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Abstract

The popularization of the use of mobile devices, such as smartphones and tablets, has 
accelerated in recent years, as these devices have experienced a reduction in cost together 
with an increase in functionality and services availability. In this context, due to its open-
ness and free availability, Android operating system (OS) has become not only a major 
stakeholder in the market of mobile devices but has also become an attractive target for 
cybercriminals. In this chapter, we advocate to present some current trends and results in 
the Android malware analysis and detection research area. We start by briefly describing 
the Android’s security model, followed by a discussion of the static and dynamic malware 
analysis techniques in order to provide a general view of the analysis and detection process 
to the reader. After that, a description of a particular set of software developments, which 
exemplify some of the discussed techniques, is presented accompanied by a set of practical 
results. Finally, we draw some conclusions about the future development of the Android 
malware analysis area. The main contribution of this chapter is a description of the realiza-
tion of static and dynamic malware analysis techniques and principles that can be auto-
mated and mapped to software system tools in order to simplify analyses. Moreover, some 
details about the use of machine learning algorithms for malware classifications and the 
use of the hooking software techniques for dynamic analysis execution are provided.

Keywords: malware analysis, android, mobile devices, threat detection, cybersecurity

1. Introduction

Nowadays, mobile devices such as smartphones and tablets have become very popular, due 

to a reduction in their cost and an increase in their functionalities and services availability. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Moreover, the growing trend of implementing bring your own device (BYOD) policies in 

organizations has also contributed to the adoption of these technologies, not only for every-

day communication activities but to support enterprise systems, industrial applications, and 

commercial transactions, which raise new security issues. In this scenario, operating systems 

have also played an important role in the adoption and proliferation of mobile devices and 

applications, giving also space for the appearance of malicious software (malware). This is the 

case for the Android OS, which, due to its openness and free availability, has become not only 

a major stakeholder in the market of mobile devices but has also become an attractive target 
for cybercriminals.

Google, the Open Handset Alliance manufacturers, and the Android developers’ community 

have made many efforts in order to improve Android’s security. However, the emergence 
and evolution of new security threats continue being an important issue. Therefore, in this 

chapter, we advocate to present some current trends and results in the Android malware 

analysis and detection research area. We start by briefly describing the Android’s security 
model, followed by a discussion of some static and dynamic malware analysis techniques in 

order to provide a general view to the analysis and detection processes to the reader. After 

that, a description of a particular set of software developments, which exemplify some of the 

discussed techniques, is presented accompanied by a set of practical results. Finally, a set of 

conclusions about the future development of the ideas explored in this chapter are drawn.

2. Android security architecture

In a general sense, Android is not only an OS but a platform of three main building blocks: 

device hardware, Android OS, and the application runtime, see Figure 1.

First of all, the Android device hardware block refers to the wide range of hardware con-

figurations where Android can be run, including smartphones, tablets, watches, automobiles, 
smart TVs, OTT gaming boxes, and set top boxes. Android is processor-agnostic, but it does 

take advantage of some hardware-specific security capabilities such as ARM eXecute-Never. 
Secondly, the Android OS building block refers to the Android OS itself, which is built on 

top of the Linux kernel, thus all device resources are accessed through the operating sys-

tem. Thirdly, the Android application runtime block refers to the managed runtime used by 

applications and some system services on Android [2]. In this case, it must be taken into 

account that applications are written in the Java language and run in the Android runtime 
(ART). However, many applications, including core Android services and applications, are 
native applications or included native libraries. Both ART and native applications run with 
the same security environment, contained with the applications sandbox. Thus, applications 

get a dedicated part of the file system in which they can write private data, including database 
and raw files [1].

In this context, in terms of security, Android incorporates industry-leading security features 

and works with developers and device implementers to keep the Android platform and eco-

system safe. It was designed with multi-layered security that is flexible enough to support an 
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open platform while still protecting all users of the platform. Security controls were designed 

to reduce the burden on developers. In this way, security-experienced developers can easily 

work with and rely on flexible security controls and developers less familiar with security 
concepts will be protected by safe defaults [1].

Moreover, Android provides a set of key security features, which are: robust security at the OS 

level through the Linux kernel, mandatory application sandbox for all applications, secure inter-

process communication, application signing, and application-defined and user-granted permis-

sions [1]. In the first case, as shown in the Android software stack, see Figure 2, each component 

assumes that the components below are properly secured. In this scheme, with the exception of 

a small amount of Android OS code running as root, all code above the Linux kernel is restricted 

by the application sandbox [1]. It is important to notice that the Android kernel is slightly differ-
ent from a “regular” Linux kernel, the differences are due to a set of features originally added to 
support Android, and some of them are the low memory killer, wakelocks, anonymous shared 

memory, alarms, paranoid networking, and Binder. However, Android’s security model also 

takes advantage of the security features offered by the Linux kernel. In a Linux system, which is a 
multi-user operating system, the kernel can isolate user resources from one another, just as it iso-

lates processes. Consequently, one user cannot access another user’s file, unless explicitly granted 
permission, and each process runs with the identity of the user that started it. In a traditional 

system, a user ID (UID) is given either to a physical user that can log into the system and execute 

commands via the shell or to a system service (daemon) that executes in the background. At this 

point, it is also worth to notice that Android was originally designed without the need for register-

ing different physical users with the system, thus the physical user is implicit and UIDs are used 
to distinguish applications instead. This forms the basis of Android’s application sandboxing [3].

On top of the Linux kernel layer is the hardware abstraction layer (HAL). This layer pro-

vides a standard method for creating software hooks between the Android platform stack 

Figure 1. The main Android platform building blocks, adapted from [1].
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and the hardware. The HAL allows to implement functionality without affecting or modify-

ing the higher level system [4]. In the next layer, the libraries component acts as a translation 

layer between the kernel and the application framework. The native libraries in Android are 

written in C and C++, most of which are ported from Linux, but are exposed to developers 
through a Java API. At the same level, there are also components from the Android runtime 
and core libraries. The virtual machine is an important part of the Android operating system 

and executes system and third-party applications [4, 5].

At the next level, the Android framework layer provides a suite of services or systems that 

are useful when writing applications. Commonly referred to as the application programming 

interface (API) is one of the building blocks for the final system or end-user applications. 
Finally, at the top most layer, applications component of the Android OS is located, which is 

the layer closest to the end user. All finished developed products will execute in this space by 
using the API libraries and the runtime environment [5].

As mentioned before, Android apps are composed of different components and each app is 
sandboxed by executing it in a separate process with a distinct user ID and assigning it to a 

private data directory on the file system. The four basic Android application components are 
Activities, BroadcastReceivers, ContentProviders, and Services. All components can be intercon-

nected remotely across process boundaries by using different abstractions of Binder inter process 
communication (IPC) [6]. These interconnections are commonly referred to as inter-component 

communication and are the primary communication mechanism in Android although it can 

provide classical channels such as files or sockets. Android apps can either contact system ser-

vices or communicate directly with each other. User space processes can communicate with 

each other over Binder IPC via the Binder kernel module. Android’s design provides different 
levels of abstraction for Binder IPC, allowing developers to easily make use of Binder IPC at 
the application level to connect different apps’ components (stubs, proxies, and managers). All 
inter-component communication (ICC) is built on the top of Binder IPC [7], see Table 1.

Moreover, every application that is run on the Android platform must be signed by the 

developer. Application signing allows developers to identify the author of the application 

and to update their application without creating complicated interfaces and permissions. 

Figure 2. Android software stack, adapted from [1].

Smartphones from an Applied Research Perspective200



Applications that attempt to install without being signed will be rejected by either Google Play 
or the package installer on the Android device. Application signing ensures that one applica-

tion cannot access any other application except through well-defined IPC. Applications can 
be signed by a third-party or self-signed. It is also possible to declare security permissions at 

the Signature protection level, restricting access only to applications signed with the same key 

while maintaining distinct UIDs and application sandboxes. A shared application sandbox is 

allowed via the shared UID feature where two or more applications signed with same devel-

oper key can declare a shared UID in their manifest [8].

Android applications can access only their own files and any world-accessible resources on 
the devices due to the sandboxed nature of Android. However, Android can grant additional, 

fine-grained access rights to applications in order to allow for richer functionality. Those 
access rights are called permissions, and they can control access to hardware devices, Internet 

connectivity, data, or OS services. Applications can request permissions by defining them 
in the AndroidMAnifest.xml file. At the application install time, Android inspects the list of 
requested permissions and decides whether to grant them or not. Once granted, permissions 

cannot be revoked and they are available to the application without any additional confirma-

tion. For some features, explicit user confirmation is required for each accessed object, even if 
the requesting application has been granted the corresponding permission [3].

Additionally, Android also enforces security by providing preinstalled and user-installed 

applications. Pre-installed applications work as users applications and as providers of key 
devices’ capabilities that can be accessed by other applications. This application may be a part 

of the open source Android platform or they may be developed by a device manufacturer for 

a specific device. On the other hand, Google Play, Android’s application official store, offers 
users hundreds of thousands of applications, including many third-party applications [1].

Outside these security features, Android also provides a set of cloud-based services that are 

available to compatible Android devices with Google Mobile Services. These services are not 

part of the Android Open Source Project, but are included on many devices. See Figure 3.

Component Description

Stubs and 

proxies

The most basic level of abstraction of Binder IPC.
Implement remote procedure calls (RPC) via Binder IPC.
A proxy at the caller-side marshals the method parameters into primitive data types and transfers 

them via IPC to the recipient, where stub unmarshals the primitives into the original parameters 
and calls the actual method.

System services 

and managers

Managers are part of the SDK and encapsulate pre-compiled proxies for system apps and services 

like the location manager service that implement the Android application framework API.

Intents The highest level of abstraction is so-called intent messages.

An intent is a data structure used to provide an abstract description of an operation to be 

performed by its receiver(s).

Common usages of Intents include starting activity components or broadcasting notifications to apps.
Since the sender of an intent can both explicitly state the target component and implicitly define 
potential receivers through a description of the intended action, the actual target app(s) must be 

resolved at runtime.

Table 1. Inter-component communication (ICC) builds on top of Binder IPC.
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Briefly described, Google Play is a collection of services that allow users to discover, install, 

and purchase applications from their Android device or the web. It also provides commu-

nity review, application license verification, application security scanning, and other security 
services. The Android update service delivers new capabilities and security updates to selected 

Android devices, including updates through the web or over the air (OTA). The Application 

services term refers to a set of frameworks that allow Android applications to use cloud capa-

bilities such as (backing up) application data and settings and cloud-to-device messaging 
(C2DM) for push messaging. The Verify Apps service warns or automatically blocks the instal-

lation of harmful applications, and continually scan applications on the device, warning 

about or removing harmful apps. SafetyNet is a privacy preserving intrusion detection system 

to assists Google tracking and mitigating known security threats in addition to identify new 

security threats. The SafetyNet Attestation is a third-party API to determine whether a device is 
CTS compatible. Attestation can also assist to identify the Android application communicat-
ing with the application server. Finally, the Android device manager is a Web and Android 

application to locate lost or stolen devices [1].

As it can be observed from the previous description, Android has become a continuously 

evolving complex ecosystem composed of multiple subsystems and services that put together 

an enormous challenge in terms of security. In this context, in the following section, a brief 

discussion of some attempts to conceptualize and characterize the Android attack surface and 
key security challenges is presented prior to the later discussion of some of the main malware 

analysis and detection techniques, as an initial landmark from where techniques and research 

approaches presented later on may be better referred to or mapped to specific security aspects 
of the Android ecosystem.

Figure 3. The primary Google security services.
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3. The android attack surface

An attack surface is a term used to identify the characteristics of a target that makes it vulner-

able to attack. An attack vector generally refers to the means by which an attacker performs 
an attack. In other words, an attack surface refers to the code that an attacker can execute and 
therefore can attack. In contrast to an attack vector, an attack surface does not depend on the 
attackers’ actions or require a vulnerability to be present, it describes where in code vulner-

abilities might be waiting to be discovered. Generally, the size of a target’s attack surface is 
directly proportional to how much it interfaces with other system. Similar to attack vectors, 
attack surfaces can be discussed both in general and in increasingly specific terms. It is a 
common result that by studying one particular attack surface, additional attack surfaces are 
revealed [9].

By focusing on particular risky attack surfaces, a system can be attacked or secured more 
quickly. Several properties are important when identifying attack surfaces, some of them are: 
attack vectors, privileged gained, memory safety, and complexity. Because Android devices 
have such a large and complex set of attack surfaces, it is necessary to divide them [9]. Figure 4 

exemplifies some of the more general attack surfaces for Android devices together with some 
attack vectors and propagation mechanisms.

The remote attack surface is the largest and most attractive attack surface exposed by an 
Android device. This name, which is also an attack vector classification, aims to express the 
fact that the attacker does not need to be physically located near the victim. Instead, attacks 
are executed over a computer network, usually the Internet. Various properties further divide 

this surface into distinct groups, see Figure 4. The Remote attack surface address the various 
attack surfaces exposed to code that is already executing on a device. The privileges required 
to access these attack surfaces vary depending on how the various endpoints are secured. 
When an attacker has achieved arbitrary code execution on a device, the next logical step is to 
escalate privileges, either in the kernel space or under the root or system user. The physical 

attack surfaces give name to the attacks that require physically touching a device, in contrast 
to physical adjacency where the attacker only needs to be within a certain range of the target. 
Third-party modification attack surface relates to attack surfaces associated to the modifi-

cation of various parts of an Android device system, as many parties involved in creating 

Android devices tend to make extensive changes as a part of their integration process [9].

Unfortunately, on the top of this complexity, Android’s security analysis also requires to take 

into account a set of Android’s security challenges such as: fragmentation, malware, manage-

ment tool selection, user behavior, and compartmentalization [10]. Fragmentation challenge 

refers to the complexity associated to the wide range of Android-modified versions imple-

mented on different devices. Malware challenge advocates to the rapid increase of malicious 
applications development and sophistication targeting the Android OS. Management tool 

selection challenge relates to the selection of management tools, which can avoid overlapping 

or conflicting features, as well as to maximize IT productivity. The user behavior challenge 
refers to the need for encouraging users to comply with good security policies and practices. 

Lastly, compartmentalization describes the challenge of providing dual personal and mobile 

virtualization, which separates a single device into different personal environments [11].
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4. Android malware

Android malware can be characterized in different ways: in [12], a systematic character-

ization is proposed ranging from their installation, activation, to the carried malicious 

payloads. Thus, malware installation can be generalized into three main social engineer-

ing-based techniques: repackaging, update attack, and drive-by download. Repackaging 
is one of the most common techniques that malware authors use to piggyback malicious 

payloads into applications. In essence, malware authors get an application file, disassem-

ble them, enclose malicious payloads, reassemble, and submit the new application to an 

official or alternative market. Users could be vulnerable by being enticed to download and 

Figure 4. Android’s main attack surfaces, based on descriptions in [9].
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install these infected applications. In the case of the update attack, instead of enclosing the 
payload as a whole only an update component is included, which will fetch or download 

the malicious payloads at runtime. Because the malicious payload is in the “updated” 

application, not the original application itself, it is stealthier than the malware installa-

tion technique that directly includes the entire malicious payload in the first place. The 
third technique applies the traditional drive-by download attack to mobile space. Though 
they are not directly exploiting mobile browser vulnerabilities, they are essentially entic-

ing users to download “interesting” or “feature-rich” applications. This is only a set of 

common techniques, other threats include combinations of the previous techniques, as 

well as approaches such as “spyware,” which intend to be installed to victim’s phones on 

purpose; fake apps that masquerade as the legitimate applications but stealthily perform 

malicious actions, such as stealing users’ credential; applications that provide the func-

tionality they claimed, they are not fake ones, but that intentionally include malicious 

functionality, which is unknown to users. At last, a group of applications that rely on the 

root privilege to function well. The leverage known root exploits to escape from the built-

in security sandbox [12].

5. Trends of android malware detection

Malware detection as a discipline combines multiple techniques and principles; Zaki Mas'ud 

et al. [13] have proposed a general classification including four main categories, see Figure 5.

Detection techniques can be classified into three detection techniques: signature-based (SB), 
anomaly-based (AB), and specification-based (SPB) detection. Signature-based detection 
refers to the malware detection by comparing the application signature or pattern captured 
with a database of known attacks or threats. AB detection monitors regular activities in the 
devices and looks for any behavior that deviates from the normal pattern. Similar to AB detec-

tion, SPB detection also monitors for any deviation but rather than detecting the occurrence 
of specific attack patterns; it monitors for deviation of their behavior from the normal speci-
fication. The detection analysis category involves reverser engineering techniques aimed to 
obtain information about the behavior of a malware in its environment. On the one hand, in 

static analysis, detection is done through the source code, binary, or the API level without the 
execution of the Android malware. On the other hand, dynamic detection detects malware 

through the execution behavior of the malware. In this case, the detection is done through 

monitoring the execution of Android malware activity at runtime. The detection deployment 

platform category helps to identify whether the malware detection is deployed in the host or 

on a remote server. In host detection, all the activity of the device is monitored, analyzed, and 

processed in the device itself. Meanwhile remote deployment requires a remote server, which 

monitors the activity of the device on the device but performs the analysis and detection 

process on the remote server. Another important category is the audit data source monitored 

in the detection process. The data source collected in the Android malware detection can be 

traced within the five Android framework layers (i.e. application, application framework, 
Android runtime, libraries, and Linux kernel layers). In addition, network traffic data can also 
be monitored for any malicious communication activity through the network [13]. Multiple 
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researchers have analyzed different approaches; Figures 6 and 7 provide an overview, based 

on the descriptions presented in [14], of different features and algorithms utilized for static 
and dynamic malware analysis in different research works.

Nowadays, most detection techniques for Android malware use statically extracted data from 

the AndroidManifest.xml file or Android API function calls, as well as dynamically obtained 
information from network traffic and system call tracing [15]. Moreover, most current detec-

tion systems equipped with a database of regular expressions that specify byte or instruction 

sequences that are considered malicious are largely based on syntactic signatures and employ 

static analysis techniques. Unfortunately, static and signature-based analysis techniques can 

be evaded by malware applications using techniques, such as polymorphism, metamorphism, 

and dynamic code loading [16].

Dynamic analysis defines a set of rules for the application behavior, which are challenged 
for an application according to a possible attack. An event is simulated for each rule and the 
triggered behaviors are checked to detect malware applications. In some cases, modern mali-

cious applications are capable to evade dynamic analysis as they become aware of the analysis 

environment, or due to the inability of the malware sample to obtain some required external 

data or service [16].

As security threats evolve, static and dynamic analysis techniques are less capable to identify 

malware code by their own. Thus, hybrid approaches combine aspects of both static and dynamic 

Figure 5. Classification of Android malware detection approaches.
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analysis [17]. The implementation of hybrid solutions for malware analysis and detection is not 

a new approach in the PC anti-malware literature [18]. However, the particular characteristics 

and constraints of mobile devices have defined a new area for their own. In this sense, for exam-

ple, even when malware analysis and detection schemes can be deployed either on a local basis 

or offloaded to an external equipment, like a remote server, differences between the mobile and 
PC ecosystems imply a totally different approach to solve this challenge in both cases. In the 
particular case of mobiles devices, most current client side security solutions include anti-virus 

or anti-malware applications installed on the devices to protect them against known applica-

tions installed on the mobile devices based on known signatures of malicious applications [19]. 

On the other hand, cloud-based systems are mainly designed to offload a significant part of the 
operation to the cloud. Both approaches entail performance constraints and disadvantages. As 

an example, in applications installed on mobile devices aiming to provide real-time protection, 

there is an associated decrement in the device’s performance and battery life, while cloud-based 
approaches making use of high end resources cannot offer real-time protection by their own, as 
they can leave devices vulnerable when connectivity with the server is poor [20].

Figure 6. Some common static analysis features and algorithms that are used to process them for different research 
approaches, based on [14].
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Unlike hybrid detection and analysis schemes taking advantage of both static and dynamic 

analysis, as well as from local and remote combined implementation or execution, are gen-

erally common for PC equipment, these schemes are not common for mobile devices. Most 
solutions combine static and dynamic analysis methods or local and remote deployments but 

not both of them, as this would require too many compromises to be achieved with the cur-

rent technologies [18].

6. Conclusions

The continuous development and fast change of the smart devices market has promoted 

an increase in the number of services and applications offered. As these devices integrate 
to the users every day activities, they become very attractive targets for cyber criminals. 
In this sense, malicious software (malware) has become a main security issue in this area. 

Although malware is not a new problem in the IT industry, differences between PC and 
smart devices make smart devices security a different problem bounded to the particular 
features of mobile devices. Moreover, the big number of stakeholders ranging from device 

manufactures to communication service providers creates a highly heterogeneous environ-

ment where attack surfaces characterization becomes a very complex task. In this context, 
this chapter aimed to present an overview of the fundamental aspects for Android malware 

analysis and detection.

As it can be deduced from the information discussed above, generally speaking there is a 

core set of analysis techniques and resource data that have been utilized in multiple research 

approaches in order to identify and detect malicious software. This observation may be 

obvious as the identified features are core elements of the Android security architecture, 

Figure 7. Some common dynamic analysis features and algorithms that are used to process them for different research 
approaches, based on [14].
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although there is not full agreement in the best technique or procedures for effective mal-
ware detection. It is important to notice that machine learning has an important role in most 

of the discussed approaches and in the state of the art for malware analysis, and in some 

cases, reported results look highly promising, but there is always the problem of having a 

limited number of samples to test all possible threats. Additionally, with the current vast 

set of analysis and reverse engineering set of tools, which are implemented under different 
technologies and analysis approaches, integration seems a very difficult task to achieve. 
Moreover, different tools provide multiple and different levels of automation. However, a 
need for automating most of the process is still an important issue as most of the analysis in 

the identification of new threats continues to be a human task.

Finally, it is expected that the information presented in this chapter would help readers to 

obtain a general view of the Android malware analysis and detection area from where she or 

he can visualize new avenues of research.

Acknowledgements

The authors acknowledge the support from the Mexican Consejo Nacional de Ciencia y 

Tecnología (CONACYT) under grant number 216747 and Instituto Politécnico Nacional-
Secretaria de Investigación y Posgrado under grant numbers 1894 and 20170344.

Author details

Abraham Rodríguez-Mota1,3*, Ponciano J. Escamilla-Ambrosio2 and Moisés Salinas-Rosales2

*Address all correspondence to: arodrigm@cic.ipn.mx

1 ESIME Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico

2 CIC, Instituto Politécnico Nacional, Mexico City, Mexico

3 Centro de Investigación en Computación, Laboratorio de Ciberseguridad, Mexico City, 

Mexico

References

[1] Android. Security [Internet]. Available from: https://source.android.com/security [Accessed: 
12-12-2016]

[2] Android. ART and Dalvik [Internet]. Available from: https://source.android.com/devices/ 
tech/dalvik/ [Accessed: 02-10-2017]

[3] Elenkov N. Android Security Internals. An in-Depth Guide to Android's Security 
Architecture. USA: No Starch Press; 2015 401 p

Malware Analysis and Detection on Android: The Big Challenge
http://dx.doi.org/10.5772/intechopen.69695

209



[4] Android. Android Interfaces and Architecture [Internet]. Available from: https://source.
android.com/devices/ [Accessed: 20-02-2017]

[5] Gunasekera SA. Android Apps Security. New York: Apress; 2012 2021 p

[6] Backes M, Bugiel S, Gerling S. Scippa: System-centric IPC provenance on Android. In: 
30th Annual Computer Security Applications Conference; December 08-12-2014; New 

Orleans, Louisiana, ACM, New York, NY, USA; 2014. pp. 36-45. DOI: http://dx.doi.org/ 
10.1145/2664243.2664264

[7] Enck W, Ongtang M, McDaniel P. Understanding android security. IEEE Security & 
Privacy. 2009;7(1):50-57. DOI: 10.1109/MSP.2009.26

[8] Android. Application Signing [Internet]. Available from: https://source.android.com/
security/apksigning/index.html [Accessed: 03-05-2017]

[9] Drake JJ, Fora PO, Lainer Z, Mulliner C, Ridley SA, Wicherski G. Android Hacker’s 
Handbook. USA: Wiley; 2014

[10] Mathias C./TechTarget. Top five Android device management security challenges 
[Internet]. Available from: http://searchmobilecomputing.techtarget.com/tip/Top-five-
Android-device-management-security-challenges [Accessed: 02-02-2016]

[11] Rodríguez Mota A, Escamilla Ambrosio PJ, Aguirre Anaya E, Acosta Bermejo R, Villa-
Vargas LA. Improving Android mobile application development by dissecting mal-

ware analysis data. In: 4th International Conference in Software Engineering Research 
and Innovation; 27-29 April 2016; Puebla, Mexico. IEEE; 2016. pp. 1-6. DOI: 10.1109/
CONISOFT.2016.21

[12] Zhou Y, Jiang X. Dissecting Android malware: Characterization and evolution. In: 2012 
IEEE Symposium on Security and Privacy. 2012. DOI: 10.1109/SP.2012.16

[13] Zaki Mas'ud M, Dahib S, Abdollah MF, Selamat SR, Yusof R. Android malware detec-

tion system classification. Research Journal of Information Technology. 2014;6:325-341. 

DOI: 10.3923/rjit.2014.325.341

[14] Baskaran B, Ralescu A. A study of android malware detection techniques and machine 
learning. In: Phung PH, Shen J, Glass M, editors. Modern Artificial Intelligence and 
Cognitive Science; 22-23 April 2016. Dayton, OH, USA: CEUR; 2016. p. 15-23

[15] Afonso VM, Favero de Amorim M, Grégio ARA, Barroso Junquera G, Lício de Geus 
P. Identifying android malware using dynamically obtained features. Journal of Computer 
Virology and Hacking Techniques. 2015;11(1):9-17. DOI: 10.1007/s11416-014-0226-7

[16] Moser A, Kruegel C, Kirda E. Limits of static analysis for malware detection. In: Twenty 
Third Annual Conference in Computer Security Applications; 12 2007; Miami Beach, FL, 

USA. IEEE; 2007. DOI: 10.1109/ACSAC.2007.21

[17] Damodaran A, Di Troia F, Vissagio CA, Austin TH, Stamp M. A comparison of static, 

dynamic, and hybrid analysis for malware detection. Journal of Computer Virology and 
Hacking Techniques. 2017;13(1):1-12. DOI: 10.1007/s11416-015-0261-z

Smartphones from an Applied Research Perspective210



[18] Rodríguez Mota A, Escamilla Ambrosio PJ, Morales Ortega S, Salinas Rosales M, Aguirre 
Anaya E. Towards a 2-hybrid Android malware detection test framework. In: International 
Conference on Electronics, Communications and Computers (CONIELECOMP); 
Cholula, Puebla, México. 2016. pp. 54-61. DOI: 10.1109/CONIELECOMP.2016.7438552

[19] Penning N, Hoffman M, Nikolai J, Wang Y. Mobile malware security challenges and 
cloud-based detection. In: International Conference on Collaboration Technologies 

and Systems (CTS); Minneapolis, Minnesota. IEEE; 2014. pp. 181-188. DOI: 10.1109/
CTS.2014.6867562

[20] Damopoulos D, Kambourakis G, Portokalidis G. The best of both worlds: A framework 
for the synergistic operation of host and cloud anomaly-based IDS for smartphones. 

Seventh European Workshop on System Security (EuroSec'14). 2014;6:1-6:6. DOI: 10.11 

45/2592791.2592797

Malware Analysis and Detection on Android: The Big Challenge
http://dx.doi.org/10.5772/intechopen.69695

211




