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Abstract

The purpose of the present chapter is once again to show on concrete new examples that
chaos in one-dimensional unimodal mappings, dynamical chaos in systems of ordinary
differential equations, diffusion chaos in systems of the equations with partial deriva-
tives and chaos in Hamiltonian and conservative systems are generated by cascades of
bifurcations under universal bifurcation Feigenbaum-Sharkovsky-Magnitskii (FShM)
scenario. And all irregular attractors of all such dissipative systems born during realiza-
tion of such scenario are exclusively singular attractors that are the nonperiodic limited
trajectories in finite dimensional or infinitely dimensional phase space any neighbor-
hood of which contains the infinite number of unstable periodic trajectories.

Keywords: nonlinear systems, dynamical chaos, bifurcations, singular attractors
FShM theory

1. Introduction

Well-known, that chaotic dynamics is inherent practically in all nonlinear mappings and systems

of differential equations having irregular attractors, distinct from stable fixed and singular

points, limit cycles and tori. However, many years there was no clear understanding of that from

itself represent irregular attractors and how they are formed. In this connection it was possible to

find in the literature more than 20 various definitions of irregular attractors: stochastic, chaotic,

strange, hyperbolic, quasiattractors, attractors of Lorenz, Ressler, Chua, Shilnikov, Chen, Sprott,

Magnitskii and many others. It was considered that there are differences between attractors of

autonomous and nonautonomous nonlinear systems, systems of ordinary differential equations

and the equations with partial derivatives, and that the chaos in dissipative systems essentially

differs from chaos in conservative and Hamiltonian systems. There was also an opinion which

many outstanding scientists adhered, including Nobel prize winner I.R. Prigogine, that irregular

attractors of complex nonlinear systems cannot be described by trajectory approach, that are

systems of differential equations. And only in twenty-first century it has been proved and on
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numerous examples it was convincingly shown, that there is one universal bifurcation scenario

of transition to chaos in nonlinear systems of mappings and differential equations: autonomous

and nonautonomous, dissipative and conservative, ordinary, with private derivatives and with

delay argument (see, for example, [1–9]). It is bifurcation Feigenbaum-Sharkovsky-Magnitskii

(FShM) scenario, beginning with the Feigenbaum cascade of period-doubling bifurcations of

stable cycles or tori and continuing from the Sharkovskii subharmonic cascade of bifurcations

of stable cycles or tori of an arbitrary period up to the cycle or torus of the period three, and then

proceeding to theMagnitskii homoclinic or heteroclinic cascade of bifurcations of stable cycles or

tori. All irregular attractors born during realization of such scenario are exclusively singular

attractors that are the nonperiodic limited trajectories in finite dimensional or infinitely dimen-

sional phase space any neighborhood of which contains the infinite number of unstable periodic

trajectories.

However, in the scientific literature many papers continue to appear in which authors, not

understanding an essence of occurring processes, write about opened by them new attractors

in nonlinear systems of differential equations. Such papers are, for example, papers [10, 11]

which authors with surprise ascertain an existence of chaotic dynamics in nonlinear system of

ordinary differential equations with one stable singular point and try to explain this phenom-

enon by presence in the system of Smale’s horseshoe. Numerous papers continue to be

published also in which presence of chaotic attractor in the system of ordinary differential

equations is connected with Lyapunov’s positive exponent found numerically, diffusion chaos

in nonlinear system of equations with partial derivatives is explained by the Ruelle-Takens

(RT) theory and is connected with birth of mythical strange attractor at destruction of three-

dimensional torus, and presence of chaotic dynamics in Hamiltonian or conservative system is

explained by the Kolmogorov-Arnold-Mozer (KAM) theory and is connected with consecutive

destruction in the system of rational and mostly irrational tori of nonperturbed system.

The purpose of the present paper is once again to show on concrete new, not entered in [1–9],

examples, that chaos in the system considered in Refs. [10, 11], and also chaos in one-

dimensional unimodal mappings, dynamical chaos in systems of ordinary differential equa-

tions, diffusion chaos in systems of the equations with partial derivatives and chaos in Hamil-

tonian and conservative systems are generated by cascades of bifurcations under the FShM

scenario. Thus, in any nonlinear system there can be an infinite number of various singular

attractors, becoming complicated at change of bifurcation parameter in a direction of the

cascade of bifurcations. Presence or absence in system of stable or unstable singular points,

presence or absence of saddle-nodes or saddle-focuses, homoclinic or heteroclinic separatrix

contours and Smale’s horseshoes and also positivity of the calculated senior Lyapunov’s

exponent are not criteria of occurrence in system of chaotic dynamics. And the birth in the

system of three-dimensional and even multi-dimensional stable torus leads not only to its

destruction with birth of mythical strange attractor, but also to cascade of its period-doubling

bifurcations along one of its frequencies or several frequencies simultaneously. Chaotic

dynamics in Hamiltonian and conservative systems also is consequence of cascades of bifurca-

tions of birth of new tori, instead of consequence of destruction of some already ostensibly

existing mythical tori of nonperturbed system. Thus, for the analysis of chaotic dynamics of

any nonlinear system, attempts of calculation of a positive Lyapunov’s exponent, application
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of КАМ and RT theories and the proof of existence of Smale’s horseshoes are absolutely

senseless. Let us notice, that the results of Feigenbaum and Sharkovsky are received only for

one-dimensional unimodal maps and then were transferred by Magnitskii at first on two-

dimensional systems of differential equations with periodic coefficients, then on three-

dimensional, multi-dimensional and infinitely dimensional dissipative and conservative

autonomous systems of ordinary differential equations and then on systems of the equations

with partial derivatives. Besides this, it is proved by Magnitskii, that the subharmonic cascade

of Sharkovsky bifurcations can be continued by homoclinic or heteroclinic bifurcations cascade

both in the differential equations, and in continuous one-dimensional unimodal mappings.

1.1. FShM-cascades of bifurcations of stable cycles and a birth of singular attractors in

one-dimensional unimodal mappings

Let us give a summary of bifurcation FShM theory of chaos in one-dimensional continuous

unimodal mappings. Detailed proof of statements of the present section can be found in Ref. [1].

1.1.1. FShM-cascade of bifurcations in logistic mapping

Studying the properties of logistic mapping

f x;μ
� �

¼ μx 1� xð Þ, x∈ 0; 1½ �, μ∈ 1; 4½ � (1)

Feigenbaum proved that in this equation there is a cascade of period-doubling bifurcations of

its cycles and found a sequence of values of the parameter μ at which these bifurcations occur.

Further studies have shown that the complex chaotic dynamics of the logistic mapping is also

characteristic of any continuous difference equation of а kind xn + 1 = f(xn,μ) in which one-

dimensional mapping f : I! I is unimodal at corresponding choice of scale, that is, it has the

only extremum on an interval I. Return mapping f�1 has in this case two branches on I.

Considering the map (1) on an interval x∈ [0, 1], Feigenbaum has established, that there is the

infinite sequence μn of parameter values μ converging with a speed of the geometrical pro-

gression with a denominator 1/δ ≈ 1/4.67 to value μ∞ ≈ 3.57 in which period-doubling bifurca-

tions of the cycles of logistic map occur. That is at all parameter values μn <μ <μn + 1 Eq. (1) has

unique regular attractor—a stable cycle of the period 2n and a set of unstable cycles of all

periods 2k, k = 0,…, n� 1. Thus, the first most simple and low-power singular attractor, born in

unimodal one-dimensional continuous mapping at the end of the Feigenbaum period-

doubling bifurcation cascade, is a nonperiodic trajectory consisting of points, any neighbor-

hood of each contains points belonging to some unstable cycles of the periods 2n, n > 0. This

attractor is called Feigenbaum attractor. It is, obviously, everywhere not dense set of points on

an interval. In the case of logistic mapping (1), Feigenbaum attractor exists at the parameter

value μ∞ ≈ 3.57. However, logistic mapping is defined on the interval x∈ [0, 1] at all parameter

values μ ≤ 4. The answer to a question, that occurs with trajectories of logistic mapping and

with any other unimodal continuous mapping at parameter values μ >μ∞, gives Sharkovsky

theorem. It follows from this theorem that complication of structure of cycles of iterations of

one-dimensional unimodal mappings, as a rule, does not come to the end with the cascade of
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Feigenbaum bifurcations and Feigenbaum attractor, and it is continued by more complex

cascade of bifurcations according to the order established by Sharkovsky in his theorem.

Definition. Ordering in set of the natural numbers, looking like

1⊲2⊲22⊲…2n⊲…⊲22 � 7⊲22 � 5⊲22 � 3⊲…2 � 7⊲2 � 5⊲2 � 3⊲…⊲7⊲5⊲3: (2)

is called as Sharkovsky’s order. Theorem of Sharkovsky approves, that if continuous unimodal

map f : I! I has a cycle of the period n then it has also all cycles of each period k, such that k⊲ n

in the sense of the order (2). Consequence of the theorem is the statement, that if map f has a

cycle of the period 3, then it has cycles of all periods.

It also follows from the Sharkovsky theorem, that at change of values of bifurcation parameter,

stable cycles in one-dimensional unimodal continuous mappings are obliged to be born

according to the order (2). And their births occur in pairs together with unstable cycles as a

result of saddle-node (tangent) bifurcations. Each stable cycle of Sharkovsky cascade, which

has born thus, undergoes then the cascade of period-doubling bifurcations, generating its own

window of periodicity (Figure 1). A limit of such cascade is more complex singular attractor—

nonperiodic almost stable trajectory any neighborhood of which contains the infinite number

of unstable periodic trajectories. Hence, the cascade of Feigenbaum bifurcations is an initial

stage of the full subharmonic cascade of bifurcations, described by Sharkovsky order. In the

case of logistic mapping (1) cycle of the period three is born at value μ ≈ 3.828 (Figure 1).

Hence, the subharmonic cascade of Sharkovsky bifurcations does not cover all area of change

of values of bifurcation parameter μ ≤ 4.

Behind subharmonic Sharkovsky cascade, homoclinic (heteroclinic) cascade of bifurcations

lays, opened by Magnitskii at first in nonlinear systems of ordinary differential equations,

and then found out in logistic and other unimodal continuous mappings. Homoclinic

(heteroclinic) cascade of bifurcations consists of a consecutive birth of stable homoclinic

(heteroclinic) cycles of the period n converging to a homoclinic (heteroclinic) contour. As a

rule, it is a separatrix loop of a saddle-focus (heteroclinic separatrix contour) in nonlinear

system of ordinary differential equations and a separatrix loop of a fixed point (heteroclinic

separatrix contour) in one-dimensional unimodal mapping. Born before, unstable cycles and

Figure 1. Full bifurcation diagram of logistic mapping at μ ≤ 4 and the separatrix loop of the zero fixed point at μ = 4.
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nonperiodic trajectories (singular attractors) remain in system, therefore dynamics of

unimodal mapping in a neighborhood of a homoclinic (heteroclinic) contour is the most

complex. The first cycles of homoclinic cascade are the most simple cycle of the period two

of the Feigenbaum cascade and the most complex cycle of the period three of Sharkovsky

cascade. In logistic mapping stable homoclinic cycle of the period four exists at μ = 3.9603,

and the separatrix loop of the fixed point x = 0 exists at μ = 4, that completely covers all area of

change of values of bifurcation parameter (Figure 1). So, in one-dimensional unimodal

mappings at various parameter values stable periodic (regular) attractors and nonperiodic

singular attractors can exist together with finite or infinite number of unstable periodic

trajectories, and all such attractors are born as a result of cascades of soft bifurcations

(saddle-node and period-doubling) in full accordance with the Feigenbaum-Sharkovsky-

Magnitskii (FShM) theory.

2. Dynamical chaos in nonlinear dissipative systems of ordinary

differential equations

Bases of the FShM theory with reference to nonlinear dissipative systems of ordinary differen-

tial equations are stated in Refs. [1–3, 7]. Thus in systems with strong dissipation it is realized

both the full subharmonic cascade of Sharkovsky bifurcations, and full (or incomplete)

homoclinic (or heteroclinic) cascade of Magnitskii bifurcations depending on, whether exists

homoclinic (or heteroclinic) separatrix contour in the system. In systems with weak dissipation

the FShM-order of bifurcations can be broken in its right part. Hence, attractors of such

systems are regular attractors (stable singular points, stable cycles and stable tori of any

dimension), or singular cyclic or toroidal attractors—limited nonperiodic almost stable trajec-

tories or the toroidal manifolds, being limits of cascades of the period-doubling bifurcations of

regular attractors (cycles, tori). In Refs. [1–3, 7] it is proved, that the FShM scenario of transition

to chaos takes place in such classical two-dimensional dissipative systems with periodic coef-

ficients, as systems of Duffing-Holmes, Mathieu, Croquette and Krasnoschekov; in three-

dimensional autonomous dissipative systems, as systems of Lorenz, Ressler, Chua, Magnitskii,

Vallis, Anishchenko-Astakhov, Rabinovich-Fabricant, Pikovskii-Rabinovich-Trakhtengertz,

Sviregev, Volterra-Gause, Sprott, Chen, Rucklidge, Genezio-Tesi, Wiedlich-Trubetskov and

many others; in multi-dimensional and infinitely dimensional autonomous dissipative sys-

tems, as systems of Rikitaki, Lorenz complex system, Mackey-Glass equation and many

others. These systems describe processes and the phenomena in all areas of scientific

researches. Lorenz system is a hydrodynamic system, Ressler system is a chemical system,

Chua system describes the electro technical processes, Magnitskii system is a macroeconomic

system, Widlich-Trubetskov system describes the social processes and phenomena, Mackey-

Glass equation describes the processes of hematopoiesis.

2.1. Transition to chaos in the system with one stable singular point

In this chapter, let us consider the three-dimensional system of ordinary differential equations

with one stable singular point which has been proposed in Ref. [10]
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_x ¼ yzþ 0:006, _y ¼ x2 � y, _z ¼ 1� 4x (3)

This system has the only stable singular point (0.25, 0.0625,�0.096) of stable focus type as

Jacobian matrix in the singular point has eigenvalues (�0.96069,�0.01966� 0.50975 i), where

i2 = � 1. The system (3) has no neither saddle-focuses, nor a saddle-nodes and, hence, it has no

homoclinic or heteroclinic contours, but it has strongly expressed chaotic dynamics (see in Ref.

[10] and below in Figure 2). In Ref. [11] attempt is undertaken to explain chaos in system (3) by

presence in it of Smale’s horseshoe. We shall show now, that transition to chaos in system (3)

actually occurs in full accordance with universal bifurcation scenario of Feigenbaum-

Sharkovsky-Magnitskii. For this purpose, it is necessary only to define correctly bifurcation

parameter at which change the cascade of bifurcations under FShM scenario is realized in the

system.

As bifurcation parameter we choose the parameter b and consider the system

_x ¼ yzþ 0:006, _y ¼ x2 � by, _z ¼ 1� 4x (4)

At b = 1, the system (4) obviously passes into system (3). We shall search stable cycles of the

system (4) by numerical modeling of the system by the Runge-Kutta method of the fourth

order. The system (4) remains dissipative at all parameter values b > 0. At values b < 0.39 there

are no attractors in the system, except for a singular point of a stable focus type. At value

b ≈ 0.39 there is a stable cycle in the system as a result a saddle-node bifurcation of births of

stable and unstable cycles. This cycle exists up to the value b ≈ 0.8, when the stable cycle of the

double period is born in the system . Further the cascade of Feigenbaum period-doubling

bifurcations follows: the cycle of period 2 is observed up to value b ≈ 0.9, the cycle of the

period 4—up to value b ≈ 0.926, generating a stable cycle of the period 8, etc. At the further

increase in parameter values b, the next cycles have been found: of the period 7 at b ≈ 0.956, of

the period 5 at b ≈ 0.965 and of the period 3 at b ≈ 0.982. This indicates the realization of full

subharmonic cascade of Sharkovsky bifurcations in the system (4) (Figure 2). At b = 1 there

exists a chaos in the system (4) and, hence, in the system (3), corresponding to an area of

FShM scenario, which lies behind the Sharkovsky cascade. Homoclinic cascade in the system

(4) is not found out, in view of absence in it of unstable singular points and homoclinic

separatrix contours.

Figure 2. Projections to a plane (x, y) of cycles of periods 8 (b = 0.927), 3 (b = 0.982) and singular attractor (b = 1) of the

system (4).
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3. Dynamical chaos in Hamiltonian and conservative systems

Conservative system saves its volume at movement along the trajectories and, hence, cannot

have attractors. Therefore studying of dynamical chaos in Hamiltonian and, especially, simply

conservative systems is more a difficult task in comparison with the analysis of chaotic dynamics

in dissipative systems which can be described by universal bifurcation FShM theory. The main

problem solved by the modern classical theory of Hamiltonian systems (the Kolmogorov-

Arnold-Moser theory) is the problem of integrability of such a system, that is, the problem of its

reduction to the “action-angle” variables by constructing some canonical transformation. It is

assumed that in such variables the motion in a Hamiltonian system is periodic or quasiperiodic

and occurs on the surface of an n-dimensional torus. In this formulation, any non-integrable

Hamiltonian system is considered as a perturbation of the integrable system, and the analysis of

the dynamics of the perturbed system reduces to studying the problem of the destruction of the

tori of an unperturbed system with increasing values of the perturbation parameter. But numer-

ous examples of Hamiltonian and simply conservative systems, considered by the author in

[4–7], deny existence such classical KAM-scenario of transition to chaos.

One of the most effective approaches to the decision of a problem of the analysis of chaotic

dynamics in conservative systems is offered by the author in Ref. [4] (see also [5–7]). The

approach assumes consideration of conservative system in the form of limiting transition from

corresponding extended dissipative system (in which the dissipative member is added) to

initial conservative system. This approach can be evidently shown by means of construction

of two-parametrical bifurcation diagramwhich corresponds to transition from dissipative state

to conservative state. Attractors (stable cycles, tori and singular attractors) of extended dissi-

pative system can be found numerically with use of results of universal bifurcation FShM

theory. Further transition to chaos in conservative (Hamiltonian) system is carried out through

cascades of bifurcations of attractors of extended dissipative system when dissipation param-

eter tends to zero. Areas of stability of stable cycles of the extended system at zero dissipation

turn into tori of conservative (Hamiltonian) system around of its elliptic cycles into which

stable cycles transform. Thus tori of conservative (Hamiltonian) system touch through hyper-

bolic cycles into which saddle cycles of extended dissipative system transform. In [4–7] the

considered above approach is described in detail with reference to Hamiltonian systems with

one and a half, two, two and a half and three degrees of freedom, and also to simply conser-

vative systems of differential equations, including the conservative Croquette equation, the

equation of a pendulum with oscillating point of fixing, the conservative generalized Mathieu

equation, well-known Hamiltonian system of Henon-Heiles equations. In Refs. [12, 13] the

given approach has been applied and strictly proved by continuation along parameter of

solutions from dissipative into conservative areas by means of the Magnitskii method of

stabilization of unstable periodic orbits [1] at research bifurcations and chaos in the Duffing-

Holmes equation

€x þ μ _x � δxþ x
3 � ε cos ω tð Þ ¼ 0, (5)

and in the model of a space pendulum
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€x þ μ _x þ kxþ ε sin 2πxð Þ ¼ h cosω t: (6)

Corresponding bifurcation diagrams in a plane (ε,μ) of existence of cycles of various

periods down to a conservative case at μ = 0 are shown in [12–14]. Application of Magnitskii

approach has revealed the essence of dynamical chaos in Hamiltonian and simply conser-

vative systems. It became clear, that the chaos in such systems is not a result of destruction

or non-destruction of some mythical tori of nonperturbed systems, as it follows from the

KAM theory, but absolutely on the contrary, it is a consequence of limit transition of infinite

number of cycles, tori and singular attractors, born according to the FShM theory as a result

of cascades of bifurcations in extended dissipative system when dissipation parameter tends

to zero.

3.1. Hamiltonian Yang-Mills-Higgs system with two degrees of freedom

In this chapter, let us illustrate Magnitskii approach by the example of Yang-Mills-Higgs

system with two degrees of freedom and with Hamiltonian

H ¼ _x2 þ _z2
� �

=2þ x2z2=2þ ν x2 þ z2
� �

=2, (7)

passing into classical system of the Yang-Mills equations at ν = 0. We shall consider four-

dimensional phase space of the system with coordinates x, y ¼ _x, z, r ¼ _z:

_x ¼ y, _y ¼ �x νþ z2
� �

, _z ¼ r, _r ¼ �z νþ x2
� �

: (8)

The system (8) has four sets of periodic solutions to which there correspond four basic cycles in

phase space

Сx : z ¼ r ¼ 0, y2 þ νx2 ¼ 2; Cz : x ¼ y ¼ 0, r2 þ νz2 ¼ 2; C�
: z ¼ �x, y2 þ νx2 þ x4=2 ¼ 1:

(9)

Assuming H = 1, we shall consider four-dimensional extended two-parametrical dissipative

system of differential equations of a kind

_x ¼ y, _y ¼ �x νþ z2
� �

� μy, _z ¼ rþ 1�H x; y; z; rð Þð Þz, _r ¼ �z νþ x2
� �

, (10)

where r ¼ _z . Complication of solutions of Hamiltonian system (8) of the Yang-Mills-Higgs

equations down to full chaotic dynamics occurs at ν! 0. In turn for each value ν > 0 the

structure of solutions of Hamiltonian system (8) is completely determined by cascades of

bifurcations of cycles of extended dissipative system (10) when dissipation parameter μ! 0.

Stable cycles of dissipative system (10), born as a result of cascades of bifurcations, pass into

elliptic cycles of Hamiltonian system (8), and their areas of stability—into tori around of

these elliptic cycles. The contact of born tori of conservative system occurs on hyperbolic

cycles in which corresponding unstable cycles of extended dissipative system transform.

These unstable cycles are born in the dissipative system together with stable cycles as a

result a saddle-node bifurcations, or at loss of stability of a cycle as a result of pitchfork
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bifurcation or period-doubling bifurcation. In neighborhoods of separatrix surfaces of hyper-

bolic cycles there is a formation of new more complex hyperbolic and elliptic cycles

according to nonlocal effect of multiplication of cycles and tori in conservative systems (see

[4–7]). Last effect plays a key role in the system of Yang-Mills-Higgs equations at an initial

stage of transition from regular dynamics to chaotic dynamics. At the same time, as numer-

ical calculations show, the further complication of dynamics of solutions of system (10) at

reduction of parameter value ν occurs not only by means of multiplication of elliptic and

hyperbolic cycles and tori, but also by means of the cascade of period-doubling bifurcations

of the basic cycles and by means of the subharmonic cascade of bifurcations. Initial cycles of

the cascade of period-doubling bifurcations of the cycle C+ are presented in Figure 3. In Ref.

[14] stabilization of unstable cycles of system (8) by modified Magnitskii method [1] is

carried out.

Further, the process continues with the birth of infinitely folded heteroclinic separatrix mani-

fold, stretched over separatrix Feigenbaum tree, both in extended dissipative system (10), and

in Hamiltonian system (8) close to it. Accordions of corresponding heteroclinic separatrix

zigzag fill the whole phase space of the system, however the limited accuracy of numerical

methods does not allow to track this process up to the value ν = 0, corresponding to the initial

system of the Yang-Mills equations.

4. Spatio-temporal chaos in nonlinear partial differential equations

Bases of FShM theory with reference to a wide class of nonlinear systems of partial

differential equations are stated in Refs. [6–9]. This class includes systems of the equations

of reaction-diffusion type, describing various autowave oscillatory processes in chemical,

biological, social and economic systems, including the well-known brusselator equations;

the equations of FitzHugh-Nagumo type, describing processes of chemical and biological

turbulence in excitable media; the equations of Kuramoto-Tsuzuki (or Time Dependent

Ginzburg-Landau) type, describing complex autooscillating processes after loss of stability

of a thermodynamic branch in reaction-diffusion systems; the systems of Navier-Stokes

equations, describing laminar-turbulent transitions in hydrodynamical and gazodynamical

mediums.

Figure 3. Projections of cycles of Hamiltonian system (8) on a plane (x, y): an initial cycle C+ at ν = 0.73 (a), cycles of the

double and quadruple periods at ν = 0.65 (b) and at ν = 0.534 (c).
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4.1. Diffusion chaos in reaction-diffusion systems

Wide class of physical, chemical, biological, ecological and economic processes and phenom-

ena is described by reaction-diffusion systems of partial differential equations

ut ¼ D1uxx þ f u; v;μ
� �

, vt ¼ D2vxx þ g u; v;μ
� �

, 0 ≤ x ≤ l, (11)

depending on the scalar or vector parameter μ. The dynamics of the solutions of such a

complex system of equations depends on the boundary conditions, the length of the spatial

region, and the values of the diffusion coefficients. In many cases, there is a value of the

system parameter μ0, such that for μ <μ0 the system (11) has a stable spatial homogeneous

stationary solution (U,V), called the thermodynamic branch. In the case of loss of stability of

the thermodynamic branch, when μ > μ0, solutions of the system (11) can be various homo-

geneous and inhomogeneous periodic solutions, spiral waves, running impulses, stationary

dissipative structures, as well as nonstationary nonperiodic inhomogeneous solutions, called

space-time or diffusion chaos.

The nonlinear processes occurring in so-called excitable media, are described by a special

case of systems of the reaction-diffusion equations—FitzHugh-Nagumo type systems

ut ¼ Duxx þ f u; v;μ
� �

, vt ¼ g u; v;μ
� �

: (12)

Solutions of the system (12) are: switching waves, traveling waves and running impulses,

dissipative stationary spatially inhomogeneous structures, and diffusion chaos—nonstationary

nonperiodic inhomogeneous structures, sometimes called biological or chemical turbulence. All

such solutions can be analyze on a line by replacement ξ = x� c t and transition to three-

dimensional system of ordinary differential equations

_u ¼ y, _y ¼ � cyþ f u; v;μ
� �� �

=D, _v ¼ �g u; v;μ
� �

=c, (13)

where the derivative is taken over the variable ξ. Therefore, the separatrix of the heteroclinic

contour of system (13) describes the switching wave of the system (12), the limit cycle and the

separatrix loop of the singular point of system (13) describe the traveling wave and the

running impulse of system (12). And diffusion chaos in system (12) is described by singular

attractors of the system of ordinary differential Eq. (13) in full accordance with the universal

bifurcation Feigenbaum-Sharkovsky-Magnitskii theory. The greatest interest represents a case

when c is a bifurcation parameter, describing a speed of wave distribution along an axis x,

which is not included obviously into initial system (12). This case means, that system of a kind

(12) with the fixed parameters can have infinitely number of various autowave solutions of any

period running along a spatial axis with various speeds, and infinite number of modes of

diffusion chaos. One of such system, describing chemical turbulence in autocatalytic chemical

reactions, is studied in [6, 7, 15].

In this chapter, let us consider the system of a kind (12) describing distribution of nervous

impulses in a cardiac muscle [16]:
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ut ¼ uxx þ
1

ε
u 1� uð Þ u�

0:06þ v

0:75

� �

, vt ¼ u
3 � v: (14)

where u is the activator, v—ingibitor, slowing down development of the activator, the param-

eter 1/ε defines time of restoration of the system after perturbation. Let us show, that transition

to diffusion chaos in system (14), during complication of periodic fluctuations occurring in it,

occurs according to universal bifurcation scenario of the FShM theory. We shall analyze

solutions of system (14) by means of automodeling replacement of independent variables

ξ = x� c t, having reduced the initial system of partial differential equations to three-

dimensional system of ordinary differential equations

_u ¼ w, _w ¼ � cwþ
1

ε
u 1� uð Þ u�

0:06þ v

0:75

� �� �

, _v ¼ v� u
3

� �

=c, (15)

where derivative is taken with respect to the variable ξ. If (u(ξ), v(ξ),w(ξ)) is the solution of

system of ODE (15) then (u(x� ct), v(x� ct),w(x� ct)) will be the solution of system in private

derivatives (14). Thus running waves in system (14) are described by limit cycles of system

(15), and running impulses—by separatrix loops of saddle-focuses. Let us carry out numerical

research of system (15) in the field of where one of singular points is a saddle-focus. The

greatest interest represents a case when c is the bifurcation parameter which describes a speed

of waves distribution along an axis x and which is not included obviously into initial system

(14). This case means, that the system (14) with the fixed parameters can have infinitely

number of various autowave solutions of any period running along a spatial axis with various

speeds, and infinite number of modes of diffusion chaos. Let us fix a parameter value ε : 1/ε =

17.4, and take the parameter c as bifurcation parameter. At c∈ [1.6305, 1.6316] there is a stable

cycle in the system (15). At c ≈ 1.6317 the cascade of Feigenbaum period-doubling bifurcations

of the initial cycle begins, and at c∈ [1.6317, 1.6331] the cycle of period 2 is observed, at

c∈ [1.6332, 1.6335]—the cycle of period 4, and at c ≈ 1.63375 the first singular attractor—

Feigenbaum attractor is found out (Figure 4).

At the further reduction of values of parameter c, cycles of period 5 and period 3 are found out

at c ≈ 1.6344 and at c ≈ 1.6347 (Figure 4). Thus, it is established, that in system (15) at change of

parameter c, Feigenbaum cascade of period-doubling bifurcations of stable limit cycles and the

full subharmonic Sharkovsky cascade of bifurcations of stable cycles according to the

Sharkovsky order are realized. To the found cycles of system (15) there correspond running

waves of system (14), some of which are represented in Figure 5.

Figure 4. Cycles of periods 1, 2, 3 from Sharkovsky cascade and Feigenbaum attractor.
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4.2. Spatio-temporal chaos in autooscillating mediums

It is well-known that any solution of the reaction-diffusion system (11) in a neighborhood

μ >μ0 of the thermodynamic branch can be approximated by some complex-valued solution

W(r, τ) = u(r, τ) + iv(r, τ) of the Kuramoto-Tsuzuki (or Time Dependent Ginzburg-Landau) equa-

tion (see [1, 2, 6, 7]):

Wτ ¼ W þ 1þ ic1ð ÞW rr � 1þ ic2ð Þ Wj j2W, (16)

where r ¼ εx, τ ¼ ε2t, ε ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ� μ0

p
, 0 ≤ r ≤R, с1, c2—two real constants. Obviously, Eq. (16)

has a spatial homogeneous solution W(τ) = exp(�i(c2τ +φ)) for an arbitrary phase φ. Conse-

quently, each element of the medium (16) oscillates with a frequency c2. This solution is

stable in a certain area of parameters c1 and c2. So, such media are called as autooscillating

media. Research of solutions of the Kuramoto-Tsuzuki (Ginzburg-Landau) Eq. (16) directly

in its phase space has shown, that actually in this equation there is subharmonic cascade of

bifurcations of stable two-dimensional tori of any period according to the Sharkovsky

order over each of frequencies and over two frequencies simultaneously. In [1, 2, 6, 7]

solutions of the second boundary-value problem for the Eq. (16) on an interval are ana-

lyzed in detail. It has been constructed four-dimensional subspace (u(0), v(0), u(l/2), v(l/2))

of infinitely dimensional phase space of solutions of the problem, and its Poincare section

by the plane u(l/2) = 0 for various values of bifurcation parameters c1 and c2 has been

considered. Poincare’s method of the analysis of phase space of solutions of the Eq. (16)

has allowed to find all cascades of bifurcations of two-dimensional tori in full accordance

with the FShM theory.

In this chapter, we consider the problem of research of nonlinear effects in model of surface

plasmon-polyariton. The passage of an electromagnetic wave through a configuration from

three various environments dielectric-metal-dielectric can be described by following system of

the equations in partial derivatives in the complex variables, turning out of Maxwell equations

(see [17]):

Figure 5. Running waves of system (14), corresponding to cycles of system (15) with periods 2, 3.
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i
∂ψp

∂z
þ

1

2β

∂2ψp

∂y2
þ il� Δβ
� �

ψp þ κψ a ¼ 0,

i
∂ψ a

∂z
þ

1

2β

∂2ψ a

∂y2
þ i l� gð Þ þ Δβ
� �

ψ a þ fΥ ψ aj j2ψ aκψp ¼ 0,

(17)

The system (17) represents two connected Ginzburg-Landau equations, ψp and ψa—complex-

valued functions, y and z—independent variables. The role of time in Ginzburg-Landau equa-

tion in this case is played with spatial coordinate z. The equation for ψp corresponds to a wave

on border of metal and passive dielectric, and for ψa—on border of metal and active nonlinear

dielectric. Parameters l g, κ—accordingly dimensionless factors of losses, strengthening and

connection between two borders. In Ref. [17] the following fixed values of parameters were

considered: l = 0.0026, κ = 0.0028, Δβ = 0, β = 1.43, fΥ = f(Υ' + iΥ'') = 3.5 � 10�3(1 + 0.1i). We shall

research dynamics of system (17) at various values of parameter g, and as boundary conditions

on spatial variable y we shall consider periodic boundary conditions. In analysis of dynamics

of the system (17) we use the real functions: u1, v1, u2, v2 instead of complex-valued functions

ψp and ψa where ψp =u1 + iv1, ψa =u2 + iv2. And vector of independent variables is denoted

x
!
¼ u1; v1; u2; v2ð ÞT .

In the considered initial boundary-value problem it is possible to allocate a subclass of spa-

tially homogeneous solutions, not dependent on a variable y. They can be found, solving the

system of ordinary differential equations received from (17) by rejection of members,

containing derivatives on y. The received system of ODE in coordinates x
!
is

dx
!

dz
¼

�l Δβ 0 �κ

�Δβ �l κ 0

0 �κ � l� gð Þ �Δβ

κ 0 Δβ g� l

0

B

B

B

@

1

C

C

C

A

� x
!
þ u22 þ v22
� �

f

0

0

Υ
00

� u2 þ Υ
0

� v2

Υ
00

� v2 � Υ
0

� u2

0

B

B

B

@

1

C

C

C

A

(18)

Critical value of parameter is g = 0.0052. At smaller parameter values the zero solution is stable.

At great values the solution loses stability, and the signs on the real parts are changed at once

with four roots of the characteristic equation. Approximately at parameter value g = 0.00357 a

pair of periodic solutions appears in system (18) as a result of the saddle-node bifurcation At

parameter value g = 0.0052, when zero singular point loses its stability, the unstable periodic

solution disappears as a result of subcritical Andronov-Hopf bifurcation. Thus, at g > 0.0052

there is a stable limit cycle in the system. Let us consider the scenario of complication of

dynamics of solutions in system (17) at value L = 10, where L is the size of physical area on a

variable y. Phase portraits of system we build in a point y =L/3: u1(L/3, z), v1(L/3, z), u2(L/3, z),

v2(L/3, z) . In case of periodic boundary conditions, the first stages of complication go according

to the Landau-Hopf scenario, that is, occurrence of periodic and quasiperiodic solutions of the

increasing phase dimension have been found out. At parameter values g < 0.0095 the homoge-

neous cycle described above saves the stability, and at a parameter value g = 0.0096 he becomes

non-homogeneous. The further complication of dynamics of system occurs at parameter value

g ≈ 0.0105. At this value a quasiperiodic solution—torus of dimension two is born in the system
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as a result Andronov-Hopf bifurcation. A kind of this solution in phase space and its section by

a plane u1 = 0 are represented in Figure 6. It is visible, that the section represents the closed

curve.

Following bifurcation in the system (17) occurs in a range of parameter values g from 0.01385

till 0.01390. As a result of one more Andronov-Hopf bifurcation more complex quasiperiodic

solution is formed in the system—it is torus of dimension three. A phase portrait of this torus

at g = 0.0139 and its Poincare sections are represented in Figure 7. The first section u1 = 0

represents two-dimensional torus which in turn in section u2 = 0 gives two closed curves.

For the problem with Neumann’s homogeneous boundary conditions also it was possible to

observe a non-homogeneous stable cycle at g = 0.0060. At g = 0.0095 stable two-dimensional torus

is born from this cycle, and at g ≈ 0.013 stable three-dimensional torus is born from it as a result of

the second Andronov-Hopf bifurcation. Thus, it is proved, that in complex nonlinear systems of

partial differential equations stable three-dimensional tori can exist, that contradicts to the

Ruelle-Takens theorem. The natural is not the decay of three-dimensional torus with forming

uncertain mythical strange attractor, but further complication of dynamics of solutions as a result

of following Andronov-Hopf bifurcation with forming four-dimensional torus, or as a result of

period-doubling bifurcation of three-dimensional torus along one of its frequencies or along all

frequencies simultaneously (that takes place in systems of Navier-Stokes equations).

Figure 7. Phase portrait of system (17), its first section by the plane u1 = 0 and second section by the plane u2 = 0, g = 0.0139.

Figure 6. Phase portrait of system (17) and its section by the plane u1 = 0, g = 0.0105.
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4.3. Laminar-turbulent transition in Navier-Stokes equations

The problem of turbulence consists in explaining the nature of the disordered chaotic motion

of a nonlinear continuous medium and in finding ways and methods of its adequate mathe-

matical description. Originating more than a 100 years ago, the problem of turbulence is still

one of the most complicated and most interesting problems in mathematical physics. It is in the

list of seven mathematical millennium problems, named so by the Clay Institute of Mathemat-

ics [18]. In addition, the turbulence problem is formulated in the list of S.Smale's 18 most

important mathematical problems of the twenty-first century [19]. The most important and

interesting in the problem of turbulence is to elucidate the causes and mechanisms of chaos

generation in a nonlinear continuous medium when passing from the laminar to the turbulent

state. Currently, there are several mathematical models that claim to explain the mechanisms

of generation of chaos and turbulence in nonlinear continuous media. The most famous among

these models are: the Landau-Hopf model explaining turbulence by motion along an infinite-

dimensional torus generated by an infinite cascade of Andronov-Hopf bifurcations; and the

Ruelle-Takens model, which explains turbulence by moving along a strange attractor gener-

ated by the destruction of a three-dimensional torus. In recent years, the author and his pupils

have proved (see [8, 9, 20–22]) that the universal bifurcation FShM mechanism for the transi-

tion to space-time chaos in nonlinear systems of partial differential equations through

subharmonic cascades of bifurcations of stable cycles or two-dimensional and multi-

dimensional tori also takes place in problems of laminar-turbulent transitions for Navier-

Stokes equations

∂ u
!

∂t
þ u

!

�∇

� �

u
!

¼ �∇pþ R�1
Δ u

!

þ f
!

,

∇ u
!

¼ 0,

(19)

where R is the bifurcation parameter (Reynolds number). The existence of stable two-

dimensional tori of doubled period and stable three-dimensional tori and their further bifurca-

tions is established for the problem of fluid flow from the ledge [20]. The existence of

subharmonic cascades of bifurcations of stable cycles and two-dimensional tori is established

for Rayleigh-Benard convection in Ref. [21]. A numerically complete subharmonic cascade of

bifurcations of stable two-dimensional tori is found up to a torus of period three in the famous

Kolmogorov problem in two-dimensional and three-dimensional spatial cases [22]. The fea-

tures of compressible flow and instabilities triggered by Kelvin-Helmholtz (KH) and Rayleigh-

Taylor (RT) mechanisms are considered in Ref [9]. The Kelvin-Helmholtz instability is the

instability of the shear layer, which is a tangential discontinuity for the inviscid liquid and

which arises when there is a velocity difference at the interface of two liquids or when there is a

velocity shift in one of the liquids. Rayleigh-Taylor instability is the instability of the boundary

between two liquids, where a lighter liquid supports a heavier fluid in a gravitational or

external potential field, the gradient vector of which is directed from the heavier liquid to the

lighter one. Light fluid can also push heavier one. Those two instabilities are often considered

together. Indeed, RT instability causes movement of adjusted fluids in different directions with

the appearance of the shear layer that is subject to KH instability.
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In this chapter, we consider shortly the bifurcation scenario in coupled Kelvin-Helmholtz and

Rayleigh-Taylor problem. This problem is solved in detail in Ref. [9]. We begin our consider-

ation from the value of R = 1 for which the system has a stationary solution corresponding to a

stable singular point in the phase space of solutions. Approximately for R = 10.5 the first

bifurcation of the stationary solution occurs with the formation from the singular point of the

stable limit cycle in the phase space of solutions. The next attractor that can be able to detect is

the limited torus. Close resemblance to the cycle may indicate that this attractor was formed

from the cycle as the result of Andronov-Hopf bifurcation. This indicates the existence of two

irrational frequencies in the system. Further increase of the Reynolds number up to R = 516

resulted in the other Andronov-Hopf bifurcation with the formation of the three-dimensional

invariant torus. This torus becomes singular (by period-doubling bifurcations along one of the

frequencies). However this cascade of period-doubling bifurcations is reversed to the original

3D torus. The next bifurcation that could be traced at R = 520.5 is second Andronov-Hopf

bifurcation leading to the formation of the four-dimensional invariant torus (Figure 8) . Further

increase of the Reynolds number leads to the chaotic solution that corresponds to the dense

field of points in phase subspace projections up to R = 2100. With the further increase of R,

formation of inverse bifurcation cascades is observed. Thus, it seems reasonable, that there is

no unified laminar-turbulent transition scenario in problems described by Navier-Stokes equa-

tions, it can be a cascade of stable limit cycles or cascade of stable two-dimensional or many

dimensional tori, but all these scenarios lay in the frameworks of the FShM theory. However,

the existence of computationally stable 4D invariant torus is a remarkable fact. It took 2.6 � 109

time samples to analyze and about 3.5 month to calculate this torus and its Poincare sections.

5. Conclusion

We make some general remarks on the chaotic dynamics of nonlinear systems of differential

equations, since the very publication of papers [10, 11] and many similar papers, even in

prestigious refereed journals, attests to a complete lack of understanding of the mechanism of

transition to chaos in nonlinear systems of differential equations. In this chapter, on numerous

examples, it is convincingly demonstrated that there exists one universal FShM bifurcation

scenario of transition to chaos in all systems of nonlinear differential equations without excep-

tion: autonomous and nonautonomous, dissipative and conservative, ordinary, with partial

derivatives and with delayed argument. All irregular attractors that arise during the imple-

mentation of this scenario are exclusively singular attractors. Each nonlinear system can have

Figure 8. Projection of the invariant four-dimensional torus into three-dimensional phase subspace and sequential first,

second and third sections in the phase space for R = 520.5 (left to right). Only parts of sections are shown.
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infinitely many different structurally unstable singular attractors for different values of the

bifurcation parameter, which can enter implicitly into the equations of the system. Thus,

neither the presence or absence of stable or unstable singular points in the system, nor the

presence or absence of saddle-nodes or saddle-focuses, as well as homoclinic or heteroclinic

separatrix contours, is not a criterion for the appearance of chaotic dynamics in the system.

Also, neither the positivity of the senior Lyapunov exponent, nor the proof of existence of

Smale’s horseshoe, nor the KAM (Kolmogorov-Arnold-Moser) theory, nor the theory of RT

(Ruelle-Takens), are such criteria either. The positivity of the Lyapunov exponent is purely a

consequence of computational errors, because due to the presence of an everywhere dense set

of nonperiodic trajectories, numerical motion is possible only over the whole region occupied

by the trajectory of the singular attractor, and not along its trajectory itself. In addition, the

Lyapunov exponent will also be positive when moving along a stable periodic trajectory of a

large period in the vicinity of some singular attractor. The presence of Smale’s horseshoe in the

system testifies to the complex dynamics of the solutions, however, even in the neighborhood

of the separatrix loop of saddle-focus, where by Shilnikov’s theorem there exists an infinite

number of Smale’s horseshoes, the dynamics of solutions are determined not by horseshoes,

but by a much more complex infinite set of unstable periodic solutions generated at all stages

of all three cascades of bifurcations of the FShM scenario, whose homoclinic cascade of cycles

ends in the limit precisely with the separatrix loop of saddle-focus. The only method that

allows establishing reliably the presence of chaotic dynamics in the system is the numerical

finding of stable cycles or tori of the FSM-cascades of bifurcations.
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