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Abstract

Creep-resisting austenitic steels constitute a group of construction materials which can 
work in the conditions of creep for the temperature range from 550 to 700°C. The service of 
austenitic steels leads to the progressive degradation of their microstructure, which results 
in the changes of functional properties. The main mechanisms of degradation of the aus-
tenitic steel microstructure include the processes of matrix softening, the processes of pre-
cipitation and matrix depletion of the interstitial and substitution elements. Precipitation 
processes in austenitic steels are a very important indicator, which allows the advancement 
of microstructure degradation processes in these steels to be determined. Hence, the knowl-
edge of the impact of individual secondary phases on the microstructure and properties of 
austenitic steels plays a very important role in diagnosing the components and equipment 
of the power boiler system and makes it possible to forecast the time of safe operation of 
systems made from these steels. Based on own studies and data from literature, this paper 
will present the characteristics of secondary phase precipitates occurring in creep-resistant 
austenitic steels during their operation at an elevated/high temperature. The effect of sec-
ondary precipitates on mechanical properties of these steels will be discussed too.

Keywords: creep-resistant austenitic steel, precipitation processes, mechanical properties, 
degradation of microstructure, matrix softening

1. Introduction

One of the ways to reduce air emissions of pollutants arising from combustion of solid 

fuel—hard coal or lignite in power units is to enhance steam parameters. By improving the 

efficiency of power units, higher steam parameters contribute to the reduction in emission 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Material C Si Mn P S Cr Ni W Co Cu Nb N B

TP347HFG 0.04–0.10 max 1.00 max 2.00 max 0.04 max 0.015 17.0–20.0 9.0–12.0 – – – max 1.20 (10x C) max 0.10 –

Super304H 0.07–0.13 max 0.30 max 1.00 max 0.04 max 0.01 17.0–19.0 7.5–10.5 – – 2.5–3.5 0.30–0.60 0.05–0.12 0.001–0.010

HR3C 0.04–0.10 max 0.75 max 2.00 max 0.03 max 0.03 24.0–26.0 17.0–23.0 – – – 0.20–0.60 0.15–0.35 –

Sanicro 25 0.04–0.11 max 0.40 max 0.60 max 0.025 max 0.015 21.5–23.5 23.5–26.5 2.0–4.0 1.0–2.0 2.0–3.5 0.30–0.60 0.15–0.30 max0.008

Table 1. Chemical composition of modern creep-resistant austenitic stainless steel, %mass.
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of pollutants. Higher requirements related to the enhancement of operating parameters of 

unit demands the use of new construction materials not only of adequate creep strength, but 

also with high resistance to corrosion and oxidation [1, 2].

Because of insufficient resistance to oxidation of 9%Cr martensitic steels and very unstable 
microstructure associated with the MX → Z phase transition for 12%Cr martensitic steel, in 

plants operated at above 600°C, creep-resistant austenitic steels are used [3]. Compared to 

ferritic steels, the austenitic ones show higher heat and high-temperature creep resistance, 

however they have unfavourable physical properties, that is, higher thermal expansion coef-

ficient and lower conductivity. The disadvantage of these steels is high price due to the con-

tent of expensive nickel in their chemical composition. Creep-resistant austenitic steels were 

developed by modification and optimisation of chemical composition of the classic 18/8-grade 
steels [4]. Nowadays, the (17–20%)Cr-(7–11%)Ni steels—TP347HFG and Super 304H and the 

(20–25%)Cr-(15–23%)Ni steels—HR3C are used in modern power boilers. The prospective 

steel Sanicro 25, classified as steel of the 25/23 type, is also in the phase of implementation 
to modern power units designed for work at the ultra-supercritical parameters of steam. 

Austenitic steels are intended for plant components working at above 600°C, and currently 

they are most often used for steam superheaters [2, 4–7]. The required chemical composition 

of the creep-resisting austenitic steels mentioned above is presented in Table 1.

In the as-received state, austenitic steels have austenitic structure with numerous annealing 

twins. Modern creep-resistant austenitic steels belong to the so-called stabilised steels, which 

mean they contain a strong carbide-forming element—niobium. Therefore, numerous ran-

domly arranged primary NbC carbides with micrometric size are observed within the matrix 

of these steels. Sanicro 25 steel in the as-received condition may also include the primary Z 

phase (complex NbCrN nitride) precipitates. By binding carbon atoms, the primary NbC car-

bide precipitates reduce the processes of precipitation of M
23

C
6
 carbides at the grain bound-

aries. However, the niobium content in creep-resistant austenitic steels, in contrast to the 

“classic” austenitic steels, is limited below the level required for complete binding of carbon 

atoms [5, 7]. The metastable structure of austenitic steels will be subject to progressive evo-

lution during service, and the main degradation mechanism includes the precipitation pro-

cesses of secondary phases and changes in their morphology. Depending on steel grade and 

operating parameters, in the microstructure of austenitic steel, there may occur during long-

term service the  precipitation of carbides/nitrides: M
23

C
6
, MX, Z phase; intermetallic phases: 

σ, Laves, χ, complex silicide—G phase, as well as copper-rich precipitates—ε _Cu [5, 7–12].

This paper presents the characteristics of secondary phases occurring in modern creep-

resistant austenitic steels.

2. M
23

C
6
 carbide

In the majority of austenitic steels (without copper addition), chromium-rich M
23

C
6
 carbide is the 

first secondary precipitate that appears in the microstructure of these steels. The privileged locations 
of M

23
C

6
 carbide precipitation are grain boundaries (Figure 1) and, in the next place, incoherent and 
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coherent twin boundaries [5, 8–10, 13]. Precipitation of M
23

C
6
 carbides at the grain boundaries in 

austenitic steels depends on the nature of the boundary. The privileged boundaries are those char-

acterised by high degree of coincidence Σ or those with high misorientation angle Θ [9, 10].

Finely dispersed M
23

C
6
 carbides precipitated at the grain boundaries in the initial stage of 

operation hinder the slip at the grain boundaries and thus contribute to the increase in creep 

resistance. These carbides also inhibit the migration of grain boundaries contributing to a delay 

in the matrix softening process (Figure 2). However, M
23

C
6
 carbides are characterised by fairly 

Figure 2. Impeding the grain migration by M
23

C
6
 carbides precipitated on the grain boundary—TP347HFG steel after 

service.

Figure 1. M
23

C
6
 carbide precipitates at the grain boundary in TP347HFG steel after service.
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low thermal stability, which results in the increase in size of these precipitates (Figure 1b) and 

formation of the so-called continuous network of precipitates at the grain boundaries during 

service. The enthalpy of creation, which can be treated as a measure of the stability of precipi-

tates, for the Cr
23

C
6
 and NbC carbides amounts to −25 and −55 kJ/mol, respectively, whereas 

for the NbN nitride, −125 kJ/mol [14].

The formation of the continuous network of M
23

C
6
 carbides at the grain boundaries and 

increase in their size during service results in the appearance of microareas with reduced 

chromium contents nearby the grain boundaries. This may result in the sensitisation of steel, 

that is, its increased susceptibility to intergranular corrosion. The chromium-depleted micro-

areas constitute an anode in the corrosion process, which results in their oxidation. Such a 

type of corrosion is very dangerous because the process of destruction (oxidation) runs very 

fast throughout the material on the grain boundaries, leaving no visible traces on the steel 

surface. The effect of sensitization of the near-boundary areas of grains in the austenitic steel 
is also the disturbance in the material consistency, which can result in falling out of single 

grains, for example, influenced by the metallographic reagent (Figure 3).

Numerous precipitates at the grain boundaries have also a negative impact on ductility of austen-

itic steels (Figure 4) [9, 10, 13–17]. The precipitates of M
23

C
6
 carbides on the grain boundaries, for 

instance, in the case of HR3C steel, constitute to a very rapid decrease in ductility in a relatively 

short time and favour the brittle cracking with the intercrystalline mechanism (Figure 5) [17, 18].

The introduction of micro-addition of boron into the chemical composition of austenitic steel 

results in partial replacement of carbon atoms with the boron ones in M
23

C
6
 carbides. This 

causes the precipitation of M
23

(C, B)
6
 borocarbides in place of “pure” M

23
C

6
 carbides. Compared 

to M
23

C
6
 carbide, the M

23
(C, B)

6
 borocarbides are distinguished by higher thermal stability due  

to a better fit of the crystalline network of precipitates and matrix. As a consequence, the M
23

(C, B)
6
  

borocarbides keep their finely dispersed form over a longer time during service. This results in 
reduction in the tendency towards the grain slip, and thus reduction in susceptibility of steel 

to intercrystalline cracking during creep [19, 20]. A similar favourable effect of micro-addition 
of boron on the increase in stability of M

23
C

6
 carbides was also observed in the 9–12% Cr high-

chromium martensitic steels [21].

Figure 3. Austenite grains fallen out in HR3C steel after service [17].
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3. MX precipitate

The MX secondary phases in austenitic steels are developed by carbide formers such as tita-

nium, niobium, or hafnium. The MX precipitates in austenitic steels are ones of the most advan-

tageous secondary phases [9, 10, 22, 23]. In austenitic steels, the MX precipitates have two main 

objectives:

Figure 5. The intercrystalline mechanism of cracking with secondary cracks of HR3C steel after 1000 h of ageing at the 

temperature of 650°C [18].

Figure 4. The impact energy changes with ageing time at 700°C in HR3C [7].
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• binding carbon atoms and preventing the precipitation of chromium-rich carbides at the 

grain boundaries and

• precipitation hardening of austenitic steels.

In the microstructure of niobium-stabilised austenitic steels, the presence of two types of MX 

(MC) precipitates is observed:

• large primary carbides of micrometric size (Figure 6) and

• finely dispersed secondary precipitates of nanometric size (Figure 7).

In addition to binding of carbon atoms, the NbC primary carbide precipitates effectively 
inhibit the grain growth during heat (thermomechanical) treatment. However, the NbC pri-

mary carbides should be treated as disadvantageous precipitates because the nucleation and 

growth of creep cracks may occur at their carbide/matrix interface.

The NbC primary carbides are characterised by very high stability: no increase in their size 

was observed even after 70,000 h ageing at 700°C.The NbX secondary precipitates occur 

during service within the grains, mainly at dislocations and stacking fault areas [9, 22, 24]. 

These precipitates form very effective barriers to free displacement of dislocations, pin and 
inhibit the possible motion of dislocations (Figure 7) and, in spite of their low volume frac-

tion, have very strong effect on steel hardening. The effect of MC and M
23

C
6
 carbides on 

creep strength of the 18Cr10NiTiNb steel at 650°C can be illustrated with the following 

formula (1) [25]:

   R  
z/650/10 000

   = 21.5 x   (  C as MC )    + 6 x   (   C as M  
23

    C  
6
   )    + 85.32   (  MPa )     (1)

Figure 6. The NbC primary precipitates in TP347HFG steel.
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The MX secondary precipitates are also characterised by high thermal stability up to approx. 

700°C, which results in a very slow increase in size of these precipitates during long-term 

service. The MX precipitates binding the atoms of nitrogen can also cause the growth of the 

steel susceptibility to pitting corrosion [26].

4. ε_Cu precipitate

In austenitic steels containing a copper addition in their chemical composition, for example, 

Super 304H or Sanicro 25, one of the main hardening mechanisms that occur during service is 

the precipitation hardening with ε_Cu copper-rich particles (Figure 8).

The ε_Cu particles can also dissolve the atoms of iron, chromium and nickel, and their contents 
in a precipitate that depends on the temperature and time. These precipitates at the initial stage 

of service/ageing are the precipitates rich in iron, chromium and nickel, and the content of 

copper in the particle does not exceed 20% then (Figure 8). As the time passes, the precipitates 

get rich in copper and after around 500 h of ageing at the temperature of 650°C they constitute 

around 90% of copper [7, 27, 28]. Precipitation of these particles takes place very quickly. In 

Super 304H steel, the precipitates of this type and of approx. 2 nm were revealed only after 1 

h of ageing at 650°C [7, 27, 29]. In spite of their low volume fraction (approx. 3%), finely dis-

persed ε_Cu precipitates (whose density in Super 304H steel after ageing at 650°C for 10,000 h 
was 0.38 × 104 m−2 and average particle diameter was 35 nm) represent a very effective barrier to 
free displacement of dislocations. The calculated shear stress for these coherent precipitates is 

approx. 37 MPa [26]. These precipitates are also characterised by quite high stability (Figure 9). 

The Cu-rich phase is growing during 650°C long time ageing till 10,000 h, but the growth rate 

Figure 7. The NbX secondary precipitates in TP347HFG steel (a) and their interaction with dislocations (b).
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is very slow. The average size of Cu-rich phase still keeps about 34 nm at 650°C ageing for 

10,000 h [7]. This is mainly due to low energy at the ε_Cu precipitate/matrix interface, which is 
approx. 0.017 J/m2, and the fact that these precipitates are coherent with the matrix.

This translates into slow growth of the copper-rich phase particles during the service and has a 

positive impact on the maintenance of high properties over a long time of service, especially that 

the volume fraction of the copper-rich precipitates grows with the time of ageing (Figure 10). 

Figure 8. The ε_Cu precipitates in aged Super 304H steel.

Figure 9. The effect of the time of Super304H ageing at 650°C on increase in the volume of ε_Cu precipitates [7].
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However, the precipitation of ε_Cu particles has a destabilising effect on the passive layer and 
reduces the corrosion resistance of the steel.

5. Z phase

The NbCrN (Z phase) precipitate is privilegedly precipitated in austenitic steels with 

high niobium and nitrogen contents, mainly at the grain boundaries and inside the grains 

(Figure 11). In Sanicro 25 steel, both the primary and secondary Z phase precipitates are 

observed. In contrast to 9–12% Cr martensitic steels, the Z phase precipitated in austenitic 

steels has a positive impact on mechanical properties. NbCrN precipitates are character-

ised by high thermodynamic stability up to approx. 700°C, which results in a slow increase 

in the size of these precipitates. Finely dispersed NbCrN particles precipitated inside the 

grains cause precipitation hardening, thus contributing to the increase in creep strength 

[7, 9, 10, 30, 31] (Figure 11).

The calculated value of stress required for dislocation to bypass the precipitate with Orowan 

mechanism for the Z phase in Sanicro 25 steel at 700°C after 4265 h creep with average precipi-

tate diameter of approx. 14 nm and volume fraction of 0.014 amounts to 118.7 MPa. And after 

12,920 h creep at 700°C, with average diameter of Z phase secondary particles of approx. 18 nm 

and their volume fraction in Sanicro 25 steel amounting to 0.016, it is 105.7 MPa. For comparison, 

the estimated value of the stress after 4265 h creep at 700°C for ε_Cu particles in Sanicro 25 steel 
was 44.6 MPa [31].

Figure 10. The precipitates volume fraction in Super304H at 650°C with ageing time [7].
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6. σ phase

The σ phase in austenitic steels is a secondary intermetallic phase which precipitates mainly 

at the grain boundaries, and the particularly privileged locations are the contact point of 

three grain boundaries and delta ferrite precipitates (Figure 12). The σ phase precipitation 

at the grain boundaries may be accompanied by dissolution of M
23

C
6
 carbides in the matrix 

Figure 11. The Z phase precipitation at the grain boundary in Super 304H steel.

Figure 12. The σ phase precipitation at the contact point of three grain boundaries in T321H steel after long-term service.
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[9, 10, 31–34]. The precipitation of σ phase in austenitic steels is much slower than that of 

M
23

C
6
 carbides, which results mainly from the factors such as (1) diffusion of substitution 

elements, for example, chromium, takes place slowly in austenite, (2) σ phase precipitates in 

austenite are incoherent with the matrix, (3) solubility of carbon and nitrogen in austenite is 

low, hence the privileged precipitation processes is the formation of carbides and/or nitrides 

[9, 11, 33–36]. In addition to chromium, other ferrite formers also create favourable condi-

tions for σ phase precipitation. Particularly strong effect is shown by stabilising elements 
(carbide formers), that is, titanium and niobium. In austenitic steels with higher titanium 

and niobium contents, the σ phase is formed much easier due to the fact that carbon and/or 

nitrogen atoms are bound into MX precipitates. The rate and temperature of the σ phase pre-

cipitation in austenitic steel grow with the increase in chromium content in alloy (Figure 13). 

Also silicon shows as intensive effect on the acceleration of the σ phase precipitation process 

as carbide formers. The increase in the content of silicon, as an element which enhances 

heat resistance of austenitic steels from 0.17 to 0.76% wt, may intensify the precipitation of 

the σ phase and its volume fracture increases from 6 to 22%. The element that has a strong 

effect on delay in the σ phase precipitation is carbon, which forms M
23

C
6
 carbides and thus 

decreases chromium content in the matrix [9, 10, 32, 37].

The effect of chemical composition on susceptibility of the specific steel to σ phase precipita-

tion is shown by the following formula (2) [39]:

   
 Cr  

eq
   = Cr +0.31Mn + 1.76Mo + 0.97W + 2.02V + 1.58Si 

      
        + 2.4Ti + 1.76Nb + 1.22Ta – 0.226Ni – 0.177Co

    (2)

In the event when chromium equivalent Cr
eq

 is higher by 17–18% of the weight, the steel 

shows a strong tendency to σ phase precipitation.

Figure 13. The effect of chromium content on the incubation period of σ phase precipitation [38].
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The tendency for the σ phase to precipitate in the austenitic steel can also be shown with the 

dependency (3) based on the model of positive holes [33]:

       N  
V
   = 0.66%Ni + 2.66%Fe+ 4.66%  (  Cr + Mo )    + 5.6%Nb + 6.66%Si + 7.66%Al  (3)

In the case when the value N
v
 is bigger than the number 2.52, there is a tendency for the σ 

phase to precipitate in the alloy.

The σ phase precipitation in austenitic steels at the grain boundaries is a very unfavourable phe-

nomenon as it increases the brittleness of steel and its susceptibility to sensitisation and pitting 
corrosion. The σ phase has also a negative effect on the plastic properties determined in static 
tensile test, that is, elongation and reduction in area. The effect of the σ phase on creep strength 

of austenitic steels is ambiguous. In the initial stage of precipitation, the finely dispersed σ phase 

precipitates may have, due to precipitation hardening, a positive impact on the increase in creep 

resistance. However, other researchers show its negative role [11, 32, 34, 37, 40].

7. Laves phase

The intermetallic Laves phase (Fe
2
Nb, Fe

2
Ti, Fe

2
Mo) precipitates in austenitic steel at above 

600°C. The privileged locations of the Laves phase precipitation are grain boundaries and, 
in the second place, the interior of grains. The Laves phase is a more efficient and stable 
precipitate than M

23
C

6
 carbide, it coagulates more slowly at above 600°C, and its effect on 

steel properties depends on the fraction of its volume at the grain boundary. Higher surface 

fraction of the Laves phase at the grain boundaries affects the increase in creep resistance of 
austenitic steels. The Laves phase inhibits dislocation slip at the grain boundaries, and thus 
results in the increase in creep resistance while reducing the elongation. At the same time, the 

Laves phase precipitates at the grain boundaries have an adverse effect on ductility of austen-

itic steels and their high-temperature strength properties determined in static tensile test. The 

finely dispersed Laves phase particles precipitated inside the grains have a positive impact 
on creep and fatigue strength. The effect of the Laves phase precipitated inside the grains on 
steel properties depends on its size and volume fraction. The coagulation of the Laves phase 
during service results in disappearance of this effect [9, 10, 31, 41–44].

8. G phase

The G phase is a complex silicide with general formula of A
16

D
6
Si where A—nickel, D—niobium 

or titanium (e.g. Ni
16

Nb
6
Si

7
; Ni

16
Ti

6
Si

7
; (Ni, Fe, Cr)

16
(Nb, Ti)

6
Si

7
). The G phase precipitates in tita-

nium or niobium-stabilised austenitic steels after long-term service. Like most secondary phases 
precipitating in austenitic steels during service, the G phase is located at the grain boundaries 

(Figure 14) [9, 10, 32, 44, 45]. The G phase is formed in austenitic steels due to the in situ transi-

tion of primary NbC carbides and/or enrichment of M
23

C
6
 carbides in silicon. The in situ NbC 

carbide → G phase transition takes place as a result of enrichment due to NbC diffusion into 
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nickel and silicon atoms. The rate of transition—G phase formation depends strongly on silicon 

content in steel. Higher silicon contents result in reduction in the time of G phase incubation  

[9, 15].

The effect of the G phase on properties of austenitic steels is ambiguous. The G phase precipitated 
at the grain boundaries has a positive impact on elongation in creep test and delays the second-

ary recrystallisation processes by inhibiting the migration of grain boundaries [9, 10, 15, 44–47].

The finely dispersed G phase precipitates at the grain boundaries have also a positive impact 
on creep resistance of austenitic steels during service at around 750°C. Nevertheless, like any 

precipitate at the grain boundary, the G phase has also a negative impact on steel ductility. 

The scale of this negative impact is affected by the amount and size of precipitates at the 
boundary. The formation of the G phase is accompanied by matrix depletion of nickel, which 

affects the increase in instability of the matrix and has a negative impact on corrosion resis-

tance. The matrix depletion of nickel also results in the increase in susceptibility to σ phase 

precipitation in these steels [9, 10, 15, 45–47].

9. χ phase

The intermetallic χ phase precipitates mainly in high-nitrogen steels with addition of molybde-

num. Similarly to M
23

C
6
 carbides, the privileged locations of the χ phase precipitation are primar-

ily the grain boundaries, and further the incoherent and coherent twin boundaries as well as the 

dislocations within the grains. In the initial stage of precipitation and growth at the grain boundar-

ies, the dispersive χ phase has a positive impact on creep resistance of austenitic steels as these pre-

cipitates hinder slip at the grain boundaries. The increase in size of the χ phase precipitated at the 

Figure 14. The G phase precipitation at the grain boundaries in T321H steel after long-term service.
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grain boundaries during service has an adverse impact on ductility, which is related to reduction 

in impact strength. The χ phase precipitated at the grain boundaries in austenitic steel increases 
the susceptibility of the alloy to intercrystalline cracking. These precipitates also result in steel 

sensitisation. The χ phase precipitates at the boundaries have a negative impact on creep strength 
of the steel too. The individual effect of the χ phase on performance properties of austenitic steels 
is difficult to define, because this phase occurs together with the σ phase in the microstructure. In 

austenitic steels operating at above 700°C, the χ phase may be transformed into the intermetallic σ 

phase according to the following diagram [9, 10, 32, 48].

The effect of the secondary phases precipitating in creep-resistant austenitic steels during 
service on their performance properties is summarised in Table 2.

Phase Location Positive effect Negative effect

M
23

C
6
 

carbides

Grain boundaries, 

incoherent and coherent 

twin boundaries, inside 

the grain

• Finely dispersed carbides 

precipitated at the grain 

boundaries increase creep 

resistance;

• Inhibition of secondary 

recrystallisation

✓ Increase in embrittlement
✓ Sensitisation of steel

MX 

precipitates

Inside the grains at 

dislocations

• Precipitation hardening

• Increase in hardness and 

strength properties

• Increase in creep strength

✓ At the MX primary precipitate/

matrix interface, there may occur 

the nucleation and growth of creep 

cracking

Z phase 

(NbCrN)

Inside the grains at 

dislocations

• Precipitation hardening

• Increase in hardness and 

strength properties

• Increase in creep strength

✓ Disappearance of MX precipitates

σ phase Grain boundaries, 

incoherent twin 

boundaries, inside the grain

– ✓ Increase in embrittlement
✓ Sensitisation of steel

✓ Deteriorates strength and plastic 

properties

✓ Reduces temporary creep strength

G phase Grain boundaries • Increases the value of 

elongation at creep

• Delays secondary 

recrystallisation

✓ Reduces temporary creep strength

✓ Results in decrease in corrosion 

resistance

Laves phase Grain boundaries • Increases creep resistance

• Increases fatigue strength

✓ Reduces elongation

✓ Deteriorates ductility

✓ Deteriorates high-temperature 

strength properties

Χ phase Grain boundaries, 

incoherent twin 

boundaries, inside the 

grain

• Hinders slip at the grain 

boundaries—increases creep 

strength

✓ Sensitisation of steel

✓ Increase in embrittlement

ε_Cu Inside the grain • Precipitation hardening

• Increase in strength properties 

and creep resistance

✓ Reduction in corrosion resistance

Table 2. The effect of secondary phase precipitates on properties of austenitic steels.
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10. Summary

The paper describes the influence of particular precipitates on the microstructure and func-

tional properties of creep-resisting austenitic steels. The structure of austenitic steels in the 

supersaturated state is a non-equilibrium structure which will undergo gradual degrada-

tion during the service at elevated temperature, which will further influence the decrease in 
mechanical properties and corrosion resistance/ oxidation resistance of these materials. The 

precipitation processes running during the service of austenitic steels are the basic mecha-

nism having a very significant effect on the functional properties of these steels. The type 
of precipitates and their volume fraction depends on the chemical composition of the given 

steel, the solubility limit of carbon and alloy elements in the matrix, and the service history 

(temperature, time, pressure, number and sort of shutdowns, etc.). The main factor influenc-

ing the precipitation processes for a given sequence of precipitation of secondary phases dur-

ing the service is the temperature of work. Precipitations in austenitic steels can be divided in 

terms of their influence on the microstructure and functional properties into the favourable 
ones, including nitrides/carbonitrides NbX, Z phase and εCu precipitates, and the harmful 
ones, including σ, χ and G phases. However, the influence of M

23
C

6
 carbides and Laves phase 

on the properties of austenitic steels depends on their morphology.

Particularly dangerous precipitates in austenitic steels are the ones precipitating on the grain 

boundaries, σ phase and M
23

C
6
 carbides. Therefore, the growth of stability of M

23
C

6
 carbides 

and the delay or even inhibition of precipitation of the σ phase, or using the strengthening 
with intermetalic phases seem to be the main directions of further development of the creep-

resisting austenitic steels.
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