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Abstract

This chapter is dedicated to bispectrum-based signal processing in the surveillance radar
applications. Detection, recognition, and classification of the targets by surveillance radars
have various applications including security, military intelligence, battlefield purposes,
boundary protection, as well as weather forecast. One of the particular and effective
discriminative features commonly exploited in modern radar automatic target recognition
(ATR) systems is the micro-Doppler (m-D) contributions extracted from joint time-
frequency (TF) distribution. However, a common drawback of the energy-based strategy
lies in the impossibility to retrieve additional particular information related to frequency-
coupling and phase-coupling contributions containing in the radar backscattering. Phase
coupling contains additional discriminative features related to individual target proper-
ties. Bispectrum-based strategy allows retrieving a phase-coupled data containing unique
discriminative features related to individual target properties. Bispectrum tends to zero
for a stationary zero-mean additive white Gaussian noise (AWGN), providing smoothing
of AWGN in TF distributions. Hence, bispectrum-based approach allows improving
extraction of robust discriminative features for ATR radar systems.

Keywords: surveillance radar, micro-Doppler frequency, instantaneous frequency
time-frequency distribution, vegetation clutter, radar target detection and classification,
bispectrum, bicoherence, phase coupling, high-resolution radar range profile, weather
radar, “angel echo”

1. Introduction

Bispectral density or third-order cumulant spectrum, in opposite to the common energy

spectrum, allows not only describing the statistical properties of an observed process more
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distribution, and reproduction in any medium, provided the original work is properly cited.



correctly and profoundly but also extracting novel information features such as the contribu-

tions caused by spectral component correlation relationships. Moreover, bispectrum estimate

allows to extract the phase relationships existing between the spectral components contained

in the observed process. Therefore, the main benefit of bispectrum in comparison with energy

spectrum is in the preservation of phase information contained in a process under study and

possibility to recover this important information.

Triple autocorrelation function (TAF) Rx(k, l) of a discrete process {x(m)(i)}, m = 1, 2,…, M is

related to the class of third-order statistics [1]. TAF is a function of two-shift variables, and it

can be written in the discrete form as

Rx k; lð Þ ¼
X

I�1

i¼0

x mð Þ ið Þ � E
h i

x mð Þ iþ kð Þ � E
h i

x mð Þ iþ lð Þ � E
h i

* +

M!∞

, (1)

where E is the mean value; k = �I + 1,…, I � 1 and l = �I + 1,…, I � 1 are the shift indices.

According to the definitions given in [1], bispectrum is the 2-D direct Fourier transform (DFT)

of TAF. Unlike common real-valued spectral density, bispectrum is the complex-valued func-

tion _Bx p; qð Þ of two independent frequency variables p and q defined as

_Bx p; qð Þ ¼
X

I�1

k¼�Iþ1

X

I�1

l¼�Iþ1

Rx k; lð Þ exp �j2π kpþ lqð Þ½ �, (2)

or given in the form of

_Bx p; qð Þ ¼ _X mð Þ pð Þ _X mð Þ qð Þ _X∗ mð Þ pþ qð Þ
D E

∞

, (3)

where _X mð Þ pð Þ is the DFT of mth realization {x(m)(i)}, m = 1, 2,…, M; * denotes complex

conjugation; _Bx p; qð Þ ¼ _Bx p; qð Þ
�

�

�

� exp jγx p; qð Þ
� �

; _Bx p; qð Þ
�

�

�

� and γx(p, q) are the magnitude

bispectrum (bimagnitude) and phase bispectrum (biphase), respectively; p = �I + 1,…, I � 1 and

q = �I + 1,…, I � 1 are the frequency indices.

According to (3), bispectral density _Bx p; qð Þ is the ensemble averaging of triple product of three

complex-valued functions related to three different frequencies: p, q, and p + q. It means that

bispectrum can be defined as the correlation measure between the frequencies p, q, and p + q

contained in the process. The main properties of bispectrum [1] are listed below.

1. Bispectrum tends to be zero for stationary zero-mean Gaussian process. Note, however,

that for a process with non-symmetrical probability density function (PDF), its bispectrum

differs from zero. This property allows to extract non-Gaussian contributions against the

background of Gaussian noise.

2. TAF and bispectrum are equal to zero for deterministic signals having zero asymmetry.

For example, TAF and bispectrum are of zero values for a simple signal x(i) = A0 cos(2πfi).

However, when some little non-linear distortions appear or when a constant component is
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added to a harmonic signal, TAF and bispectrum become non-zero valued functions. The

latter property can serve as a very sensitive tool to detect and evaluate non-linear distor-

tions contained in the observed signal.

3. Bispectrum is the periodical function with period equal to 2π

_Bx p; qð Þ ¼ _B pþ 2π; qþ 2πð Þ: (4)

4. Bispectral density has the following symmetry property

_B p; qð Þ ¼ _B q; pð Þ ¼ _B∗ �p;�qð Þ ¼ _B∗ �q;�pð Þ

¼ _B �p� q; qð Þ ¼ _B p;�p� qð Þ ¼ _B �p� q; pð Þ ¼ _B q;�p� qð Þ:
(5)

By using (5), bispectrum can be defined by a hexagon given in the bifrequency plane. It

follows from (5) that bispectrum of a real-valued process can be defined completely just

only within the area of the main triangular domain given by the inequalities

q ≥ 0, p ≥ q, pþ q ≤ I–1: (6)

It is sufficient to use the symmetry relationships (5) taking into account (6) to compute

bispectrum function within all other parts of hexagonal domain. Note that the conditions

(6) limiting the total number of bispectrum samples allow to decrease essentially the

memory requirements and, hence, to reduce the computational time of bispectrum.

5. In many practical cases, it is necessary to detect and estimate the phase coupling contri-

butions. Since the phase relationships are lost in power spectral density estimator, it is

impossible to extract information about phase coupling from common power spectral

density. Meanwhile, it is possible to do that by using bispectrum

This property can be explained by considering the following two processes

x1 ið Þ ¼ cos 2πf 1iþ φ1

� �

þ cos 2πf 2iþ φ2

� �

þ cos 2πf 3iþ φ3

� �

, (7a)
x2 ið Þ ¼ cos 2πf 1iþ φ1

� �

þ cos 2πf 2iþ φ2

� �

þ cos 2πf 3iþ φ1 þ φ2

� �� �

, (7b)

where f3 = f1 + f2 are the frequencies: φ1, φ2, φ3 are the initial phases that are supposed to be

independent random values varying within the limits of [0, 2π] and having uniform

distribution law.

Assume that the frequency f3 in (7а) is an independent component, and an initial phase ϕ3

corresponding to this frequency is an independent random value. Assume also that the

frequency f3 in (7b) is the result of phase coupling. It is evident that the power spectrum

densities computed for the processes (7a) and (7b) are of the same shape because each

considered process contains the contributions of the same frequencies f1, f2, and f3, i.e.,

Px1(p) = Px2(p). At the same time, magnitude bispectrum of the process (7а) tends to be

zero, i.e., _Bx1 p; qð Þ ¼ 0, and the magnitude bispectrum of the process (7b) is of non-zero

value, i.e., _Bx2 p; qð Þ 6¼ 0.

6. Invariance property of bispectrum to a signal time delay or signal spatial shift: this

property can be demonstrated by the following simple expression

Bispectrum- and Bicoherence-Based Discriminative Features Used for Classification of Radar Targets…
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_Bx τ p; qð Þ ¼ _Xτ pð Þ _Xτ qð Þ _Xτ �p� qð Þ ¼

¼ _X pð Þ _X qð Þ _X �p� qð Þ exp j2π �τp� τq� τ �p� qð Þ½ �f g ¼ _Bx p; qð Þ,
(8)

where _Xτ pð Þ ¼ _X pð Þ exp �j2πτð Þ is the Fourier transform of a process shifted by a τ value

in the temporal domain. It follows from (8) that both for the original process x(m)(i) and for

its replica x(m)(i-τ) shifted by τ, the bispectra are congruent.

2. Extracting bispectral discriminative features from radar backscattering

provoked by walking pedestrian

One of the most important problems arising in radar automatic target recognition (ATR)

systems is the extraction of robust discriminative features contained in raw radar backscatter-

ing contaminated by clutter contribution. The Doppler velocity spectrum commonly serves for

ground moving radar target detection, recognition, and classification. Often, the processed

radar echo signals are of non-stationary behavior, whence the common notion of frequency

becomes meaningless and a new parameter instantaneous frequency (IF) must be exploited in

order to analyze how the Doppler spectral content varies with time. IF is defined as the

frequency value existing within a short-time interval, and a given parameter allows one to

estimate the distribution of spectral peaks varying with dwell time.

Note that the most frequently used tool for spectral analysis of non-stationary signals is an

estimation of energy per unit time per unit frequency. Spectrogram is a typical representative of

such energy-based estimators. Since the possible existing phase relationships between harmonics

are lost in energy spectra, it is impossible to extract phase-coupled frequencies by means of time-

varying energy spectrum. In other words, energy spectrum is unable to extract phase-coupled

instantaneous frequencies (PCIFs) contained in time sequences processed. This peculiarity is the

most serious shortcoming of energetic versions of evolutionary spectral estimators.

A walking person can be considered in the form of a complex physical phenomenon with

simultaneous motion of different body parts: the torso, the legs, and the arms. Hence, for an

extended human body, the backscattered field is a sum of multiple contributions.

Time-varying phase contributions are of paramount importance. Doppler frequencies provoked

by swinging body parts may be phase coupled. In addition, radar returns obtained by applying

vertical or horizontal polarizations differ one from another just by different spatial phase distri-

bution of the reflection coefficients for corresponding vertical or horizontal polarizations.

The observed discrete-time receivedmulticomponent and non-linearly FM radar returns corres-

ponding to the vertical yV(i) and horizontal yH(i) polarizations can be written, respectively, as

yV ið Þ ¼
X

M

m¼1

AV
m ið Þ cos ΦV

m ið Þ
� �

¼
X

M

m¼1

aVm ið Þ cos φV
m ið Þ

� �

F2 θmð Þ cos
4π

λ0
rm ið Þ � r0 ið Þ½ �

� �

, (9a)

yH ið Þ ¼
X

M

m¼1

AH
m ið Þ cos ΦH

m ið Þ
� �

¼
X

M

m¼1

aHm ið Þ cos φH
m ið Þ

� �

F2 θmð Þ cos
4π

λ0
rm ið Þ � r0 ið Þ½ �

� �

, (9b)
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where aVm ið Þ and aHm ið Þ are the time-varying magnitudes of the local reflection coefficients

corresponding to an arbitrary mth object scattering center for vertical and horizontal polariza-

tions, respectively; φV
m ið Þ and φH

m ið Þ are the local time-varying phases for vertical and horizontal

polarizations, respectively; i = 1, 2, …, I is the sample index; F(θ) is the radar antenna pattern;

θm is the angle location of the m-th object scattering center; rm(i) and r0(i) are the time-varying

distances from antenna phase center to the arbitrary m-th moving object scattering center and

object phase center, respectively; λ0 is the radiated wavelength; Am(i) and Φm(i) are the total

radar echo signal magnitude and phase corresponding to the m-th object scattering center,

respectively.

Twomotion contributions are involved in the model (9a) and (9b): first, the translation motion of

the human torso provoking approximately constant low Doppler frequency shift due to the

relatively constant and low speed of the human body and, second, the swinging motion of the

legs and arms provoking time-varying micro-Doppler frequency shifts caused by different

non-uniform time-varying velocities of swinging body parts. These IFs may be related due to

phase coupling.

Suggested approach takes into account the fact that the swinging torso, legs, and arms are not

independent sources of Doppler frequency shifts but are related via the same “carrier” (the

human torso) that can be considered as the “common basis” for the swinging legs and arms.

Therefore, one can expect the presence of phase coupling contributions in radar returns (9a)

and (9b).

Let us define the short-time bispectrum estimate of a transient signal y(i, n), whose time

duration is significantly shorter than the total time observation interval of I samples contained

in (9a) and (9b). Transient signal y(i, n) can be separated from the total observation (9a) and

(9b) by a sliding window that moves step by step along the recorded process and takes n = 1, 2,

…, N non-overlapping locations.

Time-varying bispectrum estimate can be computed according to (3) as follows

B p; q; nð Þ ¼ Y p; nð ÞY q; nð ÞY∗ pþ q; nð Þ ¼ B p; q; nð Þj j exp jβ p; q; nð Þ
� �

, (10)

where Y(p, n) = |Y(p, n)| exp[jφ(p, n)] is the short-time Fourier transform of the transient signal

y(i, n); |B(p, q; n)| and β(p, q; n) are the time-varying bimagnitude and biphase, respectively;

p = 1, 2, …, P and q = 1, 2, …, P (P << I) are the frequency indices.

Coherent, homodyne, and surveillance radar operating in continuous-wave mode at the wave-

lengths of λ0 = 2 cm, 3 cm, and 8 mm with the vertical polarization and polarimetric radar

operating at the wavelength of λ0 = 8.8 mm with the vertical and horizontal polarizations have

been exploited for experimental study. The output of the 10 bits’ ADC allows collecting

frequency radar returns containing Doppler frequency shifts. Experimental investigations have

been carried out during the spring and summer periods. It is evidently seen from the histogram

in Figure 1 the presence of a large number of the PCIFs contained in the radar return.

First, we consider the case of vertical polarization. The radar returns were recorded during

total data collection time of 63 s that corresponds to 200,000 digitized signal samples. The

window width of 256 samples sliding along the signal provides frequency resolution of

Bispectrum- and Bicoherence-Based Discriminative Features Used for Classification of Radar Targets…
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approximately 12.4 Hz. The sequence of time-varying bispectrum estimates contained 256 � 256

samples has been computed according to (10). Phase coupling contributions corresponding to

the bimagnitude peaks were mapped from bifrequency plane onto the TF plane as two separate

values on the frequency axis in the coordinates of p and q.

TF distribution of the PCIFs and bimagnitude estimates are demonstrated in Figure 2.

The analysis of the PCIF evolutionary behavior in Figure 2a indicates the contributions pro-

voked by both the swinging pedestrian torso in the low-frequency range (30 Hz) and the legs

and arms in the high-frequency range (from 120 through 240 Hz).

The following question arises: is there a difference between the radar Doppler TF signatures

obtained with the vertical and horizontal polarizations and how much they differ one from

another? In fact, according to the signal model (9a) and (9b), the last terms (electrical

distances) in the quadruple products in the sums are the same for the vertical and horizontal

polarizations. The distinction is due to the different behavior of the local time-varying

phases φV
m ið Þ and φH

m ið Þ. It can be explained by the distinction in-phase spatial distributions in

a human body for the vertical and horizontal polarizations. In order to confirm this hypoth-

esis experimentally, we pay attention to the difference between the bimagnitude estimates

computed for the vertical and horizontal polarizations for a pedestrian walking toward the

radar.

The plots of the bimagnitudes are shown in Figure 2b and c for vertical and horizontal

polarization, respectively. The difference between these bimagnitude estimates is clearly seen.

Figure 1. The histogram of the PCIF distribution computed for a walking human.
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TF distributions computed by common energy-based strategy do not provide discriminating

contributions provoked by the vertical and horizontal polarizations. Using proposed

bispectrum-based approach permits recognizing the difference between PCIF TF distributions

computed for the vertical and horizontal polarizations. This important peculiarity of the

suggested approach can serve as a new perspective classification feature for solving classifica-

tion problems in radar ATR systems.

Let us define the short-time cross-bispectrum estimate BVH(p, q; n) in the form of

BVH p; q; nð Þ ¼ SV p; nð ÞSV q; nð ÞS∗H pþ q; nð Þ ¼ BVH p; q; nð Þj j exp jβVH p; q; nð Þ
� �

, (11)

where SV (p, n) and SH (q, n) are discrete time-varying Fourier transforms of the transient

signals yV(i, n) and yH(i, n), respectively; |BVH (p, q; n)| and βVH (p, q; n) are the time-varying

cross-bimagnitude and cross-biphase, respectively.

Note that if there exists a phase coupling between two certain frequencies contained in the

signals (9a) and (9b), a peak in the cross-bimagnitude distribution |BVH (p,q;n)| will appear at

Figure 2. TF distribution of the PCIFs for a walking human, vertical polarization, λ0 = 2 cm. (a) Bimagnitude: vertical

(b) and horizontal (c) polarization.
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the intersection of two frequency samples p and q in the bifrequency plane. Otherwise, for the

Gaussian process provoked by a backscattering from vegetation, the cross-bimagnitude tends

to be zero. Therefore, cross-bispectrum estimates (11) will contain the peaks caused by phase

coupling. This important characteristic can serve for retrieving novel detection and recognition

features for radar objects moving in a growing vegetation clutter.

The radar returns corresponding to the V and H polarizations both for a walking pedestrian

and vegetation stirred by a light breeze were measured and recorded in the PC memory with

the time interval of approximately 1 min. The sequence of N cross-bispectrum estimates (11)

contained 256 � 256 samples each has been computed. The peaks of cross-bimagnitude

|BVH(p, q; n)| have been analyzed, and their values were projected into the TF domain. The

plots of TF distributions computed for a human walking in the vegetation clutter and the

vegetation clutter itself are shown in Figures 3 and 4, respectively.

The number of pronounced cross-bimagnitude peaks is observed in Figure 3: the torso pro-

vokes the peaks in the low-frequency range, and the responses of swinging arms and legs are

observed in a high-frequency range. The TF distribution computed for the vegetation clutter

Figure 3. TF distribution for a human walking in vegetation clutter.
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differs from that of a walking human substantially: the cross-bimagnitude peaks are observed

only in the low-frequency range, and their values are considerably smaller in comparison to

those of a walking human. It permits one to single out and identify a human walking in a

vegetation clutter by the TF signature proposed.

Note that detection and classification of moving objects in through-foliage environment is one

of the most important problems arising in surveillance radar systems serving for state border

protection in the forest environment.

3. Classification of aerial radar targets by using bicoherence-based features

extracted from micro-Doppler content

The problem of classification of various types of aerial targets by extraction of the information

features contained in radar returns is of particular interest for ATR systems [2]. High-resolution

radar range profile (HRRP) can be considered as a projection of a target spatial intensity

distribution of the backscattered electromagnetic field onto the radar line of sight. Therefore,

Figure 4. TF distribution for vegetation clutter.
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HRRP contains certain information about geometry of aircraft. Contributions caused by rotating

turbine or propeller blades and contained in radar backscattering in the form of micro-Doppler

data [3] also can contain supplementary classification information about aircraft’s particular

characteristics. Both HRRPs and jet engine modulation (JEM) allow extracting classification

features conforming to the aircraft geometry and particular engine characteristics.

As a result of aerial target travel over a large azimuth angle, its HRRPs measured and recorded

during this travel considerably suffer by three main reasons: speckle, rotational range migra-

tion, and translational range migration. Due to the speckle effect, HRRP can fluctuate essen-

tially even for slight aspect variations (about tenths of one angle degree), i.e., only a slight

rotation of aerial target in elevation or aspect azimuth is enough to provoke considerable

variations in the HRRPs. A typical example demonstrating considerable variability of HRRPs

for the aircrafts AH-64, An-26, and B-52 under consideration is shown in Figure 5 for three

fixed aspect angles of 185�, 190�, and 195�. These HRRPs have been computed by using radar

backscattering models described in [2].

It is well-known that performance achieved in ATR systems largely depends both on robust-

ness of information features and dimensionality of classification feature vector. Consequently,

the most serious limitation for using HRRPs for ATR is in their extreme variability. In addition,

when the signal-to-noise ratio (SNR) is of rather low value, classification probability rate

considerably degrades due to the contamination of radar signature by the noise. Therefore,

search for both noise-robust and aspect-angle robust classification features is of paramount

interest in ATR radar systems.

Phase information contained in radar returns can provide additional knowledge about the

target. Unfortunately, phase information contained in radar returns in the form of phase cou-

pling of micro-Doppler harmonics is irretrievably lost in common HRRP. In addition, micro-

Doppler content is less sensitive to aspect angle variations compared to the HRRPs. This

peculiarity can give certain advantages over HRRP-based approaches for ATR.

Figure 5. Examples of dependence of HRRP on aspect angle.
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The approach which is most frequently cited for comparison of the performances of aircraft

classification has been proposed by Zyweck and Bogner in [4]. We will refer to it as “Zyweck

and Bogner technique” (ZBT). ZBT contains the following data processing steps.

• Computation of the following sequence of N HRRPs as

Yn mð Þ ¼ Kn mð Þj j2, n ¼ 1, 2,…, N; m ¼ 1, 2,…,M, (12)

where Kn = S(:, n) ∈ C
n is the matrix representation related to the sequence of N radar returns

accumulated in the form of M in-phase (I) and M quadrature-phase (Q) digital samples,

respectively.

• Each HRRP must be normalized to provide level invariance property. Aligning consecu-

tive HRRPs (12) by using correlation procedure and following averaging of normalized

HRRPs bYn mð Þ as

R mð Þ ¼
XP

n¼1

bYn mð Þ, (13)

where P is the number of HRRPs selected for extraction of classification features.

• Direct Fourier transform is computed for averaged HRRP (13). In order to achieve trans-

lation invariance property, magnitude Fourier spectrum is used for extraction of classifi-

cation features.

In practice, HRRPs consecutively accumulated according to the chain of received pulses have

variable spatial shifts observedwithin fixed range strobe. These shifts are caused by translation of

aircraft, and hence, migration of intensity contributions from one range cell to another is observed.

ZBTexploits aligning procedure based on correlation analysis to provide translation invariance.

One more approach using classification feature extraction from HRRP is proposed in [5] by

Kim et al. Below it will be referred as “Kim technique” (KT). The main idea behind KT is to use

the first 20 central moments as the features. KT contains the following data processing steps:

- computation of range profiles according to (12) and their normalization;

- aligning consecutive HRRPs by using correlation procedure and averaging of aligned range

profiles according to (13); and

- using the first 20 central moments related to averaged HRRP as classification features.

Micro-Doppler content can be extracted from the following accumulation of radar returns by

the procedure represented in [3] as:

D nð Þ ¼
XM

m¼1

Kn mð Þ: (14)

Joint TF distribution of radar echo-signal can be defined by the following short-time Fourier

transform:
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TF f ; tð Þ ¼
X

L

l¼1

D lþ t� 1ð Þ L�Qð Þe
j2πft
L w lð Þ

	 


, (15)

where L is the length of suitable smoothing window w(l); Q is the number of overlapping

samples; f and t are the IF and time indices, respectively. The dimensionality of TF distribution

(15) can be defined as CLxG, where G = (P�Q)/ (L�Q).

Examples of spectrograms computed for three types of aerial targets are shown in Figure 6.

Each of these radar signatures contains micro-Doppler contributions inherent in particular

aerial target. These radar signatures are of periodical behavior, and a period depends on the

radial velocity of corresponding rotating parts. The contributions caused by front and back

helicopter blades can be recognized in the spectrogram shown in Figure 6a. The front blade

provokes larger radar cross-section (RCS) value and, in the position perpendicular to the radar

line of sight, excites harmonics in the whole spectrum. The back helicopter blade provokes

smaller RCS value and excites harmonics with smaller frequency bandwidth. The patterns

referred to the aircrafts An-26 and B-52 and shown in Figure 6b and c, respectively, demon-

strate higher periodicity frequency, and they look like more intricate radar signatures.

An approach proposed in [4] provides a translation invariance property for moving radar

target classification dealing with cepstrum-based features. Rather low-dimensional and shift-

invariant classification features can be extracted by using the cepstrum coefficients C(.). They

are computed by using TF distribution (15) by the following transform

C :ð Þ ¼ IDTF log10
1

T

X

T

t¼1

TF :; tð Þj j2
 ! !�

�

�

�

�

�

�

�

�

�

2

, (16)

where IDFT denotes the indirect discrete Fourier transform.

Note that a dimensionality of the cepstrum-based classification features extracted by using

transform (16) depends on required frequency resolution. It is relevant to note here that

frequency resolution depends on the window length equal to L samples (see (15)).

Figure 6. Spectrograms of aerial targets computed for aspect angle equal to 185�: (a) helicopter AH-64 Apache; (b)

military transport aircraft An-26; and (c) B-52 Stratofortress.
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Suggested feature extraction strategy is based on bicoherence estimation of radar data [6]. In

order to compute bicoherence estimates from finite data records, first, the following evolution-

ary sequence of short-time bispectrum estimates Bt(f1, f2) corresponding to TF distributions (15)

are computed as:

Btðf 1, f 2Þ ¼ TFðf 1, tÞTFðf 2, tÞ TF�ðf 1 þ f 2 tÞ: (17)

Estimation of the bimagnitude of radar returns allows extracting information about presence

of phase coupling in micro-Doppler content. It makes it possible to extract the features related to

novel particular properties of target under classification.

Squared bicoherence version defined in [1] can serve as a quantitative measure of phase cou-

pling. Squared bicoherence bb
2
f 1; f 2
� �

can be interpreted as the proportion of signal energy

corresponding to the frequency (f1 + f2) which is coupled with the frequencies f1 and f2 as follows:

bb
2
f 1; f 2
� �

¼
1

T

XT

t¼1

Bt f 1; f 2
� �

�����

�����

2
0

@

1

A= bX f 1; f 2
� � bP f 1; f 2

� �	 
h i
, (18)

where bP f 1 þ f 2
� �

¼ 1
T

PT
t¼1 TF f 1 þ f 2

� ��� ��2 is the power spectrum estimate averaged over T

finite data samples; bX f 1; f 2
� �

¼ 1
T

PT
t¼1 TF f 1 þ f 2

� ��� ��2.

The bicoherence (18) values vary within the limits of [0, 1]. If bicoherence tends tobb
2
f 1; f 2
� �

6¼ 0,

it means that there exists a phase coupling at some pairs of frequencies, and if bb
2
f 1; f 2
� �

¼ 0, it

means that there is no phase coupling in the signal under study.

Note that, unfortunately, the value of bicoherence estimate (18) depends on variations of target

velocity. In order to provide target velocity invariance property, the following bicoherence-

based feature (referred below as Bic) is introduced as

Bic ¼ F2D bb
2
f 1; f 2
� �	 
���

���, (19)

where F2D denotes the 2-D Fourier transform.

Examples of bicoherence estimates (19) are illustrated in Figure 7. The bicoherence signature

computed for helicopter AH-64 corresponds to the contribution of numerous phase-coupled

harmonics, and bb
2
f 1; f 2
� �

tends to the unity for a multiple number of points distributed in

bifrequency plane. In contrast, bicoherence estimate computed for aircraft An-26 has the small

number of phase-coupled harmonics. Moreover, only two points can be found with contribu-

tion larger than value of 0.1. The bicoherence estimate computed for aerial target B-52 has a

number of frequency coupled responses with phase coupling coefficient larger than 0.6.

Two different types of classifiers are studied in simulations [7–9]. The first classifier is the

support vector machine (SVM) belonging to the non-probabilistic linear classifiers, and the second
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type is the Naive Bayes Classifier (NBC) belonging to the probabilistic linear classifiers. Linear

discriminant analysis (LDA) [5] is applied for reduction of feature vector dimensionality.

Modeled radar echo-signals backscattered by different flying aircrafts are computed in the

sequences of I and Q samples by using the software described in [2]. Bandwidth of chirp radar

signal equal to Δf = 150 МHz provides range resolution of ΔR = c/2Δf = 1 m. Pulse repetition

frequency and central wavelength are equal to 2 KHz and 3 cm, respectively. The coherent

chain of N = 2000 chirp pulses is received within observation time interval equal to 1 s.

Aerial targets of three different types are studied: helicopter AH-64 (the speed is of 160 km/h

and height is of 200 m) and airplanes An-26 (the speed is of 400 km/h and height is of 2000 m)

and B-52 (the speed is of 800 km/h, height is of 2000 m). For each target, data are available in

the form of N = 2000 realizations related to the radar returns recorded within 1 s. Each radar

return corresponding to reception of one pulse contains M = 1200 I and Q digital samples.

Three fixed values of aspect angles equal to A = {185�, 190�, or 195�} are considered in computer

simulations. The aspect angle equal to α = 180� corresponds to the situation, when the aircraft is

flying toward the radar.

Classification probability rates are examined depending on the following three different scenar-

ios. Under Scenario #1, a half of received signal samples related to each of three abovementioned

aspect angles are used for training, and the remainder half is used as testing data. For extraction

the TF-based classification features, the parameters used in TF distribution (19) are selected to be

equal to L = 56 and Q = 46, and Hamming window is exploited in computer simulations.

According to Scenario #2, radar data conforming to one of three aspect angles equal to

A = {185�, 190�, or 195�} are used for training database, and the records related to other two

aspect angles are used for testing procedure. Step by step, each radar record from three

available aspect angles is used one time for training and other two times for testing procedure.

Under Scenario #3, data accumulated for two aspect angles are used for training procedure,

and the remainder is used for testing. In the latter case, three sets of radar data corresponding

to different aspect angles are examined, and three combinations of testing and training sets are

possible for study. For each of them, classification probability rate is estimated, and final result

is evaluated by averaging.

Table 1 shows the results obtained for three types of aerial targets under abovementioned

three scenarios. It can be seen from Scenario #1 that both SVM and NBC classifiers provide

Figure 7. Bicoherence estimates.
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approximately similar classification probability rates. The best performance is achieved by

ZBT and Bic technique. HRRP-based schemes, i.e., ZBT and KT outperform the performances

of TF-based techniques (Bic and Cepstrum) approximately by 1–4% for SVM classifier. This can

be explained by a fact that the optimal values of parameters L, G, and Q given in (15) are not

estimated. The best performance between the features related to the TF-based techniques is

achieved by bicoherence-based (Bic) feature with NBC.

Within Scenario #2, the best classification probability rate is achieved by using Bic technique. It

allows to note that bicoherence-based classification feature demonstrates better robustness

regarding the aspect of angle variations than other features. The Bic technique outperforms

KT approximately by 4–8% and ZBT approximately by 12–20%.

Feature spaces of highest rank related to Scenario #2 are illustrated in Figure 8.

At the same time, the highest probability of correct classification is achieved by cepstrum-

based features and SVM classifier for Scenario #3. Within Scenario #3, Bic technique takes the

second place having the lags equal approximately to 4 or 6% depending on SVM or NBC

classifier, respectively.

Summarizing the results presented in Table 1, the best robustness referred to aspect angle

variations is demonstrated by TF-based schemes and extraction of cepstrum-based and

Classifier Feature extraction technique

ZBT KT Cepstrum Bic

Scenario #1 SVM 99.99 99.98 95.51 98.98

NBC 99.97 93.06 98.67 100

Scenario #2 SVM 63.65 76.5 76.89 83.9

NBC 71.8 79.32 77.38 –

Scenario #3 SVM 78.52 85.63 90.97 87.14

NBC 75.92 79.46 88.15 82.78

Table 1. Classification probability rate computed in percent.

Figure 8. Feature space after LDA, Scenario #2. Aspect angle of 185� is given for training data set, and aspect angles of

190� and 195� are selected for testing data set: (a) KT, (b) Cepstrum, and (c) Bic.
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bicoherence-based discriminative features. Taking into account the results obtained for

Scenario #2, the information about phase coupling provides the best immunity regarding the

aspect angle variations.

It can be seen from Figure 8c that variance of training samples is rather small compared to the

distances observed between classes. Consequently, a problem occurs for computing the classi-

fication conditional probabilities for testing data. It follows from Figure 8a and b that testing

sequences of samples are good when separated between each other. However, a variation of

aspect angle leads to shifting of the features and misclassification in the final analysis. In

contrast, the Bic-based features (see Figure 8c) belonging to testing sequence are overlapped

for classes related to An-26 and B-52. As a result, classification errors can appear.

In order to study the influence of atmosphere turbulence, the same strategy is used as

approach described for Scenario #1 with small difference. The training set is constructed in the

same way by using clean, i.e., computed with less turbulence range profiles. At the same time,

the testing set is constructed from the range profiles corrupted by a turbulence effect.

Classification probability rates computed under atmospheric turbulence influence are repre-

sented in Table 2. The following peculiarities should be emphasized by the comparison of the

results demonstrated in Tables 1 and 2. Classification probability rates computed for ZBT, Bic-,

and cepstrum-based approaches tend to decreasing approximately by 1–2% in a turbulence

environment. Classifier using KT- and SVM-based decision making demonstrates the best

robustness regarding influence of atmosphere turbulence.

Classification performance evaluated for various SNRs is demonstrated in Figure 9. As can be

seen from Figure 9a, the best performance is achieved by KT technique. Bicoherence-based

classification feature becomes comparable to KT starting from SNR = 1 dB. The cepstrum-based

approach outperforms Bic method only for SNR smaller than 2 dB. The worst performance is

achieved by ZBT, and the loss is rather high comparing to other techniques. Concluding analysis

of the results represented in Figure 9a, the best performance of 72% is achieved by KT even for

SNR = �10 dB, whereas other techniques provide the probability of random guess of 33%.

Bayes classifier demonstrates quite different results shown in Figure 9b. The Kim and

Cepstrum techniques provide the same result as the results obtained with SVM classifier. The

main difference is achieved by Bic method. For SNR ≥ �1 dB, the Bic method outperforms all

other considered techniques. Errorless classification can be achieved starting from SNR = 2 dB

for bicoherence-based features.

Classifier Feature extraction technique

ZBT KT Cepstrum Bic

SVM 98.22 99.99 97.09 97.82

Bayes 99.47 91.79 97.55 98.08

Table 2. Classification probability rate computed for turbulence environment.
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Thus, the best robustness to the aspect angel variability is provided by bicoherence- and

cepstrum-based classifiers. These classifiers can be recommended for ATR radar systems.

4. Bispectrum-based radar range profile evaluation for the naval targets

embedded in sea clutter environment

First, let us focus on the peculiarities characteristic for spatial-temporal model of surveillance

radar signals received in sea clutter environment. Such signal model includes data contribu-

tion related to backscattering of naval surface target and interference contribution caused by

a sea clutter. Assume that radar antenna irradiates the chain of M RF pulses of rectangular

shapes and without any carrier modulation. Radar echo signal _s ik tð Þ can be written in the

form of

_s ik tð Þ ¼ _Sik tð Þ exp j2πf 0t
� �

, (20)

where t ∈ [�T/2, T/2]; i, k = {H, V} are the indices corresponding to horizontal H and vertical V

polarization, respectively; _Sik tð Þ is the complex-valued envelope; τp is the pulse length; T = TrM

is the total radar signal processing time, Tr is the pulse repetition period; m = 1, 2, 3,…, M

defines the pulse number index; f0 is the central frequency given in radar signal, f ∈ [f0�ΔF/2,

f0�ΔF/2], and the frequency bandwidth ΔF is assumed to be of ΔF << f0; j ¼
ffiffiffiffiffiffiffi

�1
p

.

During the time interval T, the naval target location on the sea surface can vary, and both its

orientation and visibility can also be changed due to the wind’s influence. In order to obtain a

smooth estimation of the radar range profile (RP) contaminated by contribution of the

unpredictable variability of maritime environment, the common strategy presumes dividing

time interval T into N separate short-time segments and performing the averaging for N

observed realizations [2].

Figure 9. Classification probability rates depending on SNR value.
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Assuming that contribution of additive noise is negligible, the nth (n = 1, 2, …, N) arbitrary

echo signal realization (further, the nth scan) observed at the amplitude detector output can be

written as

S
nð Þ
ik lΔtð Þ ¼ Re

ð

Ω

_F θð Þ _ε
nð Þ

ik θ; lΔtð ÞS l Δtþ Trð Þ � τ θð Þ½ �dθ

8

<

:

(21)

where _F θð Þ is the complex-valued antenna pattern; _ε
nð Þ
ik θð Þ is the nth relative (normalized for

surface unit equal to 1 m2) complex backscattering coefficient; τ(θ)=2R(θ)/c denotes the time

signal delay; R(θ) and c are the slant range and speed of light, respectively; l = 1, 2,…, L is the

index of current temporal digital sample; L = M/N is the total sample number related to one

scan; Δt is the pulse repetition period related to the range bin ΔR = cΔt. Eq. (21) is valid under

spatial-temporal and band-limitedness condition, i.e., for 2ΔF/f0 < λ0/D, where D is the size of

radar antenna aperture.

The complex-valued coefficients _ε
nð Þ
ik θ; lΔtð Þ in (21) contain the sum of two contributions. First

of them is random backscattering signal components _ε
nð Þ
Tik θ; lΔtð Þ corresponding to the contri-

butions of the echoes caused by small surfaces Δθ of the randomly moving target and second

is the random component _ε
nð Þ
Sik θ; lΔtð Þ caused by a sea clutter. These two contributions are

statistically independent. Hence, _ε
nð Þ
ik θ; lΔtð Þ can be expressed as

_ε
nð Þ
ik θ; lΔtð Þ ¼ _ε

nð Þ
Tik θ; lΔtð Þ þ _ε

nð Þ
Sik θ; lΔtð Þ, (22)

where the first term is given by signal polarization matrix contained the coefficients _ε
nð Þ
T ik θ;Δtð Þ ¼

_ε
nð Þ
T ik θ;Δtð Þ

�

�

�

�

�

� exp jξ
nð Þ
T ik θ;Δtð Þ

h i

, and the second term is provoked by interference that can be

represented by a polarization matrix containing the random coefficients _ε
nð Þ
S ik θ;Δtð Þ ¼

_ε
nð Þ
S ik θ;Δtð Þ

�

�

�

�

�

� exp jξ
nð Þ
S ik θ;Δtð Þ

h i

.

Commonly, the RP estimates are obtained by using the averaging strategy performed over N

observed realizations. The mixture of signal and interference can be written as

S
_

ik
lΔtð Þ ¼< ~S

nð Þ
ik lΔtð Þ >¼< ~S

nð Þ
T lΔt� τ

nð Þ
T

	 


> þ < ~S
nð Þ
S lΔt� τ

nð Þ
S

	 


> , (23)

where ~S
nð Þ
T lΔt� τ

nð Þ
T

	 


and ~S
nð Þ
S lΔt� τ

nð Þ
T

	 


are the nth echo envelopes smoothed by antenna

pattern and corresponding to both target and sea clutter backscattering, respectively; τ
nð Þ
T is the

time lag integrated for all object backscattering centers during the nth scan; τ
nð Þ
S is the time lag

integrated for all sea backscattering elements during the nth scan; <… > denotes the averaging

for N observed scans. Both τ
nð Þ
T and τ

nð Þ
S are the random values that vary from one realization to

another.

Topics in Radar Signal Processing260



Due to random motions of target on the sea waves, the backscattering signal is a fluctuation

process. Different wave propagation paths lead to different time lags τ
nð Þ
T and τ

nð Þ
S contained in

(23), and these lags vary randomly. The target and sea radar responses are independent

processes for which the corresponding PDF and correlation intervals differ from each other.

The correlation intervals for processes that correspond to backscattering from sea surface are

comparable to one scan processing time. Therefore, the contribution caused by sea clutter is an

unpredictable fluctuating process that rapidly varies from one scan to another. Therefore, the

time-varying sea echo radar responses that usually overlap with the signal target response can

destroy the estimate (23).

Let us consider bispectrum-based data processing approach aimed for smoothing maritime

interference contribution. Bispectrum estimate b_B p; qð Þ of the process (20) can be written as

b_B p; qð Þ ¼ bB p; qð Þ
���

��� exp jbγ p; qð Þ½ � ¼< X nð Þ pð ÞX nð Þ qð ÞX nð Þ∗ pþ qð Þ > , (24)

where bB p; qð Þ
���

���and bγ p; qð Þare the bimagnitude and biphase estimates, respectively; p = 1, 2,…, L

and q = 1, 2,…, L are the frequency indices; _X nð Þ
…ð Þ is the direct Fourier transform of (20) equal

to _X nð Þ pð Þ ¼ _S
nð Þ
T pð Þ exp j2πτ

nð Þ
T p

	 

þ _S

nð Þ
S pð Þ exp j2πτ

nð Þ
S p

	 

; _S

nð Þ
T pð Þ and _S

nð Þ
S pð Þ are the Fourier

transforms of the object ~S
nð Þ
T …ð Þ and sea ~S

nð Þ
S …ð Þ contributions given in (23), respectively.

Bispectrum estimate b_B p; qð Þ (24) contains eight terms. The first term in the form of b_BT p; qð Þ ¼

< _S
nð Þ
T pð Þ _S

nð Þ
T qð Þ _S

nð Þ∗
T pþ qð Þ > corresponds to the contribution of original target bispectral esti-

mate. The other seven terms represent the interference contribution. Theoretically, consider-

ably good accuracy of signal contribution b_BT p; qð Þ can be obtained under traditional

assumptions that interference is of zero mean, and its PDF is close to a symmetric law.

However, in number of real-life situations, interference does not obey the latter symmetric

law. Therefore, the real-life case of sea clutter with non-zero mean value and with long-tail

PDFs needs to be studied, and this problem is one of the subjects of our consideration and

discussion in this chapter.

Final step of the bispectrum-based forming of RP estimate can be represented as the following

inverse Fourier transform (IFT)

bSrange lð Þ ¼ IFT _̂Sbisp rð Þ
���

���ejϕ̂bisp rð Þ

� �����

���� r ¼ 1, 2,…, L, (25)

where _̂Sbisp rð Þ
���

��� and ϕ̂bisp rð Þ are the magnitude and phase target RP Fourier spectrum esti-

mates, respectively. They can be recovered from (24) by recursive algorithms described in

details in [10].

The main difference between traditional signal processing (23) and suggested bispectrum-

based approaches can be explained by the difference in averaging procedures necessary to
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smooth the sea clutter contribution. Traditional signal processing (23) using direct ensemble

averaging is performed in the signal space, i.e., in time domain. Due to the random signal lags

τ
nð Þ
T contained in (23), averaged received response estimate (23) becomes considerable spread

shape. It provokes decreasing the performance in ATR system by using common RP evalua-

tion. At the same time, suggested bispectrum-based technique exploits coherent averaging of

non-translated bispectrum estimates in bifrequency domain. As a result, due to the invariance

property of bispectrum to a signal lags τ
nð Þ
T , suggested strategy provides coherent ensemble

averaging of bispectrum estimates. Therefore, the shape of RP transformed considerably less

as compared to the common signal averaging procedure (23). Hence, better performance of

bispectrum-based ATR system can be achieved.

Experimental study was performed during summer period using X-band polarimetric surveil-

lance radar operating at the central frequency equal to f0 = 9.370 MHz. The fixed transmitting/

receiving radar antenna was located on the sea shore at the height of y0 = 8 m over sea level.

After passing through analog IF amplifier and amplitude detector, the received radar echo

signals were digitized and accumulated in the processor memory. The sampled experimental

data were accumulated and recorded in the form of the sets of scans (realizations) contained

L = 32 samples in each scan for each HH, HV, VH, and VV polarization, respectively. The scan

duration for each polarization was set to 320 ms.

The anchored metallic buoy was served as the naval surface target. Its size was considerably

smaller than the radar range bin. The radar echoes were recorded under grazing angles of

about 0.4�.

We compare the bispectrum-based RP recovery with RP estimations evaluated by the common

direct averaging procedure. The number of N scans accumulated for each separate polariza-

tion mode was equal to N = 256.

Consecutive two arbitrary scans experimentally measured for HH polarization mode are

demonstrated in Figure 10.

The plots of normalized range profile (NRP) are represented in the form of function of range

sample index l. A priory known slant range from antenna to buoy was equal to R = 1500 m.

Therefore, the buoy location corresponds approximately to the range sample index l = 26. Note

that random buoy translation on sea waves can be expected to become apparent during

considerably long observation time interval. Hence, the target _ε
nð Þ
Tik θ; lΔtð Þ and sea clutter

_ε
nð Þ
Sik θ; lΔtð Þ contributions given in (22) are the values that are randomly varying during time

interval related to each separate observed scan.

As can be seen from Figure 10, both radar backscattering response corresponding to buoy RP

and to sea clutter have random nature, and their appearance and shapes considerably vary

from scan to scan. Particularly, the buoy is not visible for some scans at all, e.g., for scan in

Figure 10b. Though the target RP should appear itself as single peak because its size is much

smaller than the radar range bin, the target response shape is considerably distorted. Due to

sea clutter contribution, several peaks are observed in the neighborhood of the range index

Topics in Radar Signal Processing262



number l = 26 related to the buoy location. Such distortions in the NRP prevent target classifi-

cation in ATR system.

In order to improve estimator accuracy, the average procedure performed over N scans is

commonly used according to (23). Example of averaged NRP is demonstrated in Figure 11a.

The bispectrum-based NRP signature is shown in Figure 11b. Note that due to bispectrum

shift invariance property, the latter NRP is centered with respect to the center of gravity.

Figure 10. Consecutive scans.

Figure 11. Averaged RP, VV polarization, wind speed 7–10 m/s; sea state 2–2.5 (a). Bispectral NRP, VV polarization,

wind speed 7–10 m/s; sea state 2–2.5 (b).

Bispectrum- and Bicoherence-Based Discriminative Features Used for Classification of Radar Targets…
http://dx.doi.org/10.5772/intechopen.71034

263



As clearly seen from the Figure 11a, the NRP ensemble averaged according to (23) is consider-

ably distorted. The shape of averaged NRP is spread considerably. This value is essentially

larger than the radar range bin equal to 75 m that can be expected as the target response width.

This spreading results in decreasing of radar range resolution caused by sea clutter influence.

It is clearly seen that range resolution obtained with bispectral NRP (see Figure 11b) is

considerably better as compared with averaged RP (see Figure 11a).

In Tables 3 and 4, the summary of the key parameters of the NRP estimation, namely the range

resolution data under sea clutter level, is represented for two considered techniques.

As can be seen from Table 3, the range resolution is worsen from 2 to 12 times as compared to

the theoretical radar range bin equal to 75 m.

The results represented in Table 4 demonstrate the stability of the range resolution that is

worsen only by 2 times in comparison to the above mentioned theoretical radar range bin

except the case of wind speed of 7–10 m/s, as well as for HH polarization.

The values of the sea clutter levels given in Tables 3 and 4 depend both on polarization mode

and sea state. As clearly seen from comparison, the data contained in the Tables 3 and 4,

bispectrum-based technique provides suppression of sea clutter level from 11 dB (HH polari-

zation mode) to 20 dB (VV polarization mode) in the case of absence of wind and from 4 dB

(HH polarization mode) to 20 dB (HV polarization mode) in the case of wind speed equal to

7–10 m/s. Hence, the bispectrum-based technique provides considerable improvement of

range resolution in sea clutter environment.

Consequently, conventional RP estimation technique based on the averaging of the received

signal envelopes has low-range resolution and low robustness to sea clutter.

Absence of wind Wind speed of 7–10 m/s

HH HV VV HH HV VV

NRP width at the half-amplitude level, m

450 300 300 900 300 300

Sea clutter level, dB

�13 �6 �6 �13 �8 �13

Table 3. Experimental results obtained for common averaging procedure according (23).

Absence of wind Wind speed of 7–10 m/s

HH HV VV HH HV VV

NRP width at the half-amplitude level, m

150 150 150 450 150 150

Sea clutter level, dB

�24 �20 �26 �17 �28 �26

Table 4. Experimental results obtained for suggested bispectrum-based data processing.
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5. Classification of the atmospheric formations by using

bicoherence-based features

Recently, weather radars play an important role in the world for atmosphere surveillance and

weather forecasts. Radar techniques dedicated to study the meteorological formations are

based on extraction of the data from backscattering of electromagnetic waves by the particles

concentrated in the clouds and precipitations. Spatial distribution of the numerous backscat-

tering centers contained in a cloud creates the contribution into total radar echo signal. Param-

eters of this backscattering signal contain meteorological information about atmosphere

formations [11, 12].

Reliable meteorological data serve as one of the main and important component necessary for

securing flight safety inmodern aviation. According to statistical data, dangerous phenomena like

thunderstorm frontal passages, squalls, and wind fluctuations cause approximately 70% of the

aviation crashes. Turbulent movement of atmospheric flows as opposed to laminar air movement

is specified with random variability of wind-rate field, presence of fluctuation of air heterogeneity,

or so-called turbulent atmospheric vortexes that cause mixing of the airflows. Atmospheric

turbulence causes abrupt movement of aircraft called as bumpy flight. As the bumpy flight

piloting becomes a difficult and dangerous procedure, additional mechanical loads related to the

elements of aircraft construction appear and even destruction of aircraft construction may hap-

pen. Consequently, reliable recognition of dangerous turbulent formations and areas is an impor-

tant problem in modern aviation radar meteorology and aviation safety of the flights.

Power spectral density of radar backscattering signals is one of commonly used and widespread

information features extracted from “angel echo.” Usually, the severity of turbulence is accessed

from the measurements of the radial velocity variance observed in the air flows. The power

spectral density describes the dissipation of turbulence energy caused by decay of large atmo-

spheric vortexes into smaller fractions. In order to recognize the type of cloud formation, it is

commonly accepted that it is enough to estimate the power spectral width of radar backscatter-

ing signal. In order to make a decision about atmospheric turbulence state and, hence, about

dangerous areas located at the course of aircraft, the value referred to the power spectrum

spreading must be estimated. After that, the pilot must make a decision in order to avoid a

weather hazard area. However, the spreading of power spectrum can be related to sufficiently

rough classification feature serving for estimation of the scale of turbulence contained in the

atmosphere formations. Solving the problems of discrimination of turbulent and laminar atmo-

sphere flows by using spectral density width can lead to ambiguous interpretation of measured

data and, consequently, to provoke the errors related to the correction of the aircraft course in

order to round the dangerous atmospheric turbulent formations and areas.

In order to improve reliability of recognition and discrimination of laminar and turbulent

meteorological formations, it is necessary to seek novel information features contained in radar

backscattering signals. Spatial-temporal, frequency-phase relationships, as well as phase-

coupling phenomena may serve as novel discrimination and classification features. These

frequency-phase relationships can be caused by physical nature of radar signal scattering with

laminar aerial flow contained within a pulse volume.
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In order to extract phase coupling contained and prevail in laminar atmospheric formation, we

suggest exploiting bispectrum-based strategy to the weather radar signal processing.

The approach suggested in this section is based on the hypothesis that radar signal back-

scattered by atmospheric formation can contain phase-coupled spectral contributions carrying

useful data for extraction of the classification features. This phase coupling contains novel

classification features used for discrimination and classification of turbulent and laminar

atmospheric flows and, hence, information about dangerous areas located in the atmosphere.

As novel information feature and measure, we suggest exploiting bicoherence in the form

defined in [13].

Bicoherence b2(p, q) [13] can be computed in the form of statistical averaging of the bispectral

estimate and further normalization procedure as

b2 p; qð Þ ¼ < B p; qð Þ >j j2= < X pþ qð Þj j2 < X pð ÞX qð Þj j2 >
n o

(26)

Bicoherence b2(p, q) given in the form of (26) can be interpreted as squared version related to

the normalized bispectrum. The dimensionless value (26) varies within the limits from zero to

unity, i.e. b2(p,q) ∈ [0, 1]. So, bicoherence is the value serving as a quantitative measure of phase

relationships between spectral components contained in a signal under study.

If the electromagnetic waves are backscattered by volume-distributed turbulent meteorologi-

cal formation, all the phases in backscattering signals are of random and independent values.

In such case, bicoherence estimate (26) tends to be of zero value. Phase-coupled spectral

components are contained in the radar backscattering caused by volume-distributed laminar

formation. In latter case, bicoherence estimate (26) tends to be a non-zero value.

Experimental study was performed by upgraded weather radar of the type of MRL-1

equipped by additional facilities necessary for control of orientation of maximum of antenna

main lobe pattern, calibration of radar energy potential, expansion of dynamic range in receiv-

ing device, and digital signal processing. Weather radar operates at the wavelengths of 8 mm

and 3.2 cm.

The power spectral density and bicoherence of the echo signal measured for the case of

antenna elevation angle equal to 10� and the downrange of 3750 m are plotted in the Figure 12.

These demonstrative examples correspond to the stratocumulus “non-translucent” clouds

#122.

Due to stochastic behavior of the echo-signals, their power spectral density function is of

pronounced irregular shape. Because of this, in order to smooth power spectral density esti-

mate, statistical averaging has been performed over each four realizations. After digitalization

procedure and averaging performed over four realizations, 512 digital samples corresponding

to each range bin were accumulated in PC memory. These data are used to compute both

power spectral density and bicoherence estimate.

Computation of smoothed bicoherence estimate has been accomplished by averaging over eight

segments contained 64 received signal samples with 50% overlap in each segment. Additional
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smoothing of the bicoherence estimate has been carried out under fixed antenna elevation angle

equal to 10�. Ensemble averaging has been performed over 100 observed realizations and with

time interval equal to 0.85 s. Therefore, total time interval exploited for computation of

bicoherence estimate was equal to 100 � 0.85 s = 85 s.

Decision about belonging of meteorological formation to laminar or turbulent kind is made by

comparison the bicoherence value with threshold given a priory. In the case, when the

bicoherence samples do not take the values belonging to the given threshold, decision is made

in favor of turbulent formation. In opposite case, one made decision in favor of laminar

formation.

Two different threshold values equal to 0.7 and 0.5 were examined (see Table 5).

Data represented in Table 5 indicate the following results. For the stratocumulus “non-

translucent” clouds #122, the percentage of the bicoherence values exceeding both threshold

Figure 12. Power spectrum (a) and bicoherence estimate (b) for “non-translucent” clouds #122.

Type of cloudiness Slant range (m) Index of excess

Threshold 0.7 (%) Threshold 0.5 (%)

Clouds #122 3750 0.02 0.76

White cumulus clouds 3150 0.77 11.2

Flocculent clouds T-36 5100 16.19 95.0

3300 18.4 96.7

1500 0.6 3.7

“White flaky” 2400 0.1 4.07

Table 5. The indexes of exceeding of the threshold computed in percent.
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values of 0.7 and 0.5 are equal to 0.02 and 0.76%, respectively. For the flocculent altocumulus

clouds T-36, the percentage of the bicoherence values acceding the thresholds of 0.7 and 0.5 are

equal to 16.19 and 95%, respectively. It is also seen from the data contained in Table 5 that for

the clouds #122, the turbulent contributions are predominated at the slant range of 3750 m.

At the same time, the laminar content is predominated for the T-36 clouds at the slant range

equal to 5100 m.

Thus, using common classification features evaluated in the form of width of power spectral

density leads to certain ambiguity. At the same time, suggested bicoherence-based approach

proposed in this chapter eliminates this ambiguity.

6. Conclusions

Bispectrum density estimator in opposite to the common energy spectrum estimator allows not

only describing statistical characteristics of a process more correctly and more profoundly but

also to detect and extract a new class of dependences contained in the data under study. These

dependences can exist in the form of spectral component correlation relationships and phase

coupling between the spectral component pairs. Therefore, the main difference between

bispectral and energy spectral strategies is in the preservation of phase information and possibil-

ity of extracting this phase contributions. Bispectrum-based signal processing allows extracting

novel information features providing signal detection and discrimination, as well as object

recognition and classification. The benefits of the suggested bispectrum-based data processing

techniques were demonstrated by experimental study of radar target detection, classification and

identification for naval, aerial, and ground moving objects. Experimental results represented in

this chapter demonstrate sea clutter suppression and improving of naval object range resolution

provided by polarimetric X-band radar. Essential reduction of speckle distortions in aerial high

resolution range profiles obtained by using suggested bicoherence-based classification features

was shown. Experimental results of time-frequency analysis of backscattered signals recorded by

ground surveillance Doppler radar were represented and discussed. Suggested bispectrum-

based approach can serve for improving the detection and recognition performances in radar

ATR systems operating in vegetation clutter. Bicoherence estimates were proposed for detection

and discrimination of the atmospheric turbulence formations performed by weather surveillance

radar. Results of experimental study indicate discrimination of the turbulent and laminar air

flows by exploiting bicoherence classification features.
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