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1. Introduction      
 

It is common practice to use linear plant models and linear controllers in the control systems 
design. Such approach has simple explanation applying to plants with insignificant non-
linearity or to those, functioning closely to a working point. But linear controllers, indeed 
with some modification, are used even for plants with significant non-linearities. Because of 
several reasons the non-linear controllers have not broad application.  First, the linear 
control theory is well developed; while the non-linear control methods are clear for few 
engineers in practice. Second, there are some technological and economical difficulties to get 
high quality study of the process to be controlled in order to build detailed (more precise) 
non-linear plant model. Third, new ideas in the field of the control theory are continuously 
realized, which expand the span of the linear control systems applications as an alternative 
to utilizing complicated models at the expense of troubles of theoretical and practical nature.   
 

During the last years a strategy “separate and rule over” is employed more and more by the 
researchers when trying to solve complex systems tasks using the principle: “Each complex 
task can be split into a limited number of simple subtasks in order to solve them 
independently, thereby formulate the solution of the initial complex task by their particular 
solutions”. Thus an old idea in the classical works [Wenk & Bar-Shalom, 1980; Maybeck & 
Hentz, 1987] was revived, so a complex (non-linear and/or time-variant) processes with 
high degree of uncertainty is represented by a family or a bank of (linear and/or time 
invariant) models with low degree of uncertainty [Li & Bar-Shalom, 1992; Morse, 1996; 
Narendra & Balakrishnan, 1997; Murray-Smith & Johansen, 1997].  
 
In fact, the multiple-model adaptive control (MMAC) theory is based mainly on the state 
space representation via Kalman filters as a tool for static and dynamic estimation of the 
system model states [Blom & Bar-Shalom, 1988; Li & Bar-Shalom, 1996; Li & He, 1999]. The 
alternative of implementing multiple-model control using a set of input-output models was 
the next natural step, even to answer the question:  “Why publications in the state space 
dominate and input-output models are not used for traditional linear control of complex 
plants, neglecting the fact that the standard system identification delivers basically such 
type of models”. The researchers in the field of switching control theory are among the 
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supporters of input-output models in the MMAC [Anderson  et al. , 2001; Hespanha & 
Morse, 2002; Hespanha et al., 2003].  
 

A MMAC of time-variant plants using a bank of controllers designed on the base of linear 
sampled-time models is presented in the next sections. Our research on this topic is on dead-
beat controllers (DBC), because on one side the design of DBC is relatively simple and on 
other side it is appropriate to demonstrate the theoretical development of the multiple-
model control based on selecting the DBC order independently on the plant model order 
[Garipov & Kalaykov, 1991] and on selecting sampling period for the DBC independently on 
the sampling period of the entire control system. In both aspects the advantage of the DBC is 
the possibility to express and respectively determine the extreme magnitudes of the control 
signal through the DBC coefficients. Two approaches to implement the closed loop system 
are discussed, namely by switching and by weighting the control signal to the plant. A novel 
solution for MMAC is formulated, which guarantees the control signal magnitude to stay 
always within given constraints, introduced for example by the control valve, for all 
operating regimes of the system. Two types of multiple-model controllers are proposed: the 
first operates at fixed sampling period and contains a set of controllers of different orders, 
and the second contains a set of controllers of the same fixed order but computed for 
different sampling periods. Examples of the MMAC are demonstrated and results are 
compared with the behavior of some standard control schemes.   

 
2. Main principles and concepts in the MMAC 
      

2.1. Modeling the uncertainty in control systems 
The most methods for controller design require a good knowledge of controlled plant 
dynamics or the exact plant model. If this information is incomplete the controller design is 
under the conditions of a priory uncertainty regarding the structure and parameters of the 
plant model and/or disturbances on the plant. On the other hand, the study of the most 
industrial processes during their operation is impeded due to equipment aging or failures, 
operating regimes variations or/and noisy factors changes. And if the a priory uncertainty 
could be justified before the control design, the a posteriori uncertainty accompanies the entire 
control system work. It is obvious that the continuously variation in operating conditions 
make the controllers function incorrect during the time even in case of exactly known 
process models. 
 
The historical overview shows various ways of representing the uncertainty in control 
systems. Limiting the framework to the difference equation as a typical input-output plant 
description, one can find out that the deterministic time invariant model is substituted in the 
seventies of 20 century with the stochastic one and the plant dynamics uncertainty is 
presented by an unmeasured random process on its output, i.e. the uncertainty is presented as 
a noise in the output measurements. When the theory moved the emphasis to time-variant 
systems in the eighties, this was a sign of recognition that if plant dynamics is changing in 
time, it can be tracked by estimating the changing model parameters, i.e. the uncertainty is 
presented as a noise over the physical model parameters. Meanwhile there were attempts 
deterministic interval models to be applied, so the uncertain plant dynamics is presented by 
a multi-variant model, i.e. the uncertainty is described as a combination of disturbances to the 
physical model parameters. Time-variant and interval models describe with various degrees of 
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complexity changing plant dynamics. The first type of models can be substituted with the 
bank of elementary time-invariant models called local models. The second type of models 
includes a set of time-invariant models for the plant dynamics, every one of which defined 
within a given range of plant parameters variations. In this case the local models correspond 
to particular operating regimes or plant states. Nevertheless, for both types of models the 
following idea is used: a bank of more simple models is used instead of its complicated 
presentation by a global model. It means that the plant control design of a complex 
controller can be replaced by a bank of local controllers tuned for every elementary model.  

 
2.2. Multiple-model adaptive control (MMAC)  
The core idea to get over the control system uncertainty is to realize a strategy for control of 
arbitrary in complexity plant by a bank of linear discrete controllers, which parameters 
depend on the corresponding linear discrete models, presented the plant dynamics at 
various operating regimes. This strategy is known as multiple model adaptive control (MMAC). 
The following characteristics are typical for this type of control:  

• First, the continuous-time space of the plant dynamics is approximated at limited 
number of operating regimes. This approach is something other than the indirect 
adaptive control (well known as self tuning control (STC), where the estimation 
procedure takes place at each sampling instant, which means that the plant dynamics is 
examined at practically infinite number of operating points. Hence the MMAC is 
defined as a new control methodology, which provides new features of the control 
system by simply using the elements and techniques from the classical control theory 
and practice.  

• Second, MMAC escapes the necessity of on-line plant model estimation. It is true that 
the bank of local models corresponds to the current plant dynamics at each operating 
point but these structures are evaluated before the control system starts operating. 
Hence, MMAC can avoid also all problems of the closed-loop identification compared 
to the standard indirect adaptive control. 

• Third, in case when one exact plant model is not suitable for all operating regimes, the 
following MMAC approaches can be applied: 
(a). Multiple-Model Switching Control (MMSC) - Used if the operating regimes are 

predefined or are quite different. The principle of relay-race control can be 
observed – each controller of the bank takes independent action in the control 
system tuned according the best corresponding plant model at the corresponding 
regime.  

 (b). Multiple-Model Weighting Control (MMWC) - Used if the operating regimes are 
not known in advance. The plant description is made as combination of the models 
for other operation regimes or as mixture of limited number of hypothetical models 
taken from the model bank. The global control is formed by contributions of all 
local controllers of the bank depending on various weights.    

Hence, MMAC is defined as adaptive control, because it uses different combinations of 
models to describe complex system behavior, thus, even when the plant and controller 
are time-variant, the controller is designed as being for a time-invariant system.  

• Forth, to identify the current operating regime is a specific task to recognize single or a 
set of performance indices of the control system. A test or number of tests is applied in 
order to determine some desired conditions (model and plant fit, control system errors, 
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system performance with respect to a reference model, constraints on signals in the 
system, etc.), then predefined or prepared in advance solutions for the multiple-model 
controller behavior is selected. From that viewpoint, the MMAC can be seen as 
supervisory control as well. 

 
3. Design of MMAC based on a bank of input-output models 
 

3.1. Stages of the design  
The multiple model control using bank of controllers tuned under corresponding bank of 
plant models is a classical control scheme. Usually the model’s and controller’s sampling 
periods are the same as the control system sampling period. A block-diagram of the 
MMACS is given in Fig. 1 for time-variant plant control.  
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Fig. 1. Structure scheme of the MMACS 

 
The design of MMACS is performed in several stages: 
 

Stage 1. Preliminary choice of a limited set of models, including amount and type of 
models, estimation of model parameters. Naturally, the MMAC designer aims at a good 
model, and therefore at a good controller covering a wide range of the system operating 
conditions. MMACS will act optimally if the model adequately presents the identified plant. 
When the system is not well studied and it is difficult to obtain a non-linear plant model, 
MMAC offers the use of a combination of linear models or the choice of the best one among 
the model set. Such solution is sub-optimal, but acceptable for the prescribed performance 
criteria. Continuous-time or sampled-time models may be used but the last one is common. 
The amount of selected models is usually related to the operating condition at which the 
control system is expected to work.  
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Stage 2. Preliminary design of sampled multiple-model controller including amount and 
type of the local controllers and tuning of the controllers’ coefficients. The system functional 
behavior depends mainly on the designed controllers according to the predefined system 
performance criterion, which is related to the controlled variable y(.). It is accepted that each 
local controller is tuned according to the corresponding model in the set from Stage 1.  
  

Stage 3. Implementation of the control system, including selection and implementation of 
the techniques for calculation of the weighting coefficients, and choice of system initial 

conditions. The weighting technique determines the weights iμ  for the output of each local 

controller. Usually they depend on values of preferred error signals, for example 
identification errors, control errors, deviations from a trajectory, etc., which are included 
into a corresponding criterion such as integral square error ISE, integral absolute error IAE, 
etc., under given observed time interval. One possible universal type of supervisor to form 
the control u in a control system is shown in the block diagram on Fig. 1 and is disclosed in 
details on Fig. 2.  
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Fig. 2. Detailed block diagram of the MMACS 

 
3.2. Algorithm for output feedback system controller   
The general tasks described above can be ordered in the following basic algorithm for 
discrete MMAC of a continuous-time plant.  
 

Step 1. The number N of the operating plant regimes is specified. The sampling period 0T  

for the system is selected, meaning that the signals are measured at time instances 0kT , 

Mk ...,,1,0= , during the time interval 0MTТ = . The sampling period is further excluded 
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from the values index to get shorter notation. The reference signal is defined )()( 0 krkTr ≡ , 

Mk ...,,1,0= , 0)0( =r . Initial values of the weighting coefficients Nj 1)0( =μ are 

determined. The control system is examined taking the zero initial conditions for the plant 

and the controller, i.e. 0)0( =y  and 0)0( =u . Then in the classical system the output signal 

will be formed answering the following rules:  
 

♦ Rule 1. 0)(...)1( === dyy  in case of d sampling periods time-delay in the system 

( 1≥d for sampled continuous-time plant using zero-order hold),  

♦ Rule 2. 0)1( ≠+dy , when 0)1( ≠r  and 0)1( ≠u , if the controller doesn’t put its own time-

delay into the control system.  

♦ Rule 3. During the first d sampling intervals the system operates practically without a 
feedback, therefore certain well known problems in the control might appear.  

 

Step  2. A bank of N discrete-time models is identified using the input-output plant 
measurements collected at the specified N operating regimes. The suggested models are  
 

 )(+)()(=)()( 1-1- kedkuqBkyqA jjjj − , ),...,2,1( Nj = ,                               (1) 

 
where a

a

jn
jnjj qaqaqA -1-

1
1- +...++1=)(  and  b

b

jn
jnjj qbqbqB -1-

1
1- +...+=)(  are polynomials  

of the unit delay 1−
q  with order, respectively, ajn  and bjn (more often jnjnjn ba == ), and 

jd presents the delay of the j-th model expresses as integer number of sampling periods. The 

random signal je  represents the model estimation error (the mismatch between the physical 

plant dynamics and its model, the measurement noise or any other disturbances to the 
plant). When the error is a white Gaussian process, the model parameter estimates are 
unbiased according the standard least squares method. In case of colored noise the modified 
least squares methods have to be used in order to get unbiased estimates.  
 

Step 3. A multiple-model controller is designed containing a set of N sampled-time 
controllers with 2 degrees of freedom and description 
 

)()(+)()(-=)()( 1-1-1- krqTkyqSkuqP jjjj  , ),...,2,1( Nj = ,  (2) 

 
where polynomials p

p

jn
jnjj qpqpqP

-1-
1

1- +...++1=)( , s
s

jn
jnjjj qsqssqS -1-

10
1- +...++=)(  and 

t
t

jn
jnjj qtqtqT -1-

1
1- +...++1=)(  have sizes and parameters according to the selected design 

method, as well as the corresponding plant model from the bank of the N-th sаmpled-time 
models (2). A special case of (3) presents sampled-time controllers with one degree of 

freedom == )()( 1-1- qTqS jj
q

q

jn
jnjjj qqqqqqQ

-1-
10

1- +...++=)( , )()()( kekykr =− , so that 
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)()(=)()( 1-1- keqQkuqP jjj  , ),...,2,1( Nj = .                                (3) 

 
A cycle for MMACS elements operating at Mk ,...,2,1=  

 
Start  
 
Step 1. Functioning of the set of controllers. 
A current control signal is formed at the output of the j-th local controller described by 
equation (3) 
 

)(...)1()()(...)1()( 101 sjnjjpjjnjjj jnkyskyskysjnkupkupku
sp

−−−−−−−−−−−=  

 
                                  )(...)1()( 1 rjnj jnkrtkrtkr

r
−++−++                               (4) 

 
or by equation (4) 
 

)(...)1()()(...)1()( 101 qjnjjpjjnjjj jnkeqkeqkeqjnkurkupku
qp

−++−++−−−−−=   (5) 

 
Step 2. Weighting control signals of all local controllers. 
A global control signal is calculated by 
 

)()1()(
1

kukku j

N

j
j∑

=
−= μ , ),...,2,1( Nj =  .        (6) 

 
The initial values of the weighting coefficients in MMACS can be selected as N1)0( =μ , i.e. 

the weighting mechanism starts with an equal weight of each controller. 
 

Step 3. Plant response measured. 
The plant output { }),...1(),...,1()( −−= kukyfky  is measured. 
 

Step 4. Supervisory function to form the weighting coefficients at the next cycle.  
Step 4.1. The output )(ˆ ky j  of each local model is calculated 

  

)(...)()(ˆ...)1(ˆ)(ˆ 11 bjjjnjjjajjnjjj jndkubdkubjnkyakyaky
ba

−−++−+−−−−−= ,   (7) 

 
Step 4.2. The a posteriori residual error )(ˆ ke j  at each local model output is estimated 

 

  . )()}(ˆ)({)(ˆ krkykyke jj −=                                 (8) 

www.intechopen.com



New Developments in Robotics, Automation and Control 

 

66 

 
Step 4.3. A performance index of each local model is fixed  
 

 )(ˆ)( 2 kekJ jj =                             (9) 

 
Step 4.4. An exponential smoothing is applied to decrease the influence of random 
factors to the MMACS 
 

)()1()1()( kJkJkJ jjj λλ −+−= , )0()0( jj JJ = ,  (10) 

 

where Le 4−=λ , L is the number of old values between which the smoothing is done. 

Step 4.5. The weighting coefficients for the next cycle of the procedure are calculated 
 

1

1

11 )()()(

−

=

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

N

j
jjj kJkJkμ ,  1)(

1

=∑
=

N

j
j kμ .       (11) 

 
End  
 

Alternative step 4.5. If the weighting control expression (12) is exchanged by switching 
one, then at each sampled-time instant a local controller with index c operates only, 
which is equivalent to setting the weight of the c–th local controller to be 1, i.e. 

1)( =kcμ . The corresponding plant model is chosen among the set of models 

according to the threshold value )(kJc  in the inequality [Boling et al, 2003]: 

 

  { })(min)1()( kJhkJ j
j

c +> .    (12) 

 
3.3. Test design example of MMACS  
Let the continuous time-variant plant be defined as:  
 

)1)(1)(1(
)(

32
)(

1

)(

+++
=

pTpTpT

K
pW

t

t

o  

 
with time-invariant constants sT 5.72 =  and sT 53 = . It is proposed that the observation 

interval is 0kTТ = с, 300...,,1,0 == Mk , sT 10 = , and the gain )( tK  and the time constant 

)(
1

tT  evolve as shown on Fig. 3a and Fig. 3b. 
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Fig. 3a. Evolution of )( tK  Fig. 3b. Evolution of 
)(

1
tT  

 
The MMACS for this plant is tested at 5 operating regimes (M = 5). The corresponding 
primary continuous time-invariant plant models are defined to cover the areas of the 
parameters’ evolution. Five local sampled-time models are calculated to form the bank of 
models in order to design the local controllers. Then a multiple-model controller is 
constructed, consisting of five dead-beat controllers each of them tuned for the 
corresponding model according to the technique described in the next sections. MMACS 

starts with equal weights 51)0()0( =≡ μμi . 

 
Some tests of the designed MMACS are on Fig. 4a (system output and reference), and on 
Fig. 5a (the behavior of the weighting coefficients for each local controller output). Table 1 
demonstrates that MMACS outperforms the other systems. The importance of this is 
additionally highlighted by the fact MMACS does not use the time-consuming plant 
identification procedure in real time as a part of self tuning controller.   
 

   
(a).  weighting MMACS (b).  swithing CS (h = 0) (c).  swithing CS (h = 1) 

Fig. 4.  Output y and reference r   

 

  
(a).  weighting MMACS (b).  switching CS (h = 0) (c).  switching CS (h = 1) 
Fig. 5.  Weighting coefficients 
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Type of the control system A quality measure 

MMACS with weighted control u 0.8122 

MMACS with switching control u (h = 0) 0.8137 

MMACS with switching control u (h = 1) 0.8161 

Classical CS 0.9236 

Adaptive CS (STC) 0.8892 

Table 1. Mean-square error for comparison 

 
4. Multiple-model adaptive control with control signal constraints 
 

4.1. Introduction 

Control systems in practice operate under constraints on the control signal, normally 
introduced by the control valve. When such constraints are not included in the design of the 
controller, the system performance differs significantly to the theoretically expected 
behavior. In case control signal formed by the standard controller is beyond these 
constraints, it will not be propagated with the required (expected) magnitude according to 
the unconstrained case. The solution of this problem is offered by the DB controller with 
increased order, as it adheres to the important principle “an increased order controller 
provides decreased magnitude of the control signal” [Isermann, 1981]. Accordingly, the 
choice of the order increment that can reduce the influence of the constraints on the control 
signal is a recommended requirement for the control system designer [Garipov & Kalaykov, 
1991]. 
 

In control systems with existing constraints on the magnitude of the control signal, linear 
control at any operating point is feasible in the following two cases: 
 

(a) When the controller is of sufficiently high order, such that it provides control 
magnitude not beyond the constraints. Such over dimensioned controller, however, 
is normally inert and sluggish. 

 
(b) When the controller is of varying order, which adjusts its coefficients according the 

necessity to keep the control signal magnitude limited [Garipov & Kalaykov, 1991], 
but preserving the linear nature of the controller at any operating point of the 
system. 

  
Equivalent of the system of case (b) is the multiple-model control system with multiplexing 
DB controllers of various orders is shown on Fig. 6.   
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Fig. 6. Single-rate multiple-model system with control signal constraints 

 
The difference to the system described in the previous Section 3, given on Fig. 1, is the 
selection mechanism, which is based on the requirement the DBC to guarantee a linear 
control signal within the predefined constraints at any operating point, depending on the 
desired (possibly stepwise changing only) reference signal. 

 
4.2. Design of DBC of increased order [Garipov & Kalaykov, 1990] 

Fundamental property of the DBC is the finite step response time 0)( Tdn +  of the closed-

loop system, where n is the order and d is the time delay of the sampled-data model of the 

controlled plant. Keeping the sampling period 0T  we can only obtain longer step response 

by increasing the DBC order. This, however, has the positive effect of decreasing the 
extreme magnitudes of the control signal, because the energy of the control signal spreads 
over larger number of sampling intervals (longer time). Thus, the application of DB control 
can be revived, as presented in the text below. 
 

The design of DBC of increased order is based on the following assumptions: 

Assumption 1: The DBC of increased order denoted by DBC (n+m,d) is described by fraction 

of two polynomials of pn -th order, where mdnnp ++=  and m means the order 

increment. When 0=m , the DBC is of normal order , when 1=m  DBC is of increased 

by one order [Isermann, 1981], etc. 
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Assumption 2:  At initial conditions the controlled variable 0)0( =y , a step change of the 

reference signal r is applied ( 1...)1()0( === rr ) and the step response settles in finite 

time, i.e.  
 

0)(...)1()0( ==== dyyy , 0)1( ≠+dy , 1)()( == krky  when mdnk ++≥ , 

0)0( ≠u , )()( mnuku +=  when mnk +> .   (13) 

 
Following the signal behavior after (14), the z-domain images of the respective quantities are  
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By constructing the following two fractions  
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the DBC polynomials )(mP  and )(mQ  are formed. It is not difficult to establish the following 

properties of the coefficients of the DBC(n+m,d): 
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The closed-loop control system has a transfer function 
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with a characteristic equation 0=++ mdnz , which means that the system has an infinite 

degree of stability. The properties of 
)(m

ip coefficients in (15) means the DBC(n+m,d) 

guarantees the system steady error to be asymptotically closed to zero (17), because 
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It is not difficult to prove the inherent existence of the same property of the DBC(n+m,d). 
Rewriting the DBC transfer function  
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and including the controlled plant transfer function 
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yield 
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The denominator polynomial in (20) is 
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which can be modified such, that the inherent integral part of DBC(n+m,d) can be 
demonstrated 
 

)()1()( 1 zPzzPC
−−= , 

 
where  
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Hence, the final description of DBC(n+m,d) becomes 
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A matrix based approach for design of DBC of increased order is proposed, which might  
appear to be relatively complex, but this is compensated by the versatility when constraints 
on the magnitudes of the control signal are predefined. In this approach we first reformulate 
(19) in another form of equation that connects the parameters of the plant model and the 
DBC coefficients, namely 
 

)()()()( )()( zQzBzPzA mm = .                   (21) 

 
 

Equalizing the respective terms in (22) the following matrix equation can be written 
 

 ** YX =θ  ,                   (22) 

 
where: 
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with dimensions of the basic matrices 
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)+()+(=dim 1 mnmnA × , )1++()+(=dim 1 mnmnB × , nnA ×=2dim , nnB ×= dim 2 , 

)+(1=dim mnE × , 1)+(=dim ×mnp , 1)1++(=dim ×mnq . The dimensions of the nul-

matrices are: )1(1dim ++×= mnDe , mnDa ×=dim , )1(dim +×= mnDb . 
 

Obviously, the equation (23) represents incomplete system of (2n+m+1) linear equations 
with (2n+2m+1) unknown parameters. Therefore, to enable the solution m additional 

equations have to be added, for example m conditions for the elements in the θ  vector. 
  

From (15) it is already known that the control signal magnitude at separate time instants 

depends on the coefficients in the )(mQ polynomial. This can be used to formulate a new 

concept for design of DB(n+m,d) controller: the unique solution of (23) to be persuaded by 

appropriate fit of the coefficients iq  with the constraints on the control signal. We 

complement the already demonstrated by Isermann [Isermann, 1981] principle “an 
increased order controller provides decreased magnitude of the control signal” by a new 

concept, namely “flexible tuning of the coefficients mqqq ,...,, 10  can provide linear control 

at any operating point of the control system”. 
 

Accordingly, in the proposed method for DB(n+m,d) controller design we introduce a matrix 

Z, )1+(dim +×= mnmZ , which augments the incomplete rank equation (23) to the full rank 

equation 
 

                YX =θ ,                             (23) 

 
where the matrices 
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have dimensions )1+2+2()12+2(= dim mnmnX ×+ , 1+2+2= dim mnY  and Dz , Dy are 

zero-blocks with dimensions )+(dim mnmDz ×= , 1dim ×= mDy . 

  

The following rules for putting together the elements of the Z matrix are established: 
Rule 1.  The number of elements in a row corresponds to the number of 

coefficients in the )(mQ  polynomial, as 1deg )( ++= mnQ m . 
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Rule 2.  The elements can take only a binary value: “0” means that the 

corresponding coefficient of the )(mQ  polynomial exists (i.e. it is nonzero), 

while “1” means the corresponding coefficient of )(mQ  does not exists (i.e. 

we consider this coefficient as set to zero).  
Rule 3.  Only one value “1” is permitted in a row and it cannot be at the first or last 

position, because this means change of the degree of )(mQ . 

Rule 4.  The nonexistence of the j-th coefficient ( mnj += ...,,3,2 ) in )(mQ  (i.e. it is 

set to zero) means holding of the (j-1)-th value of the control signal, which 
enables the designer to shape the behavior of the control system. 

 
The proposed methodology is demonstrated below for a DB(n+m,d) controller with m = 2  

for a third order plant with a delay ( 3=== nnn ba  and 1=d ): 
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The controller parameters estimates, allocated in the unknown parameters vector,  
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can be obtained by solving equation (24), in which  
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1111dim ×=X , 1111)12*23*2(dim ×=×++=Y . 

 

www.intechopen.com



Multiple Regressive Model Adaptive Control 

 

75 

Six alternatives for selecting the Z matrix elements, ( 62dim ×=Z ), are possible as shown 

below. For some of them the expected behavior of the control signal u is illustrated. The 
)(mQ  coefficients are given in Table 2 and )(mP  coefficients are in Table 3. 

  

Alternative 1. ⎥
⎦

⎤
⎢
⎣

⎡
=

000100

000010
Z , therefore the DB control signal takes values 

)0(=)1(=)2( uuu , as shown on Fig. 7.  
  

  
(a).    y (b).     U 

Fig. 7. The output and control signal for Alternative 1 

 

Alternative 2. ⎥
⎦

⎤
⎢
⎣

⎡
=

001000

000010
Z , therefore the DB control signal takes values 

)0(=)1( uu  and )2(=)3( uu , as shown on Fig. 8.         

 

   
(a).    y (b).    U 

Fig. 8. The output and control signal for Alternative 2 

 

Alternative 3. ⎥
⎦

⎤
⎢
⎣

⎡
=

010000

000010
Z , therefore )0(=)1( uu  and )3(=)4( uu . 

  

Alternative 4. ⎥
⎦

⎤
⎢
⎣

⎡
=

001000

000100
Z , therefore )1(=)2(=)3( uuu .  
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Alternative 5. ⎥
⎦

⎤
⎢
⎣

⎡
=

010000

000100
Z , therefore )1(=)2( uu  and )3(=)4( uu . 

  

Alternative 6. ⎥
⎦

⎤
⎢
⎣

⎡
=

010000

001000
Z , therefore )2(=)3(=)4( uuu .  

 
 Not all alternatives have the same importance. Those, which hold the initial two values u(0) 
(particularly!) and/or u(1), because these values contribute significantly to the reduction of 
the control signal magnitude. 
 

Alternative 
)2(

0q  )2(
1q  

)2(
2q  

)2(
3q  )2(

4q  
)2(

5q  

1 2.34196 0 0 -3.17382 2.19215 -0.36029 

2 3.01725 0 2.72848 0 0.90316 -0.19193 

3 3.49041 0 -4.64023 2.22379 0 -0.07397 

4 5.13095 -4.50996 0 0 0.49397 -0.11496 

5 5.94221 -5.82182 0 0.92321 0 -0.04360 

6 7.68261 -9.95441 3.29384 0 0 -0.02204 

Table 2. Coefficients in the numerator polynomial of the controller 
 

Alternative )2(
1p  

)2(
2p  

)2(
3p  )2(

4p  
)2(

5p  

1 0.15281 0.34126 0.38626 0.14674 -0.02708 

2 0.19687 0.43966 0.31961 0.05828 -0.01442 

3 0.22775 0.50861 0.27290 -0.00370 -0.00556 

4 0.33479 0.45338 0.18909 0.03138 -0.00864 

5 0.38773 0.48600 0.13173 -0.00218 -0.00328 

6 0.50129 0.46995 0.03152 -0.00110 -0.00166 
 

Table 3. Coefficients in the denominator polynomial of the controller 

 
The maximal and minimal values of the control signal during the transient response for the 
given example are collected in Table 4. The max…min span can be used as reference values 
in a criterion to select the appropriate alternative of the DB controller.  
 

m 0 1 2 2 2 2 2 2 

Alternative 1 1 1 2 3 4 5 6 

)0(max uu ≡  9.46 3.78 2.34 3.01 3.49 5.13 5.94 7.68 

minu  -4.72 -2.05 -0.83 0.29 -0.15 0.62 0.12 -2.27 

Table 4. Extreme values of the control signal for the considered alternatives 
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4.3. Block “Selection of controller under control signal constraints”  

Each local controller submits its computed control signal to this block. Which of them will 
be transferred as a global control signal to the plant is selected by checking the conditions of 
getting control signal within the predefined constraints. For time-invariant plants significant 
changes in the control signal may be obtained due to rapid change of the reference signal or 
suddenly appearing “overloading” disturbances. Both these factors can be interpreted as 
step signals, which appear not so often, such that the controller succeeds to stabilize the 
controlled variable before the appearance of a new disturbance. This assumption aids the 
explanation about the nature of the logical decisions about the control signal and its 
constraints. 
 

Let the step change appears at sampled time k causing a system error 

ε>>−= )()()( kykrke , where ε  is a threshold value determining the sensitivity of the 

algorithm. The local DB controllers with transfer functions  

);(1
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will yield control signals with extreme magnitudes Niuu ii ,,2,1,, minmax K= , which 

appear at time k=0 and k=m+1 according the well known property of DBC that )(
0

kuq
k

j
j =∑

=
 

unit step change of the reference  
 
Therefore, the maximum control signal magnitude at the first sampling instant after the step 

change ( ε>)(ke ) is equal to the coefficient 0iq , ( { } 00)0( iii uqu ≡= ). Having in mind this 

property, the maxiu  value of the local control signal right after the step change from: 

Nikeukuu ii ,,2,1,))(()1( 0max K=×+−= . In parallel the miniu  value at the (m+1)-th 

sampling instant after the step change of reference from 1

1

0

)1( +
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i

m

j
j umuq  and 

consequently  Nikeukuu mii ,,2,1,))(()1( 1min K=×+−= + . 

 

The local DB controller, which complies the constraints, is selected: 
 

(a) When ε>)(ke  the local controller j among all controllers in the bank is decided 

according the produced by it maximal value of the control signal, which is less or equal 

to limmaxu : { } limmaxmaxmax2max1max )(,),(),(max ukukukuu Nj ≤≡ K . If the additional 

condition limminmin uu j ≥  is satisfied, the selection of controller is confirmed, otherwise 

first the condition { } limminminmin2min1min )(,),(),(min ukukukuu Nj ≥≡ K  is checked and 

selection confirmed if limmaxmax uu j ≤  is also true. 

 

(b) When ε−<)(ke  the local controller j is decided by checking first 

[ ][ ]{ } limminmaxmax2max1max )(,),(),()(min ukukukukesignu Nj ≥≡ K . If the additional 
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condition limmaxmin )( ursignu j Δ≥  is satisfied, the selection of controller is confirmed, 

otherwise first the condition 

[ ]{ } limmaxminmin2min1min )(,),(),()(max ukukukursignu Nj ≤Δ≡ K  is checked and selection 

confirmed if limminmax )( ursignu j Δ≤ . 

 
4.4. Single-rate MMDBC under control signal constraint – a test example 

Let us take the same continuous control plant given in Section 3.3 and formulate MMDBC 
containing multiple DBC tuned for the same sampled plant model, but, contrarily to the 
previous case, having different increments of the order, i.e. each DBC is DB(3+m,1), m=0, 1, 2, 
3, 4, 5. The DBC producing extreme values of the control signal within the predefined 
constraints is activated currently within the MMDBC. Figure 9 represents the performance of 
the system, where the reference and system output are compared on Fig. 9a, the control signal 
all the time being within the constraints [-1, 7.5] on Fig. 9b. Figure 9c shows how the DBC 
order increment m varied when stepwise changing the reference signal. 
  

 
(a).   y and r (b).   u and [ limmaxu , limminu ] (c). increment of the DBC order 

Fig.  9. Single-rate MMDB control system with control signal constraints 

 
For comparison of the proposed MMDBC, a standard DB control system with fixed 
increments, namely DBC(3+0,1) and DBC(3+1,1), is demonstrated on Fig. 10, where one can 
see worse performance under the same test conditions. This confirms the advantage of our 
MMDBC approach. 
  

  
(a).    m=0 (b).    m=1 

Fig. 10.  System behavior y and r in control system with a standard fixed order DBC 
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4.5. Design of two-rate  DB control system 

The assumption in the sampled-data control systems theory is to define a sampling period 

0T , which is valid for the entire closed-loop system (let call it CLT0 ) and for the controller 

itself (let call it CT0 ). In other words CLT0 = CT0 = 0T . It is known that CLT0 = 0T  should be 

small enough for achieving nearly continuous-time system behavior, or at least the Shannon 
sampling theorem should be satisfied. However, it is also known that a small sampling 

period CT0 = 0T  yields large magnitudes of the control signal, which go beyond the physical 

constraints of the control valve, i.e. the nonlinear nature of the system becomes dominating. 

Therefore, certain lower bound of CT0 = 0T  should be considered.  
 

 Garipov proposed in [Garipov, 2004] a control scheme for DB control of a continuous plant 
based on the following postulates: 
 

• First, in order to form a sampled control signal for the continuous plant with a sampling 

period τ>CT0  identical to the sampling period of the entire control system, the system 

error at the controller input to be sampled with the same sampling period as the 
controller is sampled. This means the control feedback has to be implemented in an 
inner closed loop containing the controller and a sampled-time model of the plant, both 
with the same sampling period. In other words, both blocks have to operate with 
synchronous sampling rate. A normal performance of the DBC is expected even when 

the sampling period of the controller is τ>PT0 . 

 

• Second, in order to close the loop around the physical plant, an outer feedback loop is 
provided as well, based on the mismatch between the physical plant output (with all 
types of disturbances, measurement noise, etc.) and a sampled model of the plant (which 
is noise-free). The mismatch error could be considered much closer to zero when the 
sampling period of this second model of the plant is very small (nearly continuous 
system). This implies the recommendation the closed-loop sampling period to be 

selected always smaller, i.e. CCL TT 00 < . A normal performance of the DBC in this two-

rate control system is expected. 
 

 

fastТ _0slowmy _ fastmy _  
slowТ _0

u u r 

Outer feedback loop 

Inner feedback loop  

yr e 

ye

y 
Discrete 

Controller 

Slow Discrete 
Model 2 

Fast Discrete 
Model 1 

Continuous-
time Plant 

 
Fig. 11.  Two-rate control system 
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The block diagram of two-rate control system is shown on Fig. 11. Two sampled-time 
models of the same continuous-time plant are included, namely Fast Discrete Model with 

sampling period CL
fast TT 0_0 ≡ , which is in parallel to the plant, and Slow Discrete Model  

with sampling period fast
C

slow TTT _00_0 >≡ , which is used for the design of the controller. 

The step response of such system is demonstrated on Fig. 12, where one can identify the 

small sampling period 10 =CLT sec, while the controller operates at sampling period 

80 =CT sec. 

  

 

Fig. 12.  Modified two-rate system for sTCL 10 =  and sTT CLC 8*8 00 ==  

 
4.6. Design of a multi-rate DBC 

The main idea of a multiple-model adaptive DB controller, in which every local DBC 
operates at a different sampling period that is not equal of the sampling period of the 
closed-loop system, is implemented in the block diagram on Fig. 13.  

 
Algorithm 

 
Step 1. The continuous-time plant model is identified. 
 

Step 2. The small sampling period 0T  of the  control system is selected and the respective 

sampled-time plant model obtained. 
 

Step 3. A number of sampled-time models of the plant with different sampling periods 
)(

0
iT , i = 1, 2, …, N, are computed and the corresponding DBC obtained. The 

respective extreme values of the control signal for each model are calculated.  
  
Step 4. The control signal constraints [ limmaxlimmin , uu ] are defined and desired profile of 

the reference signal r(k), k=0, 1, 2, …, М, is specified (for analysis of the system 
performance). 
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Step 5. The MMDBC system is started, then the described in Section 4.3 block “Selection of 
controller” at every step change of the reference signal checks and selects the DBC 
with the least sampling period providing extreme values of the control signal 
within the defined constraints to be active.  
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Fig. 13. Multi-rate multiple model control with control signal constraints 

 
4.7. Multi-rate MMDBC under control signal constraint – a test example  

Let us take the same continuous control plant given in Section 3.3 and formulate multi-rate 
MMDBC containing multiple DBCs tuned for the same sampled plant model, but, contrarily 

to the previous case, obtained at different sampling periods 
)(

0
iT =  4, 6, 8, 10, 12, 14 и 18 sec. 

The Fast Discrete Model (Fig. 11) is obtained for sampling period 0T = 0.1 sec. Figure 14 

represents the performance of the system, where the reference and system output are 
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compared on Fig. 14a, the control signal all the time being within the constraints [-1, 7.5] on 
Fig. 14b. Figure 14c shows which model and respective DBC was selected, namely the 

corresponding value of the sampling period 0T  when stepwise changing the reference 

signal. 
 

   
(a).   r and y  (b).   u with constraints (c).  Variable sampling period 

Fig. 14.  Multi-rate MMDB control system with control signal constraints 

 
For a comparison, a standard DB control system is demonstrated on Fig. 15 for three 

different sampling periods 0
)(

0 TT i = , where one can see the poor performance under the 

same test conditions. This confirms the advantage of our multi-rate MMDBC approach.  
 

  

(a).   0
)(

0 TT i = = 18 sec (b).   0
)(

0 TT i = = 4 sec (c).   0
)(

0 TT i = =0.1 sec 

Fig. 15.  System behavior y and r in control system with a standard DBC at various 0T  

 
5. Conclusion      
 

The essence of the ideas applied to this text consists in the development of the strategy for 
control of the arbitrary in complexity continuous plant by means of a set of discrete time-
invariant linear controllers. Their number and tuned parameters correspond to the number 
and parameters of the linear time-invariant regressive models in the model bank, which 
approximate the complex plant dynamics in different operating points. Described strategy is 
known as Multiple Regressive Model Adaptive Control (MRMAC), and the implemented 
control system is known as Multiple Regressive Model Adaptive Control System 
(MRMACS). Its scheme is very traditional but attention is paid mainly on the novel 
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algorithm in the supervisory block that forms the final control action if the regimes of the 
plant are not previously known.  
 
The existence of control signal constraints by the control valve clearly indicates the needs to 
guarantee a control magnitude that always fits within the control constraints for all 
operating regime of the system. A novel design procedure is proposed to tune dead-beat 
controllers (DB) with arbitrarily increased order so the closer is the operating point to the 
constraints the bigger should be the DB controller order. As the plant operating point 
continuously changes, the switched MRMAC DB controller of minimal order have to be 
select in order to satisfy the control signal constraints. The supervisor logical action is shown 
and tests are made for complex simulation plants. The same task can be solved if the DB 
order remains fixed but the control signal magnitude is reduced by the switched MRMAC 
DB controller of arbitrarily discrete time-interval in order to satisfy the control signal 
constraints. In this case a new multi-rate MRMACS scheme is prepared. 
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