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Abstract

We describe an approach called the “weak asymptotics method” to construct multisoliton 
asymptotic solutions for essentially nonintegrable equations with small dispersion. This 
paper contains a detailed review of the method and a perturbation theory to describe the 
interaction of distorted solitons for equations with small perturbations. All constructions 
have been realized for the gKdV equation with the nonlinearity uμ, μ ∈ (1, 5).
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1. Introduction

We consider the problem of propagation and interaction of soliton-type solutions of nonlin-

ear equations. Our basic example is the nonhomogeneous version of the generalized KdV 

equation

    ∂ u ___ ∂ t   +   ∂  u   μ  ___ ∂ x   +  ε   2     ∂   3  u ___ ∂  x   3    = f  (u, ε   ∂ u ___ ∂ x  ) , x ∈  R   1 , t > 0,  (1)

where μ ∈ (1, 5), ε ≪ 1, f(u, z) is a known smooth function such that f(0, 0) = 0. Note that the 
restriction on μ implies both the soliton-type solution and the stability of the equation with 

respect to initial data (see, for example [1, 2]).

In the special case f ≡ 0 and μ = 2 (μ = 3), Eq. (1) is the famous KdV (modified KdV) equation. 
It is well known that KdV (mKdV) solitons are stable and interact in the elastic manner: after 
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the collision, they preserve the original amplitudes and velocities shifting the trajectories only 

(see [3] and other bibliographies devoted to the inverse scattering transform (IST) method). In 
the case of μ = 2 (μ = 3) but with f ≠ 0, Eq. (1) is a nonintegrable one. However, using the small-
ness of ε (or of f for other scaling), it is possible to create a perturbation theory that describes 
the evolution of distorted solitons (see the approaches by Karpman and E. Maslov [4] and 

Kaup and Newell [5] on the basis of the IST method, and the “direct” method by V. Maslov 

and Omel’yanov [6]). Moreover, the approach by V. Maslov and Omel’yanov [6] can be easily 

extended to essentially nonintegrable equations (μ ≠ 2, 3), but for a single soliton only. In fact, 
it is impossible to use any direct method in the classical sense for the general problem of the 

wave interaction. To explain this proposition, let us consider the homogeneous gKdV equation

    ∂ u ___ ∂ t   +   ∂  u   μ  ___ ∂ x   +  ε   2     ∂   3  u ___ ∂  x   3    = 0, x ∈  R   1 , t > 0.  (2)

It is easy to find the explicit soliton solution of (2),

  u (x, t, ε)  = A𝜔 (β (x − Vt)  / ε) , ω (η)  =  cosh   −γ  (η / γ) ,  (3)

  γ = 2 /  (μ − 1) , V =  β   2 ,  A   μ−1  = V (μ + 1)  / 2.  (4)

Next let us consider two-soliton initial data

    u|   
t=0   =  ∑ 

i=1
  

2

     A  
i
   ω ( β  

i
   (x −  x  

 (i,0)   )  / ε) ,  (5)

where x(1, 0) > x(2, 0) and A
2
 > A1. Obviously, since (x(2, 0) − x(1, 0))/ε → ∞ as ε → 0, the sum of the 

waves (3)

  u =  ∑ 
i=1

  
2

     A  
i
   ω ( β  

i
   (x −  V  

i
   t −  x  

 (i,0)   )  / ε)   (6)

approximates the problem (2), (5) solution with the precision O(ε∞) but for t ≪ 1 only. 
Conversely, the sum (6) does not satisfy the gKdV equation for t ∼ O(1) in view of the trajec-

tories x = V
i
t + x(i, 0) intersection at a point (x*, t*).

Let us consider shortly how it is possible to analyze the problem (2), (5). There are some 
 different cases:

1. Let A1 ≪ A
2
. Then, one can construct an asymptotic solution

  u = W ( (x −  ϕ  
2
   (t) )  / ε, t, x, ε, ν) ,  (7)

where ν = A1/A2
 ≪ 1 and W((x − ϕ

2
(t))/ε, t, x, ε, ν) = A

2
ω(β

2
(x − V

2
t − x(2, 0))/ε) + O(ν + ε). Thus, to 

find the leading term of the asymptotics, we obtain an equation with nonlinear ordinary dif-
ferential operator; whereas to construct the corrections, it is enough to analyze the lineariza-

tion of this operator. This construction (with a little bit of other viewpoints) has been realized 
by Ostrovsky et al. [7].
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2. Let A
2
 − A1 ≪ 1. We write again the ansatz in the form (7), where ν = A

2
 − A1 ≪ 1 now, and 

we assume ν/ε ≪ 1. In fact, this case coincides with the problem considered in [7].

3. The amplitudes A
2
 > A1 are arbitrary numbers. Then, we should write a two-phase ansatz

  u (x, t, ε)  = W ( (x −  ϕ  1   (t) )  / ε,  (x −  ϕ  
2
   (t) )  / ε, t, x, ε)   (8)

without any additional parameter. Substituting (8) into equation (2), we obtain for the leading 
term W0(τ1, τ2

, t):

   A ̂   W  0   +  B ̂   W  0  
μ  +   B ̂     

3
  W  0   = 0,  A  ̂   = −  ∑ 

i=1
  

2

      ϕ   ̇    
i
     ∂ ___ ∂  τ  

i
  
  ,  B ̂   =  ∑ 

i=1
  

2

      ∂ ___ ∂  τ  
i
  
  .  (9)

Since    ϕ   ̇    
1
   ≠   ϕ   ̇    

2
   , we can pass to new variables,  η =  ( τ  

1
   −  τ  

2
  )  /  (  ϕ   ̇    

2
   −   ϕ   ̇    

1
  )  ,  ζ =  (  ϕ   ̇    

1
    τ  

2
   −   ϕ   ̇    

2
    τ  

1
  )  /  (  ϕ   ̇    

1
   −   ϕ   ̇    

2
  )  , and trans-

form equation (9) to the gKdV form (2) again

    
∂  W  0   ____ ∂ η   +   

∂  W  0  
μ 
 ____ ∂ ζ   +   

 ∂   3   W  0   _____ ∂  ζ   3 
   = 0.  (10)

Therefore, to construct two-phase asymptotics, we should solve (10) explicitly what is impos-

sible for any essentially nonintegrable case.

This difficulty can be overcome by using the weak asymptotics method. The main point here is 

that solitons tend to distributions as ε → 0. Thus, it is possible to pass to the weak description 
of the problem, ignore the actual shape of the multiwave solutions, and find only the main 
solution characteristics, that is, the time dynamics of wave amplitudes and velocities. The 

weak asymptotics method has been proposed at first for shock wave type solutions [8] and for 

soliton-type solutions [9] many years ago. Further generalizations, modifications, and adap-

tations to other problems can be found in publications by M. Colombeau, Danilov, Mitrovic, 
Omel’yanov, Shelkovich, and others, see, for example, [10–20] and references therein.

The contents of the paper are the following: in Section 2, we present a detailed survey of the 
weak asymptotics method application to the problem of multisoliton asymptotics and Section 3  
contains new results, namely a perturbation theory to describe the evolution and collision of 

distorted solitons for equation (1).

2. Weak asymptotics method

2.1. Main definitions

Let us associate equation (2) with first two conservation laws written in the differential form:

    
∂  Q  

j
  
 ___ ∂ t   +   

∂  P  
j
  
 ___ ∂ x   =  ε   2    

 ∂   3   R  
j
  
 ____ ∂  x   3   , j = 1, 2,  (11)

   Q  1   = u,  P  1   =  u   μ ,  Q  
2
   =  u   2 ,  P  

2
   = 2μ  u   μ+1  /  (μ + 1)  − 3   (ε  u  

x
  )    2 ,  (12)

and R1 = u, R
2
 = u2. Next, we define smallness in the weak sense:
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Definition 1. A function v(t, x, ε) is said to be of the value   O  
𝒟'

   ( ε   ϰ )   if the relation   ∫ 
−∞

  ∞    v (t, x, ε) Ψ (x) dx = O ( ε   ϰ )    
holds uniformly in t for any test function  Ψ ∈ 𝒟 ( ℝ  

x
  1 )  . The right-hand side here is a   𝒞   ∞  -function for 

ε = const > 0 and a piecewise continuous function uniformly in ε ≥ 0.

Following [9, 17, 18], we define two-soliton weak asymptotics:

Definition 2. A sequence u(t, x, ε), belonging to   𝒞   ∞  (0, T;  𝒞   ∞  ( ℝ  
x
  1 ) )   for ε = const > 0 and belonging to  𝒞 

(0, T;  𝒟   '  ( ℝ  
x
  1 ) )   uniformly in ε, is called a weak asymptotic mod   O  𝒟'

   ( ε   2 )   solution of (2) if the relations (11) 

hold uniformly in t with the accuracy   O  𝒟'
   ( ε   2 )  .

Let us consider the interaction of two solitary waves for the model (2) with the initial data (5).

Following [9, 17, 18] again, we write the asymptotic ansatz in the form:

  u =  ∑ 
i=1

  
2

     G  
i
   (τ) ω ( β  

i
   (x −  ϕ  

i
   (t, τ, ε) )  / ε) ,  G  

i
   (τ)  =  A  

i
   +  S  

i
   (τ) .  (13)

Here ϕ
i
 = ϕ

i0(t) + εϕ
i1(τ), where ϕ

i0 = V
i
t + x(i, 0) are the trajectories of noninteracting solitary 

waves, τ = ψ0(t)/ε denotes the “fast time”, ψ0(t) = β1(ϕ20(t) − ϕ10(t)), and the phase and ampli-
tude corrections ϕ

i1, Si
 are smooth functions such that with exponential rates

   ϕ  
i1   (τ)  → 0 as τ → − ∞,  ϕ  

i1   (τ)  →  ϕ  
i1  
∞  =  const  

i
   as τ → +∞,  (14)

   S  
i
   (τ)  → 0 as τ → ±∞.  (15)

2.2. Two-wave asymptotic construction

To construct the asymptotics, we should calculate the weak expansions of the terms from the 

left-hand sides of the relations (11). It is easy to check that

  u = ε  ∑ 
i=1

  
2

     a  1     
 G  

i
  
 __  β  

i
     δ (x −  ϕ  

i
  )  +  O  𝒟'

   ( ε   3 ) ,  (16)

where δ(x) is the Dirac delta-function. Here and in what follows, we use the notation

   a  k     =   def   ∫ −∞   ∞       (ω (η) )    k  d𝜂, k > 0,  a  
2
  ′     =   
def

   ∫ −∞  ∞     ( ω   ′  (η) )    2  d𝜂.  (17)

At the same time for any F(u, ε∂u/∂x) ∈ C1, we have

     

 ∫ −∞  ∞    F ( ∑ 
i=1

  
2

     G  
i
   ω ( β  

i
     
x −  ϕ  

i
  
 ____ ε  ) ,  ∑ 

i=1
  

2

     β  
i
    G  

i
    ω   ′  ( β  

i
     
x −  ϕ  

i
  
 ____ ε  ) ) ψ (x) dx

      

= ε  ∑ 
i=1

  
2

      1 __  β  
i
      ∫ −∞  ∞    F ( A  

i
   ω (η) ,  β  

i
    A  

i
    ω   ′  (η) ) ψ ( ϕ  

i
   + ε    

η
 __ β    
i

  ) d𝜂

     
    +   ε     _  β  

2
      ∫ −∞  ∞    {  F ( ∑ 

i=1
  

2

     G  
i
   ω ( η  

i2
  ) ,  ∑ 

i=1
  

2

     β  
i
    G  

i
    ω   ′  ( η  

i2
  ) )  

     

    −  ∑ 
i=1

  
2

    F ( A  
i
   ω ( η  

i2
  ) ,  β  

i
    A  

i
    ω   ′  ( η  

i2
  ) )  }  ψ ( ϕ  

2
   + ε    

η
 _ β    
2

  ) d𝜂, 

    (18)

where
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    η  12   = 𝜃𝜂 − σ,  η  
22

   = η, σ =  β  1   ( ϕ  1   −  ϕ  
2
  )  / ε, θ =  β  1   /  β  

2
  .   (19)

We take into account that the second integrand in the right-hand side of (18) vanishes expo-

nentially fast as ∣ϕ1 − ϕ
2
∣ grows; thus, its main contribution is at the point x*. We write

   ϕ  
i0   =  x   *  +  V  

i
   (t −  t   * )  =  x   *  + ε  V  

i
   τ /   ψ   ̇    0   and  ϕ  

i
   =  x   *  +  𝜀𝜒  

i
  ,  (20)

where    ψ   ̇    
0
   =  β  

1
   ( V  

2
   −  V  

1
  )  ,   χ  

i
   =  V  

i
   τ /   ψ   ̇    

0
   +  ϕ  

i1
   . It remains to apply the formula

  f (τ) δ (x −  ϕ  
i
  )  = f (τ) δ (x −  x   * )  −  𝜀𝜒  

i
   f (τ)   δ   ′  (x −  x   * )  +  O  𝒟'

   ( ε   2 ) ,  (21)

which holds for each ϕ
i
 of the form (20) with slowly increasing χ

i
 and for f(τ) from the 

Schwartz space. Moreover, the second term in the right-hand side of (21) is   O  𝒟'
   (ε)  . Thus, under 

the assumptions (14) and (15), we obtain the weak asymptotic expansion of F(u, ε∂u/∂x) in the 
final form:

 F (u, ε  u  
x
  )  = ε  ∑ 

i=1
  

2

    {  
 a  
F,i

   (0)  
 ___  β  
i
     δ (x −  ϕ  

i
  )  − ε   

 a  
F,i

   (1)  
 ___  β  
i
      δ   ′  (x −  x   * ) }  +   ε __  β  

2
     { ℜ  

F
   (0)   δ (x −  x   * )  − ε   ℜ ¯¯    

F
    δ   ′  (x −  x   * ) }   

     +  O  𝒟'
   ( ε   3 ) ,   ℜ ¯¯    

F
   =  χ  

2
    ℜ  

F
   (0)   +  ℜ  

F
   (1)   /  β  

2
  ,  (22)

where

   a  
F,i

   (n)   =  ∫ −∞  ∞     η   n  F ( A  
i
   ω (η) ,  β  

i
    A  
i
    ω   ′  (η) ) d𝜂,  (23)

   ℜ  
F
   (n)   =  ∫ −∞  ∞     η   n  {F ( ∑ 

i=1
  

2

     G  
i
   ω ( η  

i2
  ) ,  ∑ 
i=1

  
2

     β  
i
    G  
i
    ω   ′  ( η  

i2
  ) )  −  ∑ 

i=1
  

2

    F ( A  
i
   ω ( η  

i2
  ) ,  β  

i
    A  
i
    ω   ′  ( η  

i2
  ) ) } d𝜂.  (24)

Here, we take into account that to define  ∂  u   2  / ∂t mod  O  𝒟'
   ( ε   2 )  , it is necessary to calculate u2 with the 

precision   O  𝒟'
   ( ε   3 )  . Thus, using (22) with F(u) = u2 and transforming (16) with the help of (21), we 

obtain modulo   O  𝒟'
   ( ε   3 )  :

  u = ε  ∑ 
i=1

  
2

     a  1    K  
i0  
 (1)   δ (x −  ϕ  

i
  )  + ε  ∑ 

i=1
  

2

     a  1    K  
i1  
 (1)   {δ (x −  x   * )  −  𝜀𝜒  

i
    δ   ′  (x −  x   * ) } ,  (25)

   u   2  = ε  ∑ 
i=1

  
2

     a  
2
    K  
i0  
 (2)   δ (x −  ϕ  

i
  )  +   ε __  β  

2
     { ℜ  

 u   2 
   (0)   δ (x −  x   * )  − ε  ℜ ¯¯    

 u   2 
    δ   ′  (x −  x   * ) } ,  (26)

where

   K  
i
   (n)   =  G  

i
  n  /  β  

i
  ,  K  

i0  
 (n)   =  A  

i
  n  /  β  

i
  ,  K  

i1  
 (n)   =  K  

i
   (n)   −  K  

i0  
 (n)  .  (27)

Calculating weak expansions for other terms from Definition 2 and substituting them into  
(11), we obtain linear combinations of εδ′(x − ϕ

i
), i = 1, 2, δ(x − x*), and εδ′(x − x*). Therefore, we  

pass to the system:

   a  1    V  
i
    K  
i0  
 (1)   −  a  

 P  1  ,i
   (0)    /  β  

i
   = 0,  a  

2
    V  
i
    K  
i0  
 (2)   −  a  

 P  
2
  ,i
   (0)    /  β  

i
   = 0, i = 1, 2,  (28)

   ∑ 
i=1

  
2

     K  
i1  
 (1)   = 0,  ℜ  

 u   2 
   (0)   = 0, i = 1, 2,  (29)
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    ψ   ̇    0     
d ___ 
d𝜏

    ∑ 
i=1

  
2

    { K  
i0  
 (1)    ϕ  

i1   +  χ  
i
    K  

i1  
 (1)  }  = f,   ψ   ̇    0     

d ___ 
d𝜏

   { ∑ 
i=1

  
2

     a  
2
    K  

i0  
 (2)    ϕ  

i1   +   ℜ ¯¯    
 u   2 

  }  = F,  (30)

where

  f =   1 ____  a  1    β  
2
      ℜ  

 P  1  
   (0)  , F =   1 __  β  

2
      ℜ  

 P  
2
  
   (0)   −  a  1     ψ   ̇    0    ∑ 

i=1
  

2

     ϕ  
i1     

 dK  
i1  
 (2)  
 ____ 

d𝜏
  .  (31)

The first four algebraic equations (28) imply again the relation (4) among A
i
, β

i
, and V

i
. 

Furthermore, there exists a number θ* ∈ (0, 1) such that equations (29), (30) have the required 
solution S

i
, ϕ

i1 with the properties (14) and (15) under the sufficient condition θ ≤ θ* (see [9, 

17]). It is obvious that the existence of the weak asymptotics (13) with the properties (14) and 
(15) implies that the solitary waves interact like the KdV solitons at least in the leading term.

Theorem 1. Let θ ≤ θ*. Then (13) describes  mod  O  𝒟'
   ( ε   2 )   the elastic scenario of the solitary waves interac-

tion for the μ-gKdV equation (2).

Numerical simulations ([14, 15, 17]) confirm the traced analysis, see Figure 1. Note that a 
small oscillating tail appears after the soliton collision, see [15] for detail. Obviously, this 

effect is similar to the “radiation” appearance for the perturbed KdV [21].

2.3. Multisoliton interaction

N-wave solutions of the form similar to waves (13) contain 2N free functions S
i
, ϕ

i1. Thus, to 

describe an N-soliton collision, we should consider N conservation laws. However, noninte-

grability implies the existence of a finite number of conservation laws only. For this reason, 
we need to involve into the consideration balance laws. For the gKdV-4 equation, the first 
conservation and balance laws have the form

    
∂  Q  

j
  
 ___ ∂ t   +   

∂  P  
j
  
 ___ ∂ x   +  ε   −1   K  

j
   =  O  𝒟'

   ( ε   2 ) ,  (32)

Figure 1. Evolution of two solitary waves for μ = 4 and ε = 0.1.
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where Q
j
, P

j
, j = 1, 2, coincide with (12) for μ = 4, K

i
 = 0, i = 1, 2, 3,

   Q  
3
   =   (ε u  

x
  )    2  −   2 __ 5    u   5 ,  P  

3
   = 16  u   3    (ε u  

x
  )    2  −  u   8  − 3   ( ε   2   u  

xx
  )    2 ,  (33)

   Q  4   =   1 __ 
2
     ( ε   2  u  

xx
  )    2  +   5 __ 21    u   8  −   10 __ 

3
    u   3    (ε u  

x
  )    2 ,  K  4   = −   (ε u  

x
  )    5 ,  (34)

   P  4   = 12 u   3    ( ε   2  u  
xx

  )    2  − 19u   (ε  u  
x
  )    4  −   3 __ 

2
     ( ε   3  u  

xxx
  )    2  +   160 ___ 231    u   11  −   100 ___ 

3
    u   6    (ε u  

x
  )    2 .  (35)

Note that the nondivergent “production” ε−1K4 has the same value O(ε−1) (in the C-sense and 

for rapidly varying functions) as the first ones in (32).

The formal scheme of the asymptotic construction is similar to the one described above: we 
write the ansatz of the form (13) but with N summands, found weak representations for all 

terms in (32), and pass to a system similar to (28)–(30). The main obstacle here is the proof that 
this system admits a solution with the properties of (14), (15). This idea has been realized in 
[18, 19] for the problem of three soliton collisions for the gKdV-4 equation.

Theorem 2. Let us denote A
i
 the amplitudes of the original solitons and x(i, 0) their initial positions such 

that A
i + 1 > A

i
, x(i, 0) > x(i + 1, 0), and i = 1, 2. Let all trajectories x = ϕ

i0(t) have an intersection point (x*, t*). 
Then, under the assumption

   β  
2
   /  β  

3
   =  ν   3 ,  β  1   /  β  

3
   =  ν   3 (3+α) /2 , α ∈  [0, 1)   (36)

with sufficiently small ν < 1, the three-phase asymptotic solution exists and describes  mod  O  
𝒟'

   ( ε   2 )   the 

elastic scenario of the solitary waves interaction.

Figure 2 depicts the evolution of a three-wave solution [14].

Figure 2. Evolution of the soliton triplet with μ = 4, ε = 0.1.
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2.4. Asymptotic equivalence

Let us come back to the case of two-phase asymptotics and transform the ansatz (13) to the 
following form:

   u ˜   =  ∑ 
i=1

  
2

    { G  
i
   (τ) ω ( β  

i
     
x −  ϕ  

i
   (t, τ, ε) 
 _________ ε  )  +  𝔖  

i
   (τ) W ( β  

i
     
x −  ϕ  

i
   (t, τ, ε) 
 _________ ε  ) } ,  (37)

where   𝔖  
i
   (τ)  , i = 1, 2 are arbitrary functions from the Schwartz space,

  W (η)  =  d   2l+1  ω (η)  / d  η   2l+1 ,  (38)

and l ≥ 1 is an arbitrary integer. Calculating the weak representations for   u ˜    and    u ˜     2  , we obtain

   

 u ˜   = u +  O  𝒟'
   ( ε   2l+2 ) ,

   
  u ˜     2  = ε  ∑ 

i=1
  

2

     a  
2
    K  

i0  
 (2)   δ (x −  ϕ  

i
  )  +   ε __  β  

2
      ℜ  

  u ˜     2 
   (0)   δ (x −  x   * )  +  O  𝒟'

   ( ε   2 ) ,
   (39)

where

   ℜ  
  u ˜     2 

   (0)   =  ∫ −∞  ∞    {  ( ∑ 
i=1

  
2

    ( G  
i
   ω ( η  

i2
  )  +  𝔖  

i
   W ( η  

i2
  ) ) )    

2

  −  ∑ 
i=1

  
2

      ( A  
i
   ω ( η  

i2
  ) )    2 } d𝜂,  (40)

and u in the right-hand side in (39) is the representation (25). Thus, the difference between u 

of the forms (13) and (37) is arbitrarily small in the sense   𝒟   '  ( ℝ  
x
  )  . At the same time, instead of 

(29), (30), we obtain

   ∑ 
i=1

  
2

     K  
i1  
 (1)   = 0,  ℜ  

  u ˜     2 
   (0)   = 0, i = 1, 2,  (41)

    ψ   ̇    0     
d ___ 
d𝜏    ∑ 

i=1
  

2

    { K  
i0  
 (1)    ϕ  

i1   +  χ  
i
    K  

i1  
 (1)  }  =  f ̃  ,   ψ   ̇    0     

d ___ 
d𝜏   { ∑ 

i=1
  

2

     a  
2
    K  

i0  
 (2)    ϕ  

i1   +   ℜ ¯¯    
  u ˜     2 

  }  =  F ˜  ,  (42)

where   f ̃   ,   F ˜    differ from f, F in the same manner as   ℜ  
  u ˜     2 

   (0)    differs from   ℜ  
 u   2 

   (0)   . The system (41) and 
(42) have again a solution with the properties (14) and (15) [9, 12]; however, it differs from 
the solution of Eqs. (29) and (30) with the value O(1) in the C-sense. Moreover, the asymptotic 
solutions (13) and (37) differ with the precision   O  𝒟'

   (ε)   in the sense of Definition 1. This implies 
the principal impossibility to describe explicitly neither the real shape of the waves at the time 

instant of the collision nor the real ε-size displacements of the trajectories after the interaction. 

However, the nonuniqueness of the value O(ε) is concentrated within O(ε1 − ν)-neighborhood 
of the time instant t* of the interaction, ν > 0. Thus, it is small in the   𝒟   '  ( R  

x,t
  2  )   sense. We set

Definition 3. Functions u1(x, t, ε) and u
2
(x, t, ε) are said to be asymptotically equivalent if for any test 

function  ψ ∈ 𝒟 ( R   2 )  

   ∫ −∞  ∞     ∫ −∞  ∞    { u  1   (x, t, ε)  −  u  
2
   (x, t, ε) } ψ (x, t) dx dt = O ( ε   2 ) .  (43)

In this sense, the solutions (13) and (37) are asymptotically equivalent.

We now focus attention on another question: how to choose, from the set of all possible conserva-

tion and balance laws, those that allow to construct a multiphase asymptotic solution? It seems 
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that there is not any rule and it is possible to use arbitrary combination of the laws. Thus, there 

appears the next question: what is the difference between such solutions? This problem has been 
discussed in [20] for two-phase asymptotic solutions of the gKdV-4 equation. Let us define two-
phase asymptotics in the following manner:

Definition 4. Let 1 ≤ k0 < k1 ≤ 4 and let a sequence uk0, k1 = uk0, k1(t, x, ε) belong to the same functional 

space as u(t, x, ε) in Definition 2. Then, uk0, k1 is called a weak asymptotic mod   O  𝒟'
   ( ε   2 )   solution of (2) if 

the relations (32) hold for j = k0 and j = k1 uniformly in t.

A detailed analysis implies the assertion [20].

Theorem 3. Let θ be sufficiently small. Then, the weak asymptotic solutions u1, k1 and   u  
1, k  

1
  ′  
    of the problem  

(2), (5) exist and they are asymptotically equivalent for all   k  
1
  ,  k  

1
  ′   ∈  {2, 3, 4}  .

3. Collision of distorted solitons

We consider now the nonhomogeneous version of the gKdV equation (1). It is easy to verify 
that, in the case of rapidly varying solutions, the right-hand side f can be treated as a “small 

perturbation.”

An approach to construct one-phase self-similar asymptotic solutions for (1) had been created 
in [6] (see also [17]). Let us generalize this approach to the multiphase case. From the begin-

ning, we state that equation (1) is associated with balance laws, the first two of which are

    
∂  Q  

j
  
 ___ ∂ t   +   

∂  P  
j
  
 ___ ∂ x   +  K  

j
   =  O  𝒟'

   ( ε   2 ) , j = 1, 2,  (44)

where Q
j
 and P

j
 coincide with ones described in (12),

   K  1   = − f (u, ε  u  
x
  ) ,  K  

2
   = − uf (u, ε  u  

x
  ) .  (45)

Note that, in contrast to K
j
 in (32), productions here are regularly degenerating functions with 

the value O(1) in the C-sense.

Let us first construct a two-phase version of self-similar asymptotics, which assumes a special 
initial data for (1) and discuss afterward how to treat it for more realistic initial data. By anal-
ogy with Definition 2, we write:

Definition 5. Let a sequence u = u(t, x, ε) belong to the same functional space as in Definition 2. 
Then u is called a weak asymptotic mod   O  

𝒟'
   ( ε     q ¯¯   )   solution of (1) if the relation (44) hold uniformly in 

t ∈ (0, T),    q ¯¯   = min  {μ, 2}  .

Generalizing one-phase asymptotics, we write the ansatz as

  u =  ∑ 
i=1

  
2

    { G  
i
   (τ, t) ω ( η  

i
  )  + ε ( z  

i
   (x, t) ℌ ( η  

i
  )  +  𝔊  

i
   (τ) ω ( η  

i
  ) ) } ,  (46)

   G  
i
   (τ, t)  =  A  

i
   (t)  +  S  

i
   (τ) ,  η  

i
   =  β  

i
   (t)  (x −  ϕ  

i
  )  / ε,  ϕ  

i
   (t, τ, ε)  =  ϕ  

i0   +  𝜀𝜑  
i1  .  (47)
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Here A
i
(t), ϕ

i0 = ϕ
i0(t),   β  

i
  2  (t)  = γ  A   μ−1  (t)  , ω(η), S

i
(τ), ϕ

i1(τ) are the same as in (13); τ = ψ0(t)/ε with 

ψ0(t) = ϕ20(t) − ϕ10(t) denotes the “fast time” again;    z  
i
   (x, t)  ∈  𝒞   ∞  ; and   𝔊  

i
   , ℌ are smooth functions 

such that

   𝔊  
i
   (τ)  → 0 as τ → − ∞ ,  𝔊  

i
   (τ)  →  𝔊  

i
  ∞  =  const  

i
   as τ → +∞ ,  (48)

  ℌ (η)  → 1 as η → − ∞ , ℌ (η)  → 0 as η → +∞  (49)

with exponential rates. We assume also the intersection of the trajectories x = ϕ
i0(t), i = 1, 2 at a 

point x* = ϕ
i0(t*) namely,

    ∃ t   *  > 0 such that  ϕ  10   ( t   
* )  =  ϕ  20   ( t   

* ) ,   ψ   ̇    0     =   def    d __ 
dt

   ( ϕ  20   (t)  −  ϕ  10   (t) ) |   
t= t   * 

   ≠ 0.  (50)

It is easy to verify the weak representations with the precision   O  
𝒟'

   ( ε   2 )  :

  u = ε  ∑ 
i=1

  
2

    { a  1    K  
i0  
 (1)   δ (x −  ϕ  

i
  )  +  a  1    K  

i1  
 (1) *  δ (x −  x   * )  +  z  

i
   (x, t) H ( ϕ  

i
   − x) } ,  (51)

   

  ∂ u ___ ∂ t   =  a  1     ψ   ̇    0     
∂ __ ∂ τ    ∑ 

i=1
  

2

     K  
i1  
 (1) *  δ (x −  x   * )  + ε  ∑ 

i=1
  

2

      
∂  z  

i
  
 ___ ∂ t   H ( ϕ  

i
   − x) 

     

       +ε  a  1    ∑ 
i=1

  
2

    {  
 dK  

i1  
 (1)  
 ____ 

dt
   +  z  

i
   ( ϕ  

i
  , t)    
d  ϕ  

i0   ____ 
dt

  } δ (x −  ϕ  
i
  )  − ε  a  1    ∑ 

i=1
  

2

     K  
i0  
 (1)     
d  ϕ  

i0   ____ 
dt

    δ   ′  (x −  ϕ  
i
  ) 

       
         +ε  ∑ 

i=1
  

2

    {  ψ   ̇    0     
∂ __ ∂ t   ( a  1     

 𝔖  
i
  
 __  β  
i
     +  z  

i
   ( x   * , t)   ϕ  

i1  )  −   
 a  1   __ 
 β  
i
  2 
    S  
i
     
d  β  

i
  
 ___ 

dt
  } |   

t= t   * 

   δ (x −  x   * ) 
      

         − ε  a  1    ∑ 
i=1

  
2

    { K  
i1  
 (1)     
d  ϕ  

i0   ____ 
dt

   +   ψ   ̇    0   ( K  
i
   (1)     

∂  ϕ  
i1   ____ ∂ τ   +   

 χ  
i
  
 __  β  
i
       
∂  K  

i
   (1)  
 ____ ∂ τ  ) } |   

t= t   * 

    δ   ′  (x −  x   * ) ,

    (52)

where H(x) is the Heaviside function, H(x) = 0 for x < 0 and H(x) = 1 for x > 0;     g   *    =   
def

  g (τ, t) |   
t= t   * 

   ,   χ  
i
     =   
def

   

ϕ  
i
   (Φ (𝜀𝜏,  t   * ) , τ, ε)  −  x   *  , and Φ(ετ, t*) is the solution of the equation ϕ20(t* + Φ) − ϕ10(t* + Φ) = ετ, which 

exists in accordance with (50).

Next, the existence of nonsoliton summands in (51) implying a correction of formula (22), 
namely

 F (u, ε u  
x
  )  = ε  ∑ 

i=1
  

2

     a  
F,i

   (0)    β  
i
  −1  δ (x −  ϕ  

i
  )  +  𝜀𝛽  

2
  −1   ℜ  

F
   (0)   δ (x −  x   * )   

               + ε  F  
u
  ′   (0, 0)   ∑ 

i=1
  

2

     z  
i
   (x, t) H ( ϕ  

i
   − x)  +  O  𝒟'

   ( ε     q ¯¯   ) ,  (53)

where   a  
F,i

   (0)    and   ℜ  
F
   (0)    are defined in (23), (24),      F  

u
  ′   (0, 0)  = ∂F(u ,  0) / ∂u |   

u=0
   .

Repeating the same calculations as above, we obtain linear combinations of εδ(x − ϕ
i
), 

εδ′(x − ϕ
i
), εH(ϕ

i
 − x), i = 1, 2; δ(x − x*), εδ(x − x*), and εδ′(x − x*). Equating zero, the coefficients of 

εδ(x − ϕ
i
) and εδ′(x − ϕ

i
) yield

   a  1    A  
i
     
d  ϕ  

i0   ____ 
dt

   =  a  
 P  1  ,i

   (0)   ,  a  
2
     d __ 
dt

     
 A  
i
  2 
 ___  β  
i
     =   

 a  
 K  

2
  ,i
   (0)   
 ___  β  

i
    ,  (54)
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   a  
2
    A  
i
  2    
d  ϕ  

i0   ____ 
dt

   =  a  
 P  

2
  ,i
   (0)   ,  a  1     

d __ 
dt

     
 A  
i
  
 __  β  
i
     +  z  

i
   ( ϕ  

i
  , t)    
d  ϕ  

i0   ____ 
dt

   =   
 a  
f,i
   (0)  
 ___  β  
i
    .  (55)

Equation (54) forms the closed system to define A
i
(t) and ϕ

i0(t). To simplify it, let us use the 

equalities (4) and rewrite the model equation for ω(η) as follows:

    d ___ 
d𝜂

   {− ω +   
μ + 1

 ____ 2    ω   μ  +    d   
2  ω ____ 
d  η   2 

  }  = 0.  (56)

Simple manipulations with (56) allow us to find relations between structural constants:

   a  1   =  (μ + 1)   a  μ   / 2,  a  
2
   =  (μ + 3)   a  μ+1   / 4,  a  

2
  ′   =  (μ − 1)   a  μ+1   / 4.  (57)

Next, we use (57), the equality   β  
i
  2  = γ  A  

i
  μ−1  , add the initial conditions, and obtain from (54) the 

Cauchy problem

    
 dA  

i
  
 ___ 

dt
   = −  c  1    a   K  

2
  ,i
   (0)     A  
i
  −1 ,   

d  ϕ  
i0   ____ 

dt
   =   

 a  
μ
  
 __  a  1  
    A  

i
  μ−1 , t > 0,  (58)

   A  
i
     |    
t=0   =  A  

i
  0 ,   ϕ  

i0  |   
t=0

   =  x  
 (i,0)   ,  (59)

where c1 = 2/(a
2
(5 − μ));   A  

i
  0  > 0  and x(i, 0) are arbitrary numbers; and i = 1, 2. Note also that the first 

equalities in equations (54) and (55) are equivalent.

Next, equating zero the coefficients of the Heaviside functions, we obtain the equations

    
∂  z  

i
  
 ___ ∂ t   =  f  

u
  ′   (0, 0)   z  

i
  , x <  ϕ  

i0   (t) , t > 0, i = 1, 2.  (60)

In view of (58) dϕ
i0/dt > 0, so we use the second equality in (55) to state the correct initial condi-

tion for (60)

     z  
i
   (x, t) |   

x= ϕ  
i0   (t) 

   =  √ 
__

 γ    a  
f,i
   (0)    A  

i
   (3−4μ) /2  (t)  +  c  

2
    a  

 K  
2
  ,i
   (0)     A  
i
   (1−3μ) /2  (t) , t > 0,  (61)

     z  
i
   (x, t) |   

t=0
   =  z  

i
  0  (x) , x ≤  x  

 (i,0)   ,  (62)

where c
2
 = a1(3 − μ)(1 + μ)/(2a

2
(5 − μ)),   z  

i
  0  (x)   is an arbitrary smooth function, which satisfies the 

consistency condition

     z  
i
  0  ( x   (i,0)   )  =  { √ 

__
 γ    a  
f,i
   (0)    A  

i
   (3−4μ) /2  +  c  

2
    a  

 K  
2
  ,i
   (0)     A  
i
   (1−3μ) /2 } |   

t=0
  .  (63)

We should note that the nonlinearity uμ in (1) can require the inequality u ≥ 0. To this end, we 
will assume

     A  
i
   (t)  > 0,    z  

i
   (  x ,  t )   |   

x= ϕ  
i0   (t) 

   ≥ 0 for t ≥ 0.  (64)

Furthermore, equating zero the coefficients of δ(x − x*) and εδ′(x − x*) yield (29), (30) again. 
Consequently, the condition θ ≤ θ* guaranties the existence of S

i
, ϕ

i1 with the properties of 

(14), (15). In particular
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   S  1   = − θ  S  
2
    S  1   =  𝜃𝛽  1  

γ  λ (σ)  (1 + O ( θ   q ) ) ,  (65)

where

  q = min  {1, γ} , λ (σ)  =  a  
2
  −1   ∫ 

−∞
  

∞
    ω (η) ω ( η  12  ) d𝜂.  (66)

The last step of the construction is the determination of   𝔊  
i
   (τ)  , i = 1, 2. By setting the coefficients 

of εδ(x − x*) zero, we obtain

      ∂ __ ∂ τ    ∑ 
i=1

  
2

      
 𝔊  

i
  
 ___  β  

i
  *    =  𝔉  1  ,    ∂ __ ∂ τ    ∑ 

i=1
  

2

    (  
 G  

i
  
 __  β  

i
     +   

 G  
  i ¯¯     __  β  
2
     λ (σ) ) |   

t= t   * 

    𝔊  
i
   =  𝔉  

2
  ,  (67)

where    i ¯¯   = 2  for i = 1 and    i ¯¯   = 1  for i = 2,

   𝔉  1   = −  ∑ 
i=1

  
2

    {  
 z  

i
   ( x   * , t) 

 ______  a  1  
     

d  ϕ  
i1   ____ 

d𝜏   +   ψ   ̇    0  
−1    ∂ __ ∂ t     

 S  
i
  
 __  β  

i
    }    |    

t= t   * 
   +   1 __  β  

2
      ℜ  

f
   (0)  |   

t= t   * 

  ,  (68)

   𝔉  
2
   = −   ∂ __ ∂ τ    ∑ 

i=1
  

2

    { a  
H
    z  

i
   ( x   * , t)    

 S  
i
  
 __  β  

i
     +  z  

  i ¯¯     ( x   * , t)    
 G  

i
  
 __  β  

2
      λ  

H,i
   (σ) }    |    

t= t   * 
   +   

 ℜ  
 K  

2
  
   (0)  
 ___  c  

H
    |   

t= t   * 

  ,  (69)

   a  
H
   =  a  1   /  (2  a  

2
  ) ,  c  

H
   = 2  a  

2
     ψ   ̇    0    β  

2
  ,  λ  

H,i
   (σ)  =  a  

2
  −1   ∫ −∞  ∞    ω ( η  

i2
  ) ℌ ( η  

  i ¯¯  2  ) d𝜂.  

Calculating the determinant Δ of the matrix in the left-hand part of (67) and using (65), we 
conclude

  Δ =  ( G  
2
   −  G  1   + λ ( G  1   − θ  G  

2
  ) )    |    

t= t   * 
   =  β  

2
  γ  (1 −  θ   γ  − λ (θ −  θ   γ )  −  λ   2   θ   γ  (1 + O ( θ   q ) ) ) |   

t= t   * 
  .  (70)

Obviously, Δ ≠ 0 for sufficiently small θ. Since the right-hand sides   𝔉  
i
    belong to the Schwartz 

space, the functions   𝔊  
i
    exist and satisfy the assumption (48).

Henceforth, we pass to the final result:

Theorem 4. Let θ be sufficiently small and let the assumptions (50), (63), and (64), if it is necessary, be 
fulfilled. Then, the self-similar two-wave weak asymptotic mod  O ( ε     q ¯¯   )   solution of the equation (1) exists 

and has the form (46).

Let us finally stress that the self-similarity implies a special choice of the initial data: for the 
classical asymptotics in the C-sense, there appears a very restrictive condition for small cor-

rection of the soliton A(0)ω((x − x0)/ε) (see [6, 17]), and for weak asymptotics, there appears 
the restriction (63). If it is violated, then the perturbed soliton generates a rapidly oscillat-
ing tail of the amplitude o(1) (“radiation”) instead of the smooth tails εu−(x, t) (see [21] and 

numerical results [14, 15, 17]). Nowadays, this radiation phenomenon can be described ana-

lytically only for integrable equations, so that we should use self-similar approximation for 

essentially nonintegrable equations. However, the smooth tail εu−(x, t), which can be treated 
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as an average of the radiation, describes sufficiently well the tendency of the radiation  

amplitude behavior, see graphics depicted in Figures 3 and 4, and other numerical results 

in [15, 17]).

u

-5

t

t = 2.0

10

x

Figure 3. Example of noninteracting solitary waves, μ = 4, f = u(1 − u).

u-5

10

t = 1.0

t

x

Figure 4. Example of interacting solitary waves, μ = 4, f = u(1 − u), ε = 0.1.
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