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1. Introduction

In a bioprocess it is desired to produce high amounts of biomass or metabolites such as
vitamins, antibiotics, and ethanol, among others. The measurement of biological parameters
as the cell, by-product concentrations and the specific growth rate are essential to the
successful monitoring and control of bioprocesses (Horiuchi & Kishimoto, 1998). Adequate
control of the fermentation process reduces production costs and increases the yield while at
the same time achieve the quality of the desired product (Yamuna & Ramachandra, 1999).
Nevertheless, the lack of cheap and reliable sensors providing online measurements of the
biological state variables has hampered the application of automatic control to bioprocesses
(Bastin & Dochain, 1990). This situation encourages the searching of new software sensors in
bioprocesses.

A state observer is used to reconstruct, at least partially the state variables of the process.
Two classes of state observers or software sensors for (bio)chemical processes can be found
in the literature (Dochain, 2003). A first class of observers called asymptotic observers, is
based on the idea that the uncertainty in bioprocess models is located in the process kinetics
models. A second class is based on the perfect knowledge of the model structure
(Luenberger, Kalman observers and nonlinear observers). Different applications of state
observers in bioprocess are reported in the literature (Cazzador & Lubenova, 1995; Farza et
al., 2000; Guay & Zhang, 2002; Lubenova et al., 2003; Oliveira et al., 2002; Soh & Cao, 1999;
Veloso et al., 2007).

Fuzzy logic has become popular in the recent years, due to the fact that it is possible to add
human expertise to the process. Nevertheless, in the case where the nonlinear model and all
the parameters of a process are known, a fuzzy system may be used. A first approach can be
done using the Takagi-Sugeno fuzzy model (Takagi & Sugeno, 1985), where the consequent
part of the fuzzy rule is replaced by linear systems. This can be attained, for example, by
linearizing the model around operational points, getting local linear representation of the
nonlinear system.
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156 New Developments in Robotics, Automation and Control

Another way to obtain a model can be achieved using the method of sector nonlinearities,
which allows the construction of an exact fuzzy model from the original nonlinear system
by means of linear subsystems (Tanaka & Wang, 2001). From this exact model, fuzzy state
observers and fuzzy controllers may be designed based on the linear subsystems. Different
fuzzy logic applications to bioprocesses can be found in the scientific literature (Genovesi et
al., 1999, Ascencio et al., 2004; Karakazu et al., 2006). In this chapter a Takagi-Sugeno fuzzy
observer based on sector nonlinearities is proposed and applied to a continuous nonlinear
baker’s yeast fermentation process. The observer gains are calculated using linear matrix
inequalities. An interesting feature of this model is that it can be divided in two models: a
respiro-fermentative (RF) model with ethanol production and a respirative (R) model with
ethanol consumption. The model can switch to the RF -R- RF model depending on whether
the yeasts are producing or consuming ethanol.

2. Fuzzy Systems Preliminaries

A nonlinear system may be represented by linear subsystems called Takagi-Sugeno, (figure
1). The Takagi-Sugeno fuzzy models are used to represent nonlinear dynamics by means of
a set of IF-THEN rules. The consequent parts of the rules are local linear systems obtained
from specific information about the original nonlinear plant.

\

Fig. 1 Takagi-Sugeno representation for a nonlinear system

The ith rule of a continuous fuzzy model has the following form:
Model Rule i:
If z1(t) is i1 and ... and z(f) is @ip.
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THEN #(t) = Ax(1) + Bu(t) =123, 1

(1) =Cal)

1)

where @ is a fuzzy set and r is the number of rules in the fuzzy model; x(t) € 9 is the state
vector, u(t)e¥ is the input vector, y(t)e¥% is the output vector, A;e¥m, B;e 9fxm, and
Cie 9t are suitable matrices, and z(t)=[zi(f),...,z,(t)] is a known vector of premise variables
which may coincide or partially depend on the state x(t).

Given a pair of (x(f), u(t)) and using a singleton fuzzifier, product inference and center of
gravity defuzzifier, the aggregated Takagi-Sugeno fuzzy model can be inferred as:

()= 1y (=() {Ax(0) + Bu(t)},

r 2
y(t) = Ehi(z(t))Cix(t),
where
P
Hl(pii(zj(t))
__i=
h Z(t))_ rop 3)
> 1 Q)l] Zj(t))
i=1j=1
for all t. The term ¢;j(zj(t)) is the membership value of z() in ¢;;. Since
P L p
]E{‘Pz] (Z] (t)) 20 and 5}31% (Zj (t)) >0, i=1,.,r,
(4)

for all ¢.

2.1 Sector Nonlinearity

A nonlinear system may also be represented by sectors (Tanaka & Wang, 2001). Consider a
nonlinear system given by x(7) = f(x(#)) where f(0) = 0. A global sector is found when
x(t) =f(x(t)) €[s1 s2]x(t), where s1x(t) and syx(t) are lines as shown in figure 2. A global sector
guarantees an exact fuzzy representation for the nonlinear model. Some times it is difficult
to find global sectors, in that case it is possible to find a local sector bounded by the region
-a< x(t) < a, as shown in figure 3.
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si1x()
f(x(t)) syx(t) sox(1)
F(x(1))

L --spx(®)

x(t) = a x(t)

Fig. 2 Global sector Fig. 3 Local sector

2.2 Fuzzy Observer

The state of a system is not always fully available, so it is necessary to use an observer to
reconstruct, at least partially the states variables of the process. This requires to satisfy the
condition

lim (x(t)-%()) =0 5)

where 3(1) denotes the state vector estimated by the fuzzy observer. There are two cases for

fuzzy observers design depending on whether or not z(f) depends on the state variables
estimated by a fuzzy observer (Tanaka & Wang, 2001). Given the Takagi-Sugeno fuzzy
model (1), the ith rule of a continuous fuzzy observer can be constructed as:
Observer Rule i

If z4(t) is @i1 and ... and z(¢) is @ip.

_— &éhi(z(t)){A,-a%<t)+B,»u(t>+I<i(y(t)—ﬁ(t»}» ©

y(£)=h; (z(1))Cix(t).

where Kiis the observer gain and j(¢) is the fuzzy observer output for the ith subsystem. If

z(t) depends on the estimated state variables, the observer consequent part takes the
following form:

=3 I (RO AR +Bu()+K (y(O)-i (1)},

THEN = 7)

It is possible to calculate the observer gains from the solution X, N; of the following
inequalities (Tanaka & Wang, 2001).
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X>0

A/ X-XA, +C/N] +NC, -2aX >0,
-A; X-XA; -A;X-XA +C/N] +NC;+C/N; +N.C,-4aX >0

1<j st hynh #Q

where A; is the state matrix and C; is the output matrix. The decay rate () is related with the
observer speed response. The inequalities (8) can be converted to linear matrix inequalities
by means of Shur’s complement (Braatz & VanAntwerp, 2000). The condition i <j s.t. h;( h;
# J means that inequalities (8) holds for all i < j excepting hiz(t)-hjz(t)=0 for all z(f). The
observer gain K;and the common positive definite matrix P can be obtained by means of

P=X1 K;=XIN; )
The fermentative mathematical model will now be described.

3. Fermentation Mathematical Model

The Saccharomyces cerevisiae yeast may grow on glucose following three metabolic pathways
(Sonnleitner & Képelli, 1986).

1.- Oxidative growth on glucose, in presence of oxygen (O;) the glucose (S) is consumed to
produce biomass (X) and carbon dioxide (CO,).

S+0,—*—> x + o, (10)

2.- Fermentative growth on glucose, in absence of oxygen the substrate is used to produce
biomass, carbon dioxide and mainly ethanol (E).

S—5>X+CO,+E (11)

3.- Oxidative growth on Ethanol, the ethanol produced by the fermentative pathway may
be consumed in presence of oxygen producing biomass and carbon dioxide.

E+0, X +CO, (12)

3.1 The Respiro-Fermentative and Respirative Fermentation Models
A continuous baker’s yeast culture can be represented by the following set of differential
equations
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. [ r (4]
xl :(lus +lus +lue)xl_Dx1

%, = (~kyu; —kypt )2, —=Dx, + DS,

(13)
g = (kypy —kypt, )%, — D,
%, = (~ksp, —kop)x, —Dx, + OTR
where the variables of model (13) are shown in table 1.
Variables Units
x1 = Biomass concentration g/1
x2 = Glucose concentration g/1
x3 = Ethanol concentration g/1
x4 = Dissolved oxygen concentration mgl
D = Dilution rate 1/h
Sin = Substrate concentration feed g/1
OTR=Ka(Csat- x4) = Oxygen transfer rate mg/lh
4. = Specific growth rate (oxidative growth on glucose) 1/h
4. = Specific growth rate (fermentative growth on glucose) 1/h
4. = Specific growth rate (oxidative growth on ethanol) 1/h
ki, ko, ks, ks, ks, ks = yield coefficients

Table 1. Variables used in the baker’s yeast model (13)

The oxygen transfer rate is given by OTR =Kya(Cst - x4) which may be split in two terms, one
that is constant and another one that depend on the dissolved oxygen.

~KL61X4 (14)

KaCse, (15)

Pormeleau (1990) suggested a reformulation of model (13) using two partial models: a
respiro-fermentative partial model (RF) with ethanol production and a respirative partial
model (R) with ethanol consumption. With this reformulation a split process model is
obtained, switching from the RF partial model to the R partial model and vice versa
depending on whether the system is consuming or producing ethanol. To precise these
ideas, consider a nonlinear system described by model (16-17), which can be written as

() = f,(x(t)) + Bu(t) + d, i=1,2 (16)

y(t) = h(x(t)), (17)
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where f;(x(t)) describe both the RF and R partial models, namely
(/“:_RF + /usr_RF)xl - Dx,
(_klﬂ: RF ~ k2/“sr re)X; — Dx,
fi = Ty - = frr (18)
kyug rpxy —Dxy
_kSIuso_RFxl -Dx, - K,ax, |
and for the R model
(/u:iR + /u:fR )x; — Dx,
—k,u’ x, —Dx
1 R™1 2
fr = = fr, (19)
—kyu, gxq —Dx,
_(_k5/1:_R - k6/‘:_R )x; —Dx, - K ax, |
The input vector and the manipulated variable are given by
B=[0,D,0,0]T, (20)
M(t)=Sin (21)

where T is the input vector transpose. As already said, OTR rate was divided in two terms,
the first one -Krax4 (14) was included in fzr (18) and fr matrices (19); the second term KpaCsat
(15), is taken as a known and constant perturbation (d) given by

d=10,0, 0, K,aCs]T

(22)

In the RF partial model, the metabolic pathways oxidative growth on glucose (10) and
fermentative growth on glucose (11) are present, therefore ethanol is produced. The specific
growth rates for the RF partial model are given by:

[
Hs rE = Yoz

ﬂ:_RF Y’(

(23)

In the R partial model, the pathway oxidative growth on glucose (10) is also present;
however, the specific growth rate is now given by:
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0 max xz
H s_R Yo qs (24)
Ks + X,
The oxidative growth on ethanol (12) for the R partial model depends on,
if <
ﬂs_R _ 9e, p Te, [ Te, (25)
e, 1 qe; = e,

where

max X Ki
9, =Y., : (26)
1 Ke+x, Ki+x,
_ Y max x4 _ Yo max x2 2,7
Go, = Y05e| g, q, (27)
2 K, +x, Y02 Ks+x,

The RF and R models cannot be enabled at the same time. A condition for the transition
between the RF-R-RF partial models is given by (Ferreira, 1995)

RF >R if 4, <0
(28)
R—>RF if x4, <0

The parameters values and the initial conditions for the RF and R partial models are given in
table 2; a complete description of all parameters can be found in (Ferreira, 1995). The
manipulated variable u(t)=S;, was set as a square signal as can be seen in figure 4.

Parameter Value Parameter Value
qmax 3.5 gS/gX h k]'l 0.49 gX/gS
o 0.236 gE/gX h k! 0.05 gX /g5
o 0.256 g0,/ g X h ks 01 gX/gE

K; 0.1 g/ ky? 0.72 gX/gE
K, 0.0001 g/ k51 1.2 ¢X /g0,
Ceat 7.0 mg/l ke 0.64 ¢gX/g0;
Sin 10 g/1 x1(0) 0.1 g/
K, 0.1 g/ x2(0) 0.02 g/1
K, 0.2 g/ x3(0) 0.15 g/1
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Parameter Value Parameter Value
Kia 100 1/h x4(0) 0.0066 mg/l
D 0.2 1/h

Table 2. Parameters values used in model (13)

12

10

S gl
87}

D 1 1 1 1 1
a 10 20 30 40 50 |=1n] 7o 80 S0 100

Tirme (h)

Fig. 4 Input square signal for the baker’s yeast model

4. The Takagi-Sugeno Fuzzy Exact Model

When the nonlinear dynamic model for the baker’s yeast is known, as well as all their
parameters, a fuzzy exact model can be derived from the given nonlinear model. This
requires a sector nonlinearity approach (Tanaka & Wang, 2001).

4.1 The Respiro-Fermentative Fuzzy Exact Model
To construct the RF exact fuzzy model we need to express the RF partial model as a
nonlinear system (16-17).

B M pptis ge=D 00 0 ‘x1il (o] 0]
X2 —kpl rp—lop -D 0 0 x2 D 0 @
. 1Ms _rRr—KoMs_RF N Sin"' KLaCt (29)
X3 k3:usr RE 0 -D 0 X3 0 0
X4 N x4 0 1
"l ke 00 -DKa] o S0 S
y(£) = h(x; () + h(xy (1)) (30)

Substituting the specific rates (23) in the frr(x(f)) matrix from model (29), we obtain the
matrix given by (31), for convenience called scheme frr ;
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scheme frr 1

y -
o X, X
Y, o Y2 Y2 -D 0 0 0
2 Y JKo+x, - Ks+x,
max max YO2 x4 max x2 xl
kYo q. +kYq, T — —k,Yrq, -D 0 0
2 Y )Ko+x, Ks+x X2
for @ = 0 4 2 (31)
RF_I
max Yoz Xy max %o %3
—k3Yqu E— + k3Yrqs 0 -D 0 X,
Yg Ko + x4 Ks + x2
x
A A 0 0 -D-Ka
2 Ko + Xy
However; the matrix frr(x(t)) may also be written as:
Scheme fRP_H
- y ) ) -
Yo ™ o vg™ 2| T p oy 0o 0
2 Y, )Ko+x, Ks+x,
max max Y02 Xy max Xy X
kY, g, +kYrg, T —= ~k,Yrq, -D 0 0 !
B 2 Y, JKo+x, Ks+x, Xy )
fRF_H - (3 )
max YO X max X x3
~k,Yrg" 2t kyYrq! - -D 0 X,
Yo Ko+ Xy Ks + X,
max X4
—k5Y02qC — 0 0 -D-Ka
L Ko + Xy ]
or as
Scheme fRF_HI
Y, ™ p oy 0 -y -2
2 K0+X4 K5+X2 Yo Ko+x4
Y, ;
m be m X m [e) X,
kY, g™ Y™ D 0 kY2 ||
27 Ko+x, Ks+x, Y, Ko+x, |[|*
fre_m = (33)
max 1 max ~Op Xq X3
0 k3Yrq -D —k3Yr . T ) x,
Ks +x, Y Ko+xy
max x4
—k5Y02 q, 0 0 -D-K,a
| ot X, |

Although there are another possible combinations to write the frr(x(f)) matrix, with these

approaches we obtain enough information to precise our point. From scheme fzr ; (31) two
nonlinearities can be detected
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_ 4 )
Ko+x, Ks + Xy

from scheme frr i1 (32) also two different nonlinearities can be observed

Xy Xq
NL, = ; NL, = (35)
Ko+ Xy Ks + x2

and from scheme frr i (33) three nonlinearities are present

X, X, X,
Ko+x, Ks+x, Ko +x,

Although with each matrix given by (31-33) the exact fuzzy model can be built, it will take
four linear subsystems (22) for the scheme frr ; and scheme frr ;; and eight linear subsystems
(23) for scheme frr_ 1. For convenience the nonlinearities (35) and the scheme frr i1 (32) are
chosen to build the RF exact fuzzy model, the reason will be evident in the next section

where the fuzzy observer is constructed. The premise variable sz (t) is defined as

NL, =28y ="+ K
1= % (t) = ’ forx4 =K, (37)
K0+x4

From equation (37) the maximum and minimum values of sz (t) can be obtained. In figure 5

the plot of (37) can be observed.

Fig. 5 Plot for the premise variable zfp (1)
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The maximum and minimum values of sz (t) in the range x4(t) € [0, 0.007] are given by

max z, (t)=0.9859 =g min z, (t)=0=a
x, () (1) 1 () (1) 2 (38)

we define the premise variable sz (t) as:

NLy =28 (py=—"1 K
3=2, ()= ; for x, #-Ks (39)
K5+X2

From equation (39) the maximum and minimum values of sz (t) can be obtained, as shown

in figure 6,

Fig. 6 Plot for the premise variable sz (t)

The maximum and minimum values of sz (t) in the range x1(t) € [0, 10] and x»(t) [0, 1]

are given by

o Y T @

The membership functions are built from these equations

2
ZfF (t) = E1 P1i (ZfF (t))”i;

) (41)
z (f)= El Paj (ZfF (t))bj

where the following properties must hold
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P11 (ZRF (t)) TP (ZRF (t)) =

(42)
P ( (t)) T Px (Zz ( )) =
Solving equations (41 and 42) the following membership functions are obtained
z, ¢ t)+a,
(/’11(21()) 1() ¢’12(21()) 1()
1 2 1 2 (43)
z,(t)-b -z, (t)+b
Pn (Z2 (t)) = & ?r (Zz (t)) = %
by = b, b, -0,

Substituting the maximum and minimum values a5, a5, b; and b, in (32) we obtain 4 possible
combinations to express the linear subsystems.

max max Y02 max
02 q. —-Yq. — |a,-D Yo b, 0 0
Y,
Y, *1
A _ —leoqumX+k2Yrqzmx72 4, —kYq, " b;~D 0 0 x,
ij 0 X3 (44)
max YO max
—kYg " 20, kYq™ b, -D 0
Y ]
i —k5YOz . G 0 0 —D—KLa_
i,j=1,2

The fuzzy rules for the RF partial model are stated as:

If z1(t) is “@u(z1(t))” and zx(t) is “@2(22(1))”
THEN 3R (1) = A x(¢)+ Bu(t)+d

If z1(t) is “pu(z1(t))” and zx(t) is “@2a(22(1))”
THEN x% (t)= A x(t)+ Bu(t)+d

If z1(t) is * @1a(z1(£)) " and za() is “ 21(2(1))”
THEN x}(t)= AY x(t)+ Bu(t)+d

If z1(t) is “p12(z1(t))” and zx(t) is “@2a(22(1))”
THEN x7(t) = A x(¢t)+ Bu(t)+d
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The aggregated model for the RF partial model is given by

(1) = z z o1, (2 (1), (2 () {AFx (£) + Bu (1) + d}

yRP(t) = éél @y (z1 (t)) P (z2 (t))Cx(t), i,j=1,2.

1

(45)

4.2 The Respirative Fuzzy Exact Model

The R partial exact model can also be built following the procedure described in section 4.1.
We must be aware that the R model must be split in two models called Ry and Rg. As in
schemes (31-33) several possibilities may be formulated to build the R model, therefore a
possibility to express the fr(x(t)) matrix (frger and frge2) can be written as:

Scheme frge1_1

X.
Y,q " Ki -D I 0 0
Ks + XZ
max x1 X
0 —leo . -D 0 0 1
Ks + x X
_ 2 2
quel - (46)
max oy, X3
-k,Y,q,  Ki 0 -D 0
Xy
max X max xl
-kyY,q, Ki ~ksY q. 0 -D-Kra
Ks + x2
Scheme frgez_1
m X, m max Y, X
Y, g i _D Y,ql" =Y, gl ! 0 0
2 e Ko+ x, ’ 2 Y02 Ks+x,
max xl X
0 —k,Y,q" -D 0 0 1
s + .XZ xZ
qucZ P mix X4 hax Y x] X (47)
_k4YO eq k4YO eqs U -D 0 3
2 K(7+X4 2 0, K5+X2 x4
b max Y x
kY, " |~k Y, gl kY eqh 1 0 -D-Kua
2 € Kn+,\'4 : 2 YOZ KS‘FXZ

To construct the exact model for the R partial model we must use the nonlinearities from
models (46-47). For model 46 we have that the first nonlinearity is given by

NL5 = z§q€1(t) = ; for X, # -Ke and X, # -Ki (48)
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where the maximum and minimum values are given by

By 2 (1) = 98099 - i » (=01 )

The remaining nonlinearities from models (46) and (47) were the same already described by
(37) and (39). The linear subsystems for the R;; model can be obtained from

max max
Yq, Ko, =D Yq. b 0 0
A 0 kY q."bi-D 0 0
1 = max .
Rer ™ kv g™ K 0 D 0 (50)
max max
| keYeq, K —ksY,q, b 0 -D
jk=1,2
and
max max max Yg
YOzeqC ai—D Y q, —Yozeqs Y b; 0 0
)
max
0 ~kyYpqs b, =D 0 0
A = max max Yo
Roex =1 k)Y g™ a kYo, e, b, -D 0 (51)
Y02
max max max -Y()
—kéYOZEqC ai | —kY q, +k6YOZeq5 Y b, 0 -D
L 0y N

A general model to obtain the rules for the Ry; and R, partial models is expressed as

for Rger
If z1(t) is “ui(za(t))” and zs(f) is “pai(zs(t)” )"
THEN """ (t) = A} x(t) + Bu(t) + d; jk=1,2

and for R
If za(t) is “ui(z1(1))” and zx(f) is “pyy(z2(t))”

THEN "% (t) = A."x(t) + Bu(t) +d; ij=1,2

Y

Finally the aggregated model for the Ry; and Ry, partial models is expressed as:
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()= 5 5 oy, (5 (D)o (2 (1) {4 anx()+3u()+d}

o (52)
"0 = 2 3 ey (2 (D) o (2 (D))t k=12
and for Ry
£ (1) = £ 3 0, (2 (D, (22 (D) {4575 (1) + Bu (1) +
(53)

Rge2

(=2 2 0, (2 (1)) 0y, (= (D)cx() ij-1.2

Although the premise variables for the partial models RF and R, were the same (37) and
(39), they have different behaviors as they are multiplied by different yield coefficients. The
aggregated models (45) and (52-53) represents exactly the nonlinear system (13) in the
region

x1(t) €[0,10], x2(t) €[0, 1], x3(t) €[0, 5] and x4(t) [0, 0.007]

A condition for the transition between the RF-R-RF partial models is given by (28).

5. Fuzzy Observer

Now that an exact fuzzy model for the nonlinear baker’s yeast partial model has been
obtained, a fuzzy observer can now be designed. First of all we have to test the observability
matrix for the obtained linear subsystems. A linear system is said to be observable if for any
unknown initial state x(0) there exist a finite t;>0 such as the knowledge of the input u and
the output y over [0, t;] suffices to determine uniquely the initial state x(0). Otherwise the
equation is unobservable (Chen, 1999). The pair (A,C) is observable if and only if the
observability matrix

O=[C CA CA?, ..,CA* |T=p, (54)

has full rank (p(O) = n) i.e. is nonsingular.

In section 4.1 we remark that the fuzzy exact model for the RF model may be built from
three schemes (among many others) namely frr 1 (31), frer (32) and frr_mr (33). If we build
the fuzzy exact model for each scheme (31-33) and we test the observability matrix for these
linear subsystems; for example (44), we should find that (table 3)

Schemes observability rank for C=[001 1]
frREI 3 3 3 3
frRE_II 4 4 4 3
frE_III 44444343

Table 3. Observability matrix for schemes (31-33)
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From table 3 we may notice that no full rank is achieved for frr ;, therefore a full observer
cannot be built for this scheme. For schemes frr 7 and frr_yr almost full rank is achieved in
every linear subsystem; however, for scheme frr iy it will take eight linear subsystems to
build the fuzzy exact model, while for scheme frr ;i only four linear subsystems will be
needed. To avoid build complicated linear systems, scheme frr ;; was chosen to construct the
Exact fuzzy observer. Therefore before constructing a fuzzy exact model for an observer or a
controller, it will be advisable to analyze the way the premise variables are chosen to avoid
lack of observability or controllability.

The following assumptions were made to build the fuzzy observer:

H1. The nominal values of the yield coefficients k;, - ks are constant and known.

H2. The ethanol, the dissolved oxygen concentration and the OTR are known.
The procedure to build the exact fuzzy observer is the same that was followed for the fuzzy
exact model, although some considerations must be taken into account. An important
consideration is related with the scheme (32) where the premise variable (39) will depend on
the estimated state x; and x,, therefore the premise variable must be modified to:

A

ARF X .
z, ()=—"— for x, #-Ks (55)

K¢+X2

The same situation applies to the premise variable of model (46)

Rgel

, ()= ; for x, #-Ke and %, # -Ki (56)

The premise variable (37) remains unchanged. To guarantee full observability rank (table 4)
the minimum values of the premise variables are modified to

min z,(t)=4a, = min z,(t)=0b,= min z,(t)= =0.1
S s T PRCL O TR 7
Schemes Linear subsystems observability rank
frRE_IT 4 4 4 4
fraer_ 4 4 4 4
free2 1 4 4 4 4

Table 4 Observability matrix for the linear subsystems (44, 50-51)

The membership functions are built as before; nevertheless, for (54-55) we have
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P (ZZ ( )) (t) i P (22 (t)) - M

2 bl _b2

%1(23@)):& pulea() - 200

The linear subsystems given by (44), (50-51) are used to built the fuzzy observer. A general
rule to obtain all the fuzzy rules for the RF, Rj; and R, partial models are given by:

for RF
If 2, (t) is ”<P1i(21(t))” and zx(f) is “zj(22(f))”
THEN " (1) = A, % (t) + Bu (1) + K (y(t)-9(t))+K.aC™; j=1,2
for Ryer
If 2, (t) is “ij(z1(£) " and Z3 () is “Pai(zs(1))”
THEN 2" (t) = A" 2 (¢) + Bu(t) + K3 (y(¢) - 7/(t)) + K,aC™; jk=1,2
for Rye2

If 2, (t) is “@ui(z1()) " and za(t) is “@zi(22(1))”
THEN "% (t) = A;"%(t) + Bu(£) + K" (y (1) - 9 (t)) + K,aC™; ij=1,2

The aggregated fuzzy observers for the RF, Ry; and Ry partial models are given by

for RF

F(0= 2 £ 0, (5 Oy (5 () {4750+ Bu ()4 K7 (4()-5(0)) + ko™

2 2 59)
7* ) = i El o1 (2, (1)), (2, (1))cie), i,j=1,2
for Ryer
(0= 2 2 oy (O (5 ) A5 0) B0 () k7 (1) -90)) + ™)
2 2 (60)
58 (1) El 2o, (2, () o, (25 (1) )Ci(t), j k=12
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=2 2, (5 (t))gozj (z, (1)) {Aj;"”fc (£)+Bu(t)+ K" (y(t)-3())+ KLaCS‘”}

ANOE é > 2 (21 (D)o, (22 (D))ci(o) bj=b2

i1

(61)

Il
iy
.

5.1 Fuzzy Observer Simulation

The application of the proposed observer scheme was simulated using MATLAB™. The
fuzzy observers were tested using the continuous RF and the R baker’s yeast partial models
given above. The inlet substrate concentration was varied between 3 g/1 and 10 g/1 in order
to force the switching between the partial models. The partial models parameters were
given in table 2. The decay rate (o) was set to zero. The estimated variables were the
biomass and the substrate, each observed variable was tested with three different initial
conditions 1, 3 and 4 g/1 for biomass, and 0.01, 0.03 and 0.06 g/1 for substrate. The behavior
of the fuzzy observer for biomass estimation is shown in figure 7. The observer converges
around the 20 hours of fermentation elapsed time, almost in the Ry partial model. It can be
noticed the dynamics of the baker’s yeast switching through the RF, Ry: and R, partial
models. The observer substrate converges around the 15 hours of fermentation elapsed time
(figure 8), therefore the substrate dynamics is faster than the biomass. The observer gains
are displayed in table 5 and were calculated from the inequalities (8) through Linear Matrix
Inequalities.

Homasg ol

1 F — Real .
------ Estirmated
—_ - State RF, Rgel, Rge?

s 1 1 s s s x 1 s
(] 10 =0 =0 A0 f=1m | =0 Fa =0 =20 pmim}
Tirmie (k)

0. =55
o=y _BRE_ L e — .
j—r——— USRS —— |
S =
0.25 E = -}
E = Real
5 Estirmated
=" (== _ - State RF, Rgel1l, Rgel2 ]
a ]
= H
=
= oS | —
[l ]

s h 1 s x v x 1 1
() 10 =20 =0 <10 =0 =0 o =0 [=lm] 10
Tirme (k)

Fig. 8 Substrate observer performance with a =0 and £, (0) = 0.01, 0.03 and 0.06 g/1.
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Gain X1 X2 X3 X4
Ki_Rrr -1309.8 2019.2 409.79 -498.19
Ko grr -707.7 -1299.2 1553.5 -1611.5
Ks_rr -1304.4 2015.3 405.83 -494.33
Ky_rr -702.28 -1303.1 1549.6 -1607.6
Ki1_Rrget 1937.1 -4136.6 113.86 -213.31
Ko_ Rrget 1945.6 -4153.3 113.56 -213.03
Ks_ Rge1 -58.432 -11.52 94.846 -192.06
K4_ Rrget -49.883 -28.246 94.539 -191.77
Ki1_rge2 -845.59 1626.8 109 -205.81
K2_Rge2 -12.963 -1569.3 1112.7 -1185.8
K3_Rqe2 -842.39 1620.4 108.95 -205.76
Ky_Rrge2 -9.761 -1575.6 1112.7 -1185.8

Table 5. Observer gains, with a = 0.

Common positive definite matrices that guarantees global asymptotic stability (Tanaka &
Wang, 2001), were found for each partial model, namely

[ 24375x10™  -1.7425x10" -1.7842x10" 1.7363x10™
b | 17425 0% 9.6041x10" -3.3103x10" 3.2221x10™
RE 1 1.7842x10™ 3.3103x10" 3.9367x10™" -3.8324x10™
| 1.7363x107  32221x10" -3.8324x10"  3.9792x10"
[ 5.7188x10° -1.1189x10™ -2.0528x10° 1.9285x10° |
b | 11189 0% 2313x10"  -1.0663x10°  1.192x10°
Ral =) 2.0528x10° -1.0663x10° 3.8217x10° -3.7426x 10
| 1.9285x10°  1.192x10°  -3.7426x10°  7.6266x10™ |
[ 1.0333x10™  -2.0491x10™ -15395x10°  14853x10° |
b _| 20491 10* 7.8655x10" -24702x10* 2.4119x10™
Rie2 7| 15395x10° -24702x10*  1.7446x10*  -1.7037 x10™
| 14853x10°  24119x10"  -17037x10"  1.8174x10™ |

To improve the observer performance the decay rate ratio (o) was set to 0.3. The behavior of
the fuzzy observer for biomass estimation is shown in figure 9. The observer converges in
about 6 hours of fermentation elapsed time, now within the RF state. The observer substrate
converges around the 5 hours of fermentation elapsed time (figure 10). The observer gains
for o = 0.3 are displayed in table 6 and were calculated using the inequalities given by (8).
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Biomass g

Real
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— - State RF, Rgel, Rge2

L
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L L
=20 =0

L
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Fig. 9 Biomass observer performance with a=0.3 and %, (0)=1,3 and 4 g/1.

100

Substrate g

— Real
Estimated

State RF, Rgel1, Rge2

1
a 10

1 1
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1
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1
80
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100

Fig. 10 Substrate observer performance with a =0 and z,(0) = 0.01, 0.03 and 0.06 g/1.

Gain X1 X2 X3 X4
Ki_Rrr -45325 10803 1898.6 -1944.6
Ko Rrr -15713 -270.57 2674.9 -2707.9
Ks_rr -43990 10667 1784.5 -1833.4
K4_rr -14378 -406.29 2560.8 -2596.7
Ki_Rrget -84248 -5319.8 1619.2 -1647.6
K2_ Rrget -66998 -5161.4 1320.5 -1362.6
K3_ Rget -65489 -714.01 1220 -1262.5
K4_ Rget -48239 -555.65 921.3 -977.46
Ki_rge2 -41344 5226.6 3786.8 -3783.1
Ko_ Rrge2 -24341 1700.4 2765.6 -2790.6
K3_ rge2 -40157 5110.9 3684.8 -3683.8
Ky Rrge2 -23155 1584.6 2663.5 -2691.3

Table 6. Observer gains, with a = 0.3.
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Common positive definite matrices that guarantees global asymptotic stability (Tanaka &
Wang, 2001), were found for each partial model, namely

[ 1.619x10™
-3.8358x10”
-3.5281x10”

| 344x107

[ 1.0525x10°
1.6867 x10”
4.4263%10”
42217x10”

Rgel =

[ 1.7858x10°
3.6232x10™
34184x10™

| 3.3329x10”

Rge2

-3.8358x10° -35281x10°  3.44x10°
1.936x10°  42418x10° 41297 x10°
42418x10°  1.094x10°  -1.067x10”
41297x10°  -1.067x10° 1.0781x10”
1.6867x10°  4.4263x10° 4.2217x10° |
24884x10° -13321x10° 1.3043x10°
13321x10°  2.0592x10° -1.9649x10° |’
13043x10° -1.9649x10° 2.3272x10°
3622x10"  34184x10* 3.3329x10” |
0.00019792x10™"  2.6424x10° -2.5682x 10"
26424%x10°  94507x10°  -9.218x10”
25682x10°  -9218x10°  94605x10” |

From (58, 59 and 60) an exact fuzzy observer for a nonlinear baker’s yeast model was
designed. The fuzzy estimator had a satisfactory behavior. A different approach to construct
a fuzzy observer using the whole term OTR=Kpa(Cst-x4) as a known and constant
perturbation was reported in (Herrera, 2007a). In this case a partial observer was
constructed due that full rank in the observability matrix could not be achieved.

6. The Fuzzy Exact Model, (u(t)=D).

The construction of the fuzzy exact model for a continuous baker’s yeast fermentation can

become quite complex when the output of the system is given by u(t)=D, for example for the
RF partial model

%1 M _RrHH_RE 00 0 x1 —x1 0
X2 —kyp! rp—kypul 0 0 O X2 —x2+S; 0
2|2 1Hs Rr—KoHMs RF N mip . ) KLaCm 62)
X3 r X3 —-Xx3
kaps _ge 0 0 0
X4 - X4 —X4 1

In this case the input matrix is not constant anymore, depending now on the variables x;, x»,
x3, X2. So we define the new premise variable as
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le (t) =X, sz (t) =Xy, 243 (t) =X3, Zx4(t) =Xy, (63)
The new premise variables may be written as
21 (t)_dz 21 (t)+d1
Py (le (t)) — Par (le (t)) =
dy = dz dy = dz
22 (t)_ez “Zy2 (t)+61
P51 (sz (t)) < P52 (sz (t)) T
€~ 6 €1~ 6
(64)
Zy3 (t)_fz “Zy3 (t)+fl
Pe1 (Zx3 (t)) = Pe2 (Zx3 (t)) =
f1 - fz f1 - fz
Zy4 (t)_gz “Zy4 (t)+b1
P (Zx4 (t)) = P72 (Zx4 (t)) =
81782 b, - b,
where the maximum and minimum values of (63) are displayed in table 7.
Premise variable maximum minimum
Zx1(t) d;=10 d>=0
sz(t) e1= 1 ey = 0
Zx3(t) f1 =5 f2 =0
Zx4(t) g1 =(0.007 gz =0
Table 7. Maximum and minimum values for zyi(t), z:x2(t), zx3(t) and zx(f)
The input matrix can now be written as
T
Blmno = [_dl’ _em +Sin’ _fn’ _go] (65)

The other premise variables are still given by (37) and (39). A general rule to construct all the

fuzzy rules can be stated as

If z1(t) is “p1i(z1(t))” and z(t) is “@2i(z2(t))” and zx1(t) is “@au(z2(t))” and zx(t) is “@sm(z2(t))” and

Ze(t) is “Pen(z2(t))” and zu(t) is “Pro(za(t))”

THEN 5" ()= 4%

ijlmno

x(t)+ B,

ijflmno

u(t)+d; ijlmno=12

It must be remarked that 64 subsystems would be needed to construct the RF partial model.
Finally the aggregated fuzzy system for the RF partial model is given by
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(1) = ifhW_RF (2(1)) {AZ; WD)+ B u(t) + d}
RF e . (€6)
yo (1) =2h, g (2(1)Cx(t), ijlmno =1, 2.
=My

where

W ogp=0+2(n-1)+4(m-1)+8(I-1)+16(j —1)+32(i - 1),
hn//_RF(Z(t)) = h(//_RF(Z(t)) = ¢1i(zl(t))¢2]‘ (2, (t))(/’u(le (£))- (67)

Psm (Zx2 (t))(p6n (Zx3 (t))¢7o (ZX4 (t))

The Ry1 and Ry fuzzy exact model were constructed following the same rules and also 64
subsystems were obtained for each partial model. As stated before now the exact fuzzy
model gets quite complex because it will be necessary 192 subsystems to represent the RF,
Rye1 and Ry partial models. From the fuzzy exact model built for the case explained a fuzzy
observer can also be built, more details are reported in (Herrera, 2007b). A multiple Takagi-
Sugeno multiple controller was designed to force the switching between the RF and the R
baking yeast partial models (Herrera, 2007c; Herrera, 2007d). The substrate fuzzy controller
tracked a square reference signal varied between 0.01 g/1 and 0.07 g/1. Si, was set to 5 g/1 .1t
is worth noting that the controller was capable to force the switching along the partial
models.

7. Conclusion

Based on the idea of splitting the baker’s yeast model, a novel TS fuzzy model was proposed
using the sector nonlinearities method, giving an exact representation of the original
nonlinear plant. Moreover, an observer for each partial model was constructed. It is worth
noting that the observer was capable of switching along the partial models, without
performance degradation. Therefore, the approach presented here may be considered a
valid method to design an observer. Future work will include the experimental validation of
the fuzzy observer and optimal controllers for fed-batch fermentation cultures.
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