≜  (n − 2)  exp  ( λ  

max
   t)  ⋅   ‖Γ‖   

 m  ∞  
   ⋅   ‖ Γ   −1 ‖   

 m  ∞  
   ⋅   ‖ξ (0) ‖   

2
  .  (37)

Using the pole assignment technique, one can derive the values for λ
2
, λ

5
, λ

6
, ⋯, λ

n + 1 and the 

expression for Ω. Further, with the aid of such software as MATLAB, it is easy to calculate 
‖Γ‖

m∞ ⋅ ‖Γ−1‖
m∞; hence, the bound for ∣ξ

i
(t)∣, as shown in Eq. (37), can be computed without 

difficulty.

3.2. Controller development and stability analysis

To achieve robust control in the presence of uncertainties or external perturbations, we will 

develop a new observer-based sliding mode controller. The fundamental idea of the sliding 

mode control method is to construct a sliding manifold (surface) on which the system state is 

convergent and then develop a suitable control law that renders the state reaches the manifold 

within finite time. Traditionally, the key step is constructing an appropriate sliding surface, 
and the corresponding controller can usually be obtained straightforwardly.

However, the major drawback of most currently available sliding mode control methods is 

that they are merely capable of tackling uncertainties or perturbations in the actuated part, 

and when uncertainties or perturbations are present in the unactuated component, their per-

formance will degrade significantly and even become unstable. To illustrate this point, we 
will show some brief analysis for the conventional sliding mode control approach. More pre-

cisely, for the open-loop error system shown in Eq. (24), one will design the conventional 

sliding manifold, denoted by ζ(t) in the following fashion:

  ζ =  e  
1
   + α  e  

2
   + β  e  

3
   + γ  e  

4
  ,  (38)

where α, β, and γ are sliding slopes chosen such that the polynomial 1 + αs + βs2 + γs3 = 0 is 
Hurwitz, with s being the complex variable. It is not difficult to design a control law that 
drives the system state variables to ζ(t) such that ζ(t) = 0 after certain finite time   t  

 f  
3
  
  , i . e . , ζ (t)  = 0,  

ζ   ̇   (t)  = 0, ∀ t ≥  t  
 f  
3
  
   . By recursively using the first three equations in Eq. (24) and regrouping the 

1For a square matrix A = (aij)
n × n ∈ Rn × n, ‖A‖

m∞ = nmax
i, j ∣ aij∣ is defined as the m∞-norm for A.

2A matrix norm ‖⋅‖
m
 ∈ Rn × n is said to be compatible with a vector norm ‖⋅‖

v
 ∈ Rn if ‖Ax‖

v
 ≤ ‖A‖m ⋅ ‖x‖v, where A ∈ R 

n × nand 

x ∈ R. It is not difficult to verify that the m∞-norm for matrices is compatible with the Euclidean norm for vectors.
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resulting terms, one can derive from ζ(t) = 0 and Eq. (38) that the state variable e
1
(t) is domi-

nated by the following dynamics on the sliding manifold:

   e  
1
   + α   e   ̇    

1
   + β   e ̈    

1
   + γ  e  

1
   (3)   = − β (  r ̈    

x
   −  δ  

𝜃u
  )  − γ ( r  

x
   (3)   −   δ   ̇    

𝜃u
  ) .  (39)

Clearly, if the perturbation terms   δ  
𝜃u

   (t) ,   δ   ̇    
𝜃u

   (t)   appearing in the unactuated dynamics are non-

vanishing, e
1
(t) will never tend to zero.

As indicated from the above-mentioned analysis, to make sliding mode control applicable to 

crane systems with unknown persistent perturbations in the unactuated component, it is needed 

to construct a new sliding manifold to improve the robust performance of the control sys-

tem. To do so, on the basis of the designed perturbation observer in the previous subsec-

tion, we design the following sliding manifold that will be used in the subsequent controller 

development:

  ε =  e  
1
   + α  e  

2
   + β  (   e  

3
   +   e ^

    
5
   −   r ̈    

x
   )    + γ  (   e  

4
   +   e ^

    
6
   −  r  

x
   (  3 )    )   .  (40)

where α, β, γ are defined in Eq. (38) and     e ̂    
5
   (t) ,    e ̂    

6
   (t)   are the observer-recovered signals for the 

lumped perturbation term [see Eq. (27)]. Before giving the expression for the auxiliary “con-

trol input” v(t), we first construct the following non-negative scalar function V(t):

  V =   1 __ 
2
    ε   2  =   1 __ 

2
     [ e  

1
   + α  e  

2
   + β ( e  

3
   +   e ̂    

5
   −   r ̈    

x
  )  + γ  e  

4
   ( e  

4
   +   e ̂    

6
   −  r  

x
   (  3 ) ]    2 .  (41)

The derivative of ε(t) with regard to time can be obtained as follows:

   
           ε   ̇   =  e  

2
   + α ( e  

3
   +  e  

5
   −   r ̈    

x
  )  + β [ e  

4
   +   e ̂    

6
   −  λ  

5
   (  e ̂    

2
   −  e  

2
  )  −  r  

x
   (3)  ]  − 𝛾g (v +  δ  

x
   +  δ  

𝜃a
  )   sec   2  θ

       
    − γ [2g   θ   ̇     2   sec   2  θ tan θ −   e ̂    

7
   +  λ  

6
   (  e ̂    

2
   −  e  

2
  )  +  r  

x
   (4)  ] ,

                            (42)

where Eq. (25) and Eq. (27) have been employed for implications. Then, in view of the struc-

ture of Eq. (42), v(t) is developed in the following fashion:

   
v =   1 _______ 

g𝛾  sec   2  θ   ⋅  { e  
2
   + α ( e  

3
   +   e ̂    

5
   −   r ̈    

x
  )  − γ [ r  

x
   (4)   −   e ̂    

7
   +  λ  

6
   (  e ̂    

2
   −  e  

2
  ) ]  

      
   + β [ e  

4
   +   e ̂    

6
   −  λ  

5
   (  e ̂    

2
   −  e  

2
  )  −  r  

x
   (3)   +  k  

u
   sign (ε) ] }  − 2   θ   ̇     2  tan θ +  k  

a
   sign (ε) 

   (43)

where

   k  
a
   ≥    δ ¯¯    

x
   +    δ ¯¯    θ  ,  k  

u
   >   α __ β    ξ ¯¯  .  (44)

are positive control gains [see Eqs. (7) and (37) for the definitions of     δ ¯¯    
x
  ,    δ ¯¯    

θ
   , and    ξ ¯¯   ], and

  sign (⋆)  =  { 
⋆ / ∣ ⋆ ∣,

  
⋆ ≠ 0,

   
0,

  
⋆ = 0,

     (45)
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denote the standard sign function. We can further substitute Eq. (43) into Eq. (8) to obtain the 

ultimate control law as follows:

   

u = −    (M + m  sin   2  θ) L
  ___________ 

g𝛾 sec θ   ⋅  { e  
2
   + α ( e  

3
   +   e ̂    

5
   −   r ̈    

x
  )  − γ [ r  

x
   (4)   −   e ̂    

7
   +  λ  

6
   (  e ̂    

2
   −  e  

2
  ) ]  

           + β [ e  
4
   +   e ̂    

6
   −  λ  

5
   (  e ̂    

2
   −  e  

2
  )  −  r  

x
   (3)   +  k  

u
   sign (ϵ) ]  +g𝛾  sec   2  θ [2   θ   ̇     2  tan θ −  k  

a
   sign (ϵ) ] }         

    −  mL   θ   ̇     2  sin θ −  (M + m) g tan θ +  f  
r
  .

    

                                                                                                                                                            (46)

The main results for the proposed control scheme are summarized by the theorem that follows.

Theorem 1. The designed control law shown in Eq. (46), together with the reduced-order aug-

mented-state observer shown in Eq. (27), can achieve the control objective claimed by Case 1 

in the case of unactuated persistent non-vanishing disturbances or Case 2 if the unactuated 

disturbances are vanishing/negligible.

Proof: Consider V(t) defined in Eq. (41) as a Lyapunov function candidate, and its time deriva-

tive is given by

   V   ̇   = ε ε   ̇  .  (47)

By inserting Eq. (43) into the expression of   ε   ̇   (t)   in Eq. (42) and regrouping the common terms, 

one can obtain the following equation:

   
 ε   ̇   = α ( e  

5
   −   e ̂    

5
  )  − β  k  

u
   sign (ε)  − g𝛾  sec   2  θ [ k  

u
   sign (ε)  +  δ  

x
   +  δ  

𝜃a
  ] 
      

  = −  𝛼𝜉  
5
   − β  k  

u
   sign (ε)  − g𝛾  sec   2  θ [ k  

u
   sign (ε)  +  δ  

x
   +  δ  

𝜃a
  ] ,

    (48)

upon the use of the relationship in Eq. (28). Then, the following results are straightforward 

after the substitution of Eq. (48) into Eq. (47):

   

 V   ̇   = − β  k  
u
   ∣ ε ∣ −  𝛼𝜉  

5
   ε + g𝛾  sec   2  θ [ k  

u
   | ε | + ( δ  

x
   +  δ  

𝜃a
  ) ε] 

          ≤ −  (β  k  
u
   − α |  ξ  

5
   |  )  ∣ ε ∣ − g𝛾  sec   2  θ ( k  

a
   −  (  |  δ  

x
   | +| δ  

𝜃a
   |  ) )  ∣ ε ∣       

    ≤ −  (β  k  
u
   − α |  ξ  

5
   |  )   √ 

___
 2V  ,

    

                                                                                                                                                            (49)

where the gain conditions shown in Eq. (44) have been utilized. The conclusion of Eq. (49) 

indicates that V(t), and hence ε(t), converges to zero in finite time. Further, on the sliding man-

ifold where ε(t) = 0, the system state variables satisfy the following dynamic equation array:

   { 
 e  

1
   + α   e   ̇    

1
   + β   e ̈    

1
   + γ  e  

1
   (3)   = −  𝛽𝜉  

5
   −  𝛾𝜉  

6
  ,
    

  ξ    ̇   = Ω ξ.
     (50)

As by pole assignment, the matrix Ω ∈ R(n − 2) × (n − 2) is Hurwitz, and α, β and γ also render 

1 + αs + βs2 + γs3 = 0 Hurwitz; it is clearly seen that the entire closed system Eq. (50) is exponen-

tially stable at the equilibrium point, and hence
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 e  

1
   (t)  =  φ  

1
   (t)  −  r  

x
   → 0,  e  

2
   (t)  =   e   ̇    

1
   (t)  =   φ   ̇    

1
   (t)  −   r   ̇    

x
   → 0

           ⇒   e   ̇    
2
   (t)  =   e ̈    

1
   (t)  → 0,   e ̈    

2
   (t)  =  e  

1
   (3)   (t)  → 0,

    (51)

exponentially fast, which indicates the cargo motion tracks the planned trajectory r
x
(t) in an 

exponential fashion. Since r
x
(t) tends to p

dx
 within t

f1
 [see Eq. (16)], it is easily shown that

   lim  
t→∞

     φ  
1
   (t)  =  p  

dx
  ,  lim  
t→∞

      φ   ̇    1   (t)  = 0,  (52)

which is just the result of Eq. (21). In addition, as    r ̈    
x
   (t) ,  r  

x
   (3)   (t)  → 0  as t → 0 by definition [see 

Eq. (16)], it is implied by substituting the result of    e   ̇    
2
   (t)  → 0  into the second and third equations 

of Eq. (24) that

   e  
3
   →   e   ̇    

2
   −  δ  

𝜃u
   → −  δ  

𝜃u
  ,   e   ̇    

3
   →   e ̈    

2
   −   δ   ̇    

𝜃u
   → −   δ   ̇    

𝜃u
  ,  e  

4
   →   e   ̇    

3
   → −   δ   ̇    

𝜃u
  ,  (53)

wherein the conclusions in Eq. (52) have been employed. The results in Eq. (53) indicate that   

e  
3
   (t) ,   e   ̇    

3
   (t)   are convergent to their respective equilibriums drifted by the unactuated perturba-

tions. Thus, the result of Case 1 stated in the control objective is proven.

Subsequently, we proceed to prove the result of Case 2 where the perturbation term δθu(t) in 

the unactuated dynamics is vanishing [i.e.,   δ  
𝜃u

   → 0,   δ   ̇    
𝜃u

   → 0 ] or negligible [i.e.,   δ  
𝜃u

   (t)  = 0,   δ   ̇    
𝜃u

   (t)  = 0 ]. 

Therefore, in such cases, it is straightforward to indicate from Eq. (53) that

   e  
3
   = − g tan θ → 0,  e  

4
   = − g  θ   ̇    sec   2  θ → 0 ⇒ θ = 0,  θ   ̇   = 0,  (54)

where the definitions in Eq. (10) and Eq. (23) have been used. According to the definition of 
ϕ

1
(t) = x(t) + Lθ(t) given in Eq. (13), the results in Eq. (52) and Eq. (54) directly yield the follow-

ing conclusions:

   lim  
t→∞

    x (t)  =  p  
dx

  ,  lim  
t→∞

     x   ̇   (t)  = 0.  (55)

Collecting up Eqs. (52, 54, 55), the results claimed in Eq. (22) of Case 2 are hence proven. The 

entire theoretical proof for the theorem is completed.

4. Simulation verification

In this section, by using the MATLAB/Simulink software, some simulation results are included 
to verify the effectiveness of the proposed observer-based robust control method.

For the control objectives of the two cases stated in Eq. (21) and Eq. (22), the simulation is 

implemented through two groups as follows:

• Group 1. The perturbations in the unactuated dynamics are non-vanishing. The perturba-

tion dθ(t) is set as a constant value dθ(t) = 1 and a time-varying function dθ(t) = 0.5 cos(0.1t)
,
 

respectively.
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• Group 2. The perturbations in the unactuated dynamics are vanishing or negligible. The 

perturbation dθ(t) is set as a time-varying function dθ(t) = 1.5e−t.

For all the cases, by setting the system parameters as M = 6 kg, m = 2.5 kg, L = 1.2 m, g = 9.8 m/s2, the 

controller parameters asλ
2
 = 10, λ

5
 = 30, λ

6
 = 55, λ

7
 = 25, α = 2, β = 1, γ = 0.2, ε = 0.01, k

u
 = 60, k

a
 = 0.1, 

and the to-be-tracked trajectory in Eq. (16) as r
x
(t) = 3.5, the simulation results are obtained and 

are shown in Figures 2–4.

Figures 2 and 3 show the simulation results of Group 1 where the solid lines denote the 

simulation results and the dash lines denote the desired trajectories. In Figure 2, the per-

turbation dθ(t) is set as a constant value dθ(t) = 1, and in Figure 3, the perturbation is set as a 

time-varying function dθ(t) = 0.5 cos(0.1t). It can be seen from Figures 2 and 3 that when there 

exist persistent (non-vanishing) perturbations in the unactuated dynamics, by applying the 

proposed controller, the unactuated cargo is driven to the desired destination and is kept 

stationary. Therefore, the objectives stated in Case 1 [see Eq. (21)] are achieved effectively. By 
dealing with the robust control for crane systems when the perturbations are non-vanishing, 

the results of Group 1 validate the robustness of the presented controller.

Figure 4 shows the results of Group 2. It is clear that the proposed observer-based robust 

control method can achieve the objectives stated in Case 2 [see Eq. (22)] that both the trolley 
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Figure 2. The simulation results of the proposed controller when dθ(t) = 1 (solid line – simulation results, dash line – 
desired trajectory).
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Figure 3. The simulation results of the proposed controller when dθ(t) = 0.5 cos(0.1t) (solid line – simulation results, dash 

line – desired trajectory).
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Figure 4. The simulation results of the proposed controller when dθ(t) = 1.5e−t (solid line – simulation results, dash line – 

desired trajectory).
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and the unactuated cargo are driven to the desired destination, when there are no/negligible 

or vanishing perturbations dθ(t) = 1.5e−t in the unactuated dynamics.

To sum-up, the simulation results indicate that the proposed observer-based robust controller 

can achieve robust control in the presence of uncertainties or external perturbations, which is 

consistent with the theoretical analysis.

5. Concluding remarks

Considering unknown persistent perturbations in unactuated dynamics, this chapter designs 

an observer-based robust control method for underactuated crane systems. Specifically, a 
reduced-order augmented-state observer is designed to recover the lumped perturbation 

terms in unactuated dynamics. Further, based on the observer, a new sliding manifold is 

constructed to improve the robust performance of the control system. Then, the state vari-

ables are made to stay on the manifold by applying a designed robust control law in the 

presence of non-vanishing perturbations in unactuated dynamics. Finally, the convergence 

is proved in this chapter theoretically by using Lyapunov control theories. Moreover, the 
proposed observer-based robust controller is verified to be effective and robust by numerical 
simulation results.

Appendix

The system shown in Eq. (26) can be rewritten as follows:

   
 𝝌   ̇   = A𝝌 +   (  e  3   −   r ̈    

x
    0  0  ⋯  0  0 )    ⊤ ,

    
 y   ′  = C𝝌

    (56)

where the system variable vector χ(t) is defined as  𝝌 =   (  e   ̇    2  ,   e   ̇    5  ,   e   ̇    6  , ⋯ ,   e   ̇    
n+1

  )    ⊤  . The system parameter 

matrix A ∈ R(n − 2) × (n − 2) and C ∈ R(n − 2) are
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 ,
    

C =  ( 1  0  0  ⋯  0  0 ) .

    (57)

Then, considering the observability criteria, we can first derive the observable matrix Ψ as 

follows:
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  Ψ =  

⎛

 ⎜ 

⎝

  

C

  
CA

   CA   2   
⋮

  

 CA    (n−3)  

 

⎞

 ⎟ 

⎠

  =  

⎛

 ⎜ 

⎝

 

1

  

0

  

0

  

⋯

  

0

  

0

   

0

  

1

  

0

  

⋯

  

0

  

0

   
0
  

0
  

0
  

⋯

  
0
  

0
   ⋮  ⋮  ⋮     ⋮  ⋮   

0

  

0

  

0

  

⋯

  

1

  

0

   

0

  

0

  

0

  

⋯

  

0

  

1

   

0

  

0

  

0

  

⋯

  

0

  

0

  

⎞

 ⎟ 

⎠

 .  (58)

It is clear that Ψ ∈ R(n − 2) × (n − 2), whose rank is rank(Ψ) = A = n − 2. Thus, the system shown in 
Eq. (26) is observable.
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