
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 11

Advanced Label-Free Optical Methods for Spermatozoa
Quality Assessment and Selection

Annalisa De Angelis, Maria Antonietta Ferrara,
Giuseppe Coppola and Anna Chiara De Luca

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71028

Abstract

Current in vitro fertilization (IVF) techniques require a severe selection of sperm, gener-
ally based on concentration, morphology, motility, and DNA integrity. Since routinely
separation methods may damage the viability of the sperm cell, there is a growing
interest in providing a method for noninvasively analyzing spermatozoa taking into
account all those parameters. This chapter first reviews the state-of-the-art of label-free
sperm cell imaging for IVF, highlighting the limitations of the used techniques. Then,
our innovative approach combining Raman spectroscopy and digital holography will be
described and its advantages detailed. These include the ability to perform a simulta-
neous and correlative morphological and biochemical analysis of sperm cells, without
labeling, in a fast and reliable way. Finally, the difficulty in reaching clinical use will be
discussed, as well as the possible solutions offered by new technological improvements.

Keywords: Raman spectroscopy, digital holography, sperm morphology, label-free
analysis, sex-sorting

1. Introduction

It has been estimated that about 15–20% of couples worldwide have infertility problems or

impaired fecundity. Approximately 40–50% of these cases are due to male infertility, which

could be indirectly measured through the assessment of the sperm production and quality.

According to WHO’s criteria [1], indeed, men with low sperm concentration (oligospermia),

poor sperm motility (asthenospermia), and abnormal sperm morphology (teratospermia) are

considered to have male infertility factors. The revised WHO’s parameters and the corres-

ponding lower reference limits for semen analyses are reported in Table 1.

Infertile couple usually resort to assisted reproduction techniques (ART), chosen by the clini-

cian according to the degree (soft, moderate, or severe) and kind (male and/or female) of
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infertility. For soft/moderate infertility, usually homologous intrauterine insemination (HIUI)

or in vitro fertilization (IVF) is carried out. HIUI consists in transferring a small volume of

selected and isolated motile and morphologically normal spermatozoa directly into the uterus

a few hours before the ovulation. IVF is used after continued failures of HIUI due, for example,

to an impervious uterine tube, and the fertilization of the oocytes takes place outside the

woman body.

In case of severe male infertility, the intracytoplasmic sperm injection (ICSI) is preferred. In this

technique, a single spermatozoon is directly injected into an oocyte, bypassing the physiological

selection naturally performed by the female tract. Although ICSI has drastically reduced the

number of viable sperm required for fertilization, giving hope of conception to extremely severe

cases of oligospermia, the rate of successful pregnancy still remains low (<30%), due to the lack

of accurate and reliable methods for selecting the spermatozoon that able to fertilize the oocyte.

The first selection is based on motility and morphology. The sperm cells preparation procedure

includes a density gradient centrifugation (morphology-based selection) followed by swim-up

method (motility-based selection) in order to mimic the physiological selection of the sperma-

tozoa made by the female genital tract. In most laboratories, the sperm quality assessment is

relied on the expertise and the subjective skills of the operator. To increase precision and

reproducibility, numerous automated computer-aided sperm analysis (CASA) systems have

been introduced, and they can automatically view multiple fields in a shallow specimen

chamber to capture images of 500 to >2000 sperm in <2 minutes [2]. By using CASA, it is also

possible to retrieve some morphometrical parameters, such as ellipticity and regularity,

whereas the measurement of the acrosome area generally requires staining.

Moreover, CASA has difficulty in distinguishing spermatozoa from particulate debris, leading

to some extent of inaccuracy. In addition, several studies have shown that the correlation

between male fertility and the percentage of morphologically normal or motile sperm cells in

semen sample is relatively low [3, 4]. Indeed, in infertile men, a high percentage of spermatozoa

with a normal morphology or motility could have a damaged DNA, and therefore, they are, in

principle, incapable to fertilize the oocyte [4, 5].

Parameter Reference value 95% confidence index

Sperm volume 1.5 mL 1.4–1.7

Sperm concentration 15 million sperm/mL 12–16

Total sperm number 39 million sperm per ejaculate 33–46

Morphology 4% normal forms 3–4

Vitality 58% live 55–63

Progressive motility 32% 31–34

Total motility (progressive + nonprogressive) 40% 38–42

Table 1. WHO’s parameters for semen analysis (2010).
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Sperm DNA integrity is generally assessed by biochemical methods such as terminal deoxy-

nucleotidyl transferase dUTP nick end labeling (TUNEL) assay [6], comet assay [7], sperm

chromatin dispersion (SCD) test [8], or sperm chromatin structural assay (SCSA) [9], which

assess the quality of DNA bases, chromatin, and altered protein in sperm nuclei using specific

stains. Indeed, all currently employed tests to determine DNA integrity are of limited clinical

utility as they are invasive and destructive, rendering the sample unusable for IVF [6–11].

All these methods mentioned above, only based on assessing morphology or motility, are

inadequate to select the fertile spermatozoon as the selection techniques have to be noninva-

sive, safe, highly discriminative, and relatively easy to perform. Moreover, they should simul-

taneously assess three conditions: normal morphology, motility, and DNA integrity.

Recently, several techniques are emerging for label-free selection of viable spermatozoa. In this

chapter, we focus on two of them: Raman-based spectroscopy and phase contrast imaging.

Raman spectroscopy (RS) investigates the biochemical and physiological state of a sample by

detecting the inelastic light scattering, without labeling or long preparation procedures [12].

Phase contrast imaging includes basic microscopies (bright-field) [13] and more advanced ones

(interferometric microscopies) [14–17], such as digital holography. These methods exploit the

phase delay of light when passing through a sample. Then, these light delays are converted

into intensity changes and recorded on a camera as holograms containing the information

suited for morphological sperm cell reconstructions.

The physical principles and the technical instrumentation of Raman and holographic techniques

will be separately described in Sections 2 and 3, respectively, also highlighting some relevant

results in sperm cells analysis. In Section 4, we will report on our recent achievements using the

two techniques in a multimodal analysis setting. Indeed, both the techniques are based on

intrinsic optical properties of the sample andmay offer the unique advantage to simultaneously

acquire the holographic and Raman data assessing single spermatozoa on the base of their

morphological and biochemical parameters and their motility. The complete analysis is

performed by the same optical system, with a strong impact on costs and times for the analysis.

This aspect makes the proposed approaches very promising for clinical applications; however,

at present, they are only in experimental stages and specific recommendations for routine pro-

cedures cannot be made. At the end of this chapter, the difficulty in reaching clinical use will be

discussed, as well as the possible solutions offered by new technological improvements.

2. Label-free biochemical sperm analysis

2.1. Basic principles of Raman spectroscopy

Raman spectroscopy is an optical technique based on the scattering of the light interacting

with a sample. Light scattering originates from the elastic or inelastic collision between an

incident photon and a molecule of the sample. When the collision occurs, the molecule

undergoes an excitation to a virtual state followed by a nearly simultaneous de-excitation

towards the initial energy level (elastic) or a vibrational level different from the initial one
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(inelastic) (Figure 1). The virtual state is an energy level created only when photons interact

with electrons and its energy is determined by the frequency itself of the incident photons.

When molecules return back to their initial energy state, photons are emitted (scattered). In

the elastic process, named Rayleigh scattering, the emitted photons have the same energy of

the incident ones. Whereas in the inelastic scattering, there are two possibilities (Figure 1):

1. molecules decay from the virtual state to an excited vibrational level emitting photons with a

lower energy than the incident ones (Stokes scattering) and 2. when molecules in a vibrational

state were excited in a virtual state, they can decay in the ground state, producing photons

with energy higher than the incident ones (anti-Stokes scattering). Since the number of mole-

cules in an excited state decreases very fast, anti-Stokes scattering is much less probable than

the Stokes scattering (typically by a factor around 1000). For this reason, Raman analysis is

usually limited to the observation of the Stokes scattering.

The energy difference between the initial and final vibrational levels (Raman shift) expressed

in wavenumbers (cm�1) is given through the relation:

ℏν ¼ ℏ
1

λinc

�

1

λscat

� �

(1)

in which λinc and λscat are the wavelengths of the incident and Raman scattered photons,

respectively. Therefore, the energy (or frequency) shifts in the scattered radiation provide a

direct measure of the vibrational frequencies of the molecule (ν). Since different molecules are

characterized by defined vibrational modes, by collecting the photons scattered at different

frequencies allows reconstructing a sort of “chemical fingerprint” of the sample.

Therefore, RS turns out to be an extremely powerful tool for interdisciplinary researches,

involving physicists, chemists, and biologists, as it allows the characterization of molecules

based on properties of chemical bonds. It is a noninvasive and nondestructive technique

providing molecular-level information, allowing the investigation of functional groups, bond-

ing types, and molecular conformations.

From an experimental point of view, to observe a Raman spectrum, it is required to suppress

the light scattered at the same frequency of the incident radiation (Rayleigh scattering), often

Figure 1. Jablonski diagram representing quantum energy transitions for Rayleigh, Raman scattering (Stokes and anti-

Stokes), and fluorescence emission.
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more intense than the Raman scattering. Using the notch filter, disperse the spectral compo-

nents of the light by means of the diffraction grating and image the light onto the detector

(high sensitive charge-coupled device (CCD) camera).

In a confocal configuration (micro-RS), a spatial resolution of ~300 nm in the transverse x-y

plane and of ~1.2 μm in the axial direction can be achieved. Moreover, for extended samples, it

is possible to acquire the Raman spectra on a two- or three-dimensional array of points,

scanning the sample with a step comparable with the spatial resolution (Raman imaging). In

this way, 2D images (or 3D profiles) are obtained, reporting the spatial variation of a given

Raman parameter. This parameter is usually the intensity of a particular Raman band or

sometimes it derives from a more complicated analysis of the whole Raman spectrum [18, 19].

2.2. Raman spectroscopy analysis of sperm cells quality

Interestingly, due to the cited characteristics, RS has been successfully employed for the study of

several living/fixed cells with subcellular resolution [18]. The first Raman-based single cell ana-

lyses were conducted just on individual living salmon sperm cells due to their relative simple

structure [20]. Since this pioneer study, no other Raman experiments on sperm cells have been

reported until the 2009 when Huser and colleagues [21] examined the spectra obtained from

human spermatozoa with different nuclear shapes (box 1 in Figure 2) in order to determine if

there was a correlation between DNA-protein complex in sperm chromatin and the morphology

of the nucleus. RS results showed that while the DNA packaging of normal and abnormal shaped

nuclei was different, the nature and the efficiency of DNA packaging in normal head spermato-

zoa appeared to vary greatly [21]. Therefore, by selecting sperm cells solely based onmorphology,

a fraction of the normal considered sperm cells used for in vitro fertilization will contain improp-

erly packaged DNA, thus resulting infertile. In this study, fixed membrane-free cells were used in

order to minimize the potentially interfering contributions from membrane proteins.

The results of this study are also relevant from an epigenetic point of view. Indeed, they show

the possibility to use RS for detecting epigenetic alterations (DNA packaging and spatial

conformation, methylation and histone modification) in those spermatozoa that, if used in

assisted reproductive techniques, may increase the incidence of imprinting disorders and have

a deleterious impact on embryonic development [21, 22].

In other studies, RS was applied on whole and fixed sperm cells in order to demonstrate the

efficiency of the technique in identifying DNA-damaged sperm cells (box 2 and panels A and Z

in the box 3 of Figure 2). Usually, the DNA fragmentation as a consequence of oxidative stress

is induced by UV radiation [23, 24] or Fenton’s treatment [25]. All the studies found that the

PO2 backbone of DNA was significantly affected by the exposure to radiation or treatment,

and thus, its corresponding Raman band could represent a significant biomarker of DNA

fragmentation [23–25]. Mallidis et al. previously identified characteristic spectral changes

indicative of nuclear DNA damage of single fixed human spermatozoa and using Raman

mapping, they localized the most damaged sites [24].

In the following study [25], the same group determines the possibility to use Ramanmicrospec-

troscopy for identifying different levels of sperm nuclear DNA damage induced by oxidative
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stress and corroborated the findings using an established assay and an alternative but comple-

mentary spectroscopic technique (Fourier-transform infrared (FTIR) spectroscopy). The results

of this last work confirm that RS is able to reveal different levels of oxidative DNA fragmenta-

tion, especially associated to alterations within the 1050–1095 cm�1 spectral range (Raman

spectra in the box 2 of Figure 2), which includes the band associated with the DNA phosphate

backbone, changes that were confirmed by similar shifts in the corresponding FTIR peaks (not

shown) [25]. Also, the Raman bands associated to protein and lipid content (1400–1600 cm�1)

showed some alterations induced by UV radiation, consistent with protein denaturation and

lipid peroxidation that are well-known markers of oxidative damage [27]. Raman-based iden-

tification of DNA-damaged sperm cells linearly correlated with the findings from the flow

Figure 2. Overview of the most representative studies on Raman spectroscopy and imaging for the label-free analysis of

sperm cells. Box 1: the highlighted variations in peak intensities in the Raman spectra correspond to different sperm head

shapes [21]. Box 2: the peaks at 1095 and 1050 cm�1 represent biomarkers of fragmented DNA in the sperm nucleus [24,

25]. Box 3: panel A shows the chemical Raman reconstruction of distinct sperm regions [23]; panels B–Y represent the

biochemical composition of individual immobilized, living human sperm cells [26]; and panel Z shows the efficiency of

Raman imaging in revealing small irregularities in the sperm head such as vacuoles (yellow circles) distinguishable based

solely on the presence of differing spectra [24].
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cytometric analysis of DNA fragmentation, which represents the most statistically robust,

reproducible, and standardized procedure available for the determination of sperm nDNA

damage [28].

In 2015, Edengeiser et al. [26] analyzed spermatozoa under near-physiological conditions

using confocal Raman microspectroscopy. The spermatozoa are immobilized on pre-treated

object slides. More in detail, CaF2 slides were coated with concanavalin A and overlaid with

preheated Ringer’s solution just before putting a drop of isolated spermatozoa which, after the

analysis, can be easily removed from the substrate. The study demonstrated for the first time

the possibility to image and analyze several tens to hundreds individual cells with a rate of

one cell per minute with submicrometer resolution (panels B–Y in the box 3 of Figure 2). This

opens up possibilities to investigate different physical and biochemical parameters under

physiological conditions, leaving the assessed spermatozoa functional.

3. Quantitative phase imaging for sperm analysis

3.1. Basic principles of quantitative phase microscopy

Quantitative phase microscopy (QPM) is a label-free imaging technique, which allows recon-

structing both the amplitude and the phase information of an optical field that passes through

the sample, and it is particularly interesting in case of transparent biological cells. Respect to

differential interference contrast (DIC) microscopy [29] or Nomarski/Zernike’s phase contrast

[30], the QPM gives a quantitative measure of the optical path difference (OPD) at each point

in the sample. OPD in each position (x, y) of the acquisition plane is defined as the refractive

index variation across the cell thickness, t(x, y):

OPD x; yð Þ ¼ t x; yð Þ nc � nsð Þ (2)

where nc and ns are the refractive index of the cell and the surrounding medium (assumed to

be homogeneous), respectively. The resulting OPD map of the cell is reconstructed by record-

ing the interference fringes pattern, the so called “hologram,” of two superimposed coherent

beams, one that interacts with an object under test and another that does not come in contact

with the object and acts as a reference beam, and calculating the phase difference between

them [31]. If the hologram is acquired by a digital sensor array, typically a charge-coupled

device (CCD) or a complementary metal-oxide semiconductor (CMOS) device, digital holo-

graphic microscopy (DHM) technique is implemented. A typical interferometric setup for

DHM is reported in Figure 3.

The acquired hologram is then mathematically analyzed, allowing obtaining the complex field

of the object beam that can be reconstructed at different distances, too. Therefore, numerical

refocusing of a digital hologram, that is a 2D image, at different object planes, without any z-

scan of the optical system, allows to retrieve a 3D quantitative imaging [31]. This makes digital

holography a very powerful method for metrology applications, particularly attractive in the

field of biology as it is noninvasive, noncontact, and label-free, allowing the characterization of

live specimen.
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In DHM, in addition to the hologram of the sample under investigation, a second hologram is

acquired on a reference region near to the object in order to numerically compensate all the

aberrations due to the optical components, comprising the defocusing due to the microscope

objective. An “off-axis” configuration is generally adopted to avoid a spatial overlapping of

the real and conjugate images due to the holographic reconstruction, leading to the separation

of first diffraction order from the entire spatial frequency spectrum. Thus, the spectrum of the

sample (object field defined as S(x, y) = |S(x, y)|eiφ(x, y), with |S(x, y)| and φ(x, y) amplitude and

phase, respectively) can be retrieved except for a constant [32]. Then, it is possible to propagate

the optical wavefront at different distances from the plane of acquisition applying the Fourier

formulation of the Fresnel-Kirchhoff diffraction formula [33, 34]. This reconstruction can be

obtained by means of the operator algebra proposed by J. Shamir [35], where Fresnel diffrac-

tion is described by replacing the Fresnel-Kirchhoff integral, the lens transfer factor, and other

operations by operators. The resulting propagated object field Sprop(ξ, η) is expressed as a

function of the initial object field S(x, y) and can be written as [36, 37]:

Sprop ν;μ
� �

¼ exp ikdð Þ � I
�1 exp �

ikdλ2

2
p2 þ q2
� �

� �� �

∙I S x; yð Þð Þ

� 	

(3)

being I f xð Þ½ � the Fourier transform of the function f(x), k ¼ 2πn
λ (with n refractive index of the

medium), p and q spatial frequencies defined as p ¼ ν
λd and q ¼

μ
λd, and d the reconstruction

distance. For digital reconstruction, Eq. (3) is applied in a discrete form:

Sprop m; nð Þ ¼ exp ikdð Þ I
�1
D �

ikdλ2

2N2d2
U2 þ V2
� �

� �

∙ID S h; jð Þð Þ

� 	

(4)

where N is the number of pixels in both directions and m, n, U, V, h, and j are integer numbers

varying from 0 to N � 1.

Figure 3. Typical interferometric setup for digital holography microscopy. BS: beam splitter, M: mirror. Reference and

object beams are highlighted.
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Intensity and phase distributions can be reconstructed by Sprop(m, n) according to the following

equations:

Iprop m; nð Þ ¼ Sprop m; nð Þ












2
; (5)

φprop m; nð Þ ¼ arctan
Im Sprop m; nð Þ

� �

Re Sprop m; nð Þ
� � : (6)

The phase φprop(m, n) includes information about the morphological profile of the object under

investigation; in fact, it is related to the OPD:

OPD m; nð Þ ¼
λ

2π
φprop m; nð Þ: (7)

The relation between the OPD and the thickness of the cell t is given by Eq. (2).

3.2. Digital holography microscopy for sperm cells assessment

Digital holography (DH) allows retrieving a fully 3D image of the sample, thus offering new

prospects for the analysis of sperm cells in a noninvasive, quantitative, and label-free way.

Sperm cells were acquired by a digital holographic microscope for the first time in 2008 by

Mico et al. [38].

The potential of applying this technique for label-free sperm assessment was recently con-

firmed by Shaked’s group. Indeed, they demonstrated that DHM allows obtaining equivalent

information about key morphological parameters of fixed human spermatozoa to that

obtained by bright field microscopy (BFM) imaging of stained sperm cells [39].

Additionally, the opportunity to have information about the third dimension in the sperm

analysis can offer a better understanding of this kind of cell and of male infertility [40].

Furthermore, since this technique allows obtaining quantitative information and numerical

analysis, estimation area or profiles in a given direction may be carried out. Such kind of

analysis can help to study the male infertility and its possible relation with the abnormal

morphology [41, 42].

DH has been mainly employed to study the morphology of human sperm cells in order to

verify the integrity of their structures and to evaluate their kinematic parameters and concen-

tration. This approach allows to visualize the morphology of abnormal sperm and to analyze

in 3D some typical defects such as cytoplasmic droplet along the tail, bent tail, and acrosome

broken, as reported in the box 1 of Figure 4 [42].

Additionally, a quantitative study of vacuoles has been performed by DH. In particular, it was

demonstrated that the profile of the normal spermatozoon results higher than that of the

spermatozoon with vacuoles, whereas their 2D dimensions (such as area and axes length) are

similar [43]. The difference in height denotes a reduced volume in spermatozoon with vacuoles

respect to the normal spermatozoon; this difference could be ascribed to a modification of the

inner structure of the sperm head with loss of material (see box 1 in Figure 4).
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In 2013, Merola et al. [44] provided an evaluation of the biovolume of spermatozoa (about

55 μm3). The authors used optical tweezers to trap and rotate the cells; meanwhile, they flow

through a microchannel, enabling recording digital holograms of the sperm at different angles

and the production of a tomographic 3D model, as showed in the box 2 of Figure 4.

Another important semen parameter, the dry mass of the cell (i.e. the average mass of the

proteins, carbohydrates, lipids, and so on within the cell), can be obtained by DHM. Indeed,

Figure 4. Some potentialities of DHM. Box 1: morphological analysis of semen carried out by DHM; top panels: sperm

cells with distinct morphological defects; center and bottom panels: difference in height denotes a reduced volume in

spermatozoon head with vacuoles respect to the normal spermatozoon [41, 43]. Box 2: examples of some physical

parameters obtained by DHM [31, 44]. Box 3: 4D tracking of clinical sperm samples [45].
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the OPD of the cell linearly depends on the axially averaged refractive index of the cell relative

to the surrounding medium, for a given thickness t [45]. Thus, considering that the human

spermatozoa head can be divided in the cell nucleus and the acrosome, which differ in the

composition and concentration of proteins, nucleic acids, and other components, Balberg et al.

evaluated the dry mass of the cell by starting by the knowledge of the OPD [31]. In particular,

the authors measured the dry mass of separate cellular compartments in the OPD maps of

unlabeled human spermatozoa, as reported in the box 2 of Figure 4.

Finally, the movements of living spermatozoa have been tracked applying an automatic 4D

tracking (movements in the 3D spatial directions over time) of the swimming samples in [46].

The results are showed in the box 3 of Figure 4, where an anomalous spermatozoa behavior,

known as “bent tail,” is highlighted. A collection of several holograms at a fixed distance

between the sample and the microscope objective was acquired. In order to simultaneously

track multiple spermatozoa, a proximity criterion has been included into the algorithm. In

particular, by means of this approach, the position in the (n + 1)th frame has been searched in a

reasonable neighborhood of the nth frame position.

Therefore, DH could be seen as a breakthrough that can renew the sperm analysis in the

spermatology laboratories, encouraging researchers in the field of sperm cell biology to con-

sider using DH as a standard method for their characterization studies.

4. Combined optical approach for the noninvasive analysis of single

spermatozoa

As seen in the previous sections, Raman spectroscopy and quantitative phase microscopies

have been separately developed for assessing spermatozoa from a biochemical and morpho-

logical perspective, respectively. The two photonic techniques, employing intrinsic contrast

mechanisms, allow noninvasively selecting the fertile spermatozoon according to its normal

morphology as well as its DNA integrity. Kang et al. [47] first proposed a combined system

where quantitative phase microscopy and Raman imaging allowed correlating morphological

parameters with molecular information, i.e. the red blood cell thickness was correlated to the

hemoglobin distribution. Huang and colleagues in 2014 published a study that evaluated the

possibility to combine micro-Raman spectroscopy with image analysis for label-free identifi-

cation of normal spermatozoa [48]. Recently, our group proposed a similar system, which

combines Raman spectroscopy/imaging and digital holography microscopy as a potential tool

to rapidly and objectively identify the healthy spermatozoa [36, 49, 50].

4.1. The optical setup

The setup used in our works for the simultaneous Raman and holographic analysis essentially

consists of a Raman microscope coupled to an interferometer (Figure 5) [36, 49, 50]. We used

two different laser sources: a green laser at 532 nm for the Raman excitation and a long

coherence (>100 m) red laser at 660 nm for the holographic experiments. The red laser beam

was split into two beams: the object beam passing through the sample and the reference beam
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that directly goes to the detector. Importantly, the reference beam was controllable in intensity

and polarization enabling us to improve signal intensity and contrast. The collimated object

beam of the holographic pathway is recombined to the reference beam by a beam splitter (BS).

The recombined beams are filtered and sent to the CCD camera (CCD1) for the holograms

recording.

The green light is focused on the sample by a high numerical aperture objective lens. The high

N.A. of the objective and the wavelength chosen for the Raman beam allows to reaching

spatial resolutions on the order of less than 0.5 μm, particularly suitable for cell imaging

application. The back-scattered light from the sample is collected by the same objective lens

(OBJ) and separated from the holographic radiation by a long pass dichroic mirror (DM)

reflecting wavelength below 600 nm. The scattered light, consisting of Rayleigh and Raman

radiation, is filtered through a dichroic beam splitter (BS45) that rejects the Rayleigh light at

532 nm. The Raman signal is further filtered using a laser-blocking filter (NF0) to eliminate the

residual Rayleigh scattering and then focused onto the entrance slit of a monochromator. The

Raman signal is finally detected using a cooled CCD camera (CCD2).

4.2. Morphological and biochemical analysis of single sperm cells

In this paragraph, some of the most interesting results we have obtained by applying the

Raman/holographic microscope for the sperm cell characterization will be discussed. Our

investigations mainly focused on:

Figure 5. Experimental set up of the combined Raman and holographic system used in our works [36, 49, 50].
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1. correlative analysis of morphological and biochemical alterations [49];

2. morphological and biochemical analysis of photo-damaged spermatozoa [36];

3. sex classification of bovine spermatozoa [49, 51].

With the aim of demonstrating the potential applicability of the proposed multimodal imaging

approach in identifying the fertile spermatozoa for IVF, we have first performed a qualitative

Raman/holographic analysis of single sperm cells [49].

Raman imaging can be performed scanning the laser over a region of interest of the sperm cell

or on the entire cells, acquiring in that way a point-by-point spectrum. Similar spectral features

correspond to similar molecular structures; consequently, we can identify separate regions of

the spermatozoon (acrosome, nucleus, and tail) according to their different chemical composi-

tion (Figure 6a and b). Pseudo-color Raman map of the sperm is shown in Figure 6b, in which

each color is arbitrarily associated to specific Raman spectral patterns. Therefore, the Raman

map delineates not only the distribution of DNA and protein in the nucleus, acrosome and tail

but also detects, in a label-free manner, small biochemical discrepancies correlated with the

presence of morphological defects, highlighted by digital holography (Figure 6c). We found

that the peculiar protuberance in the region of the spermatozoon connecting the head to the

tail, the so-called middle piece, well correlated with the biochemical alteration detected in the

Raman map. Indeed, by analyzing the typical Raman bands of the spectra acquired in that

specific cell region, it was possible to correlate the morphological alteration to an increased

amount of proteins in the middle-piece region, where mitochondria are localized [49].

Recently, we applied the multimodal imaging tool for the online evaluation of the damages

induced by green laser radiation for studying in which dose and how it affects the irradiated

sperm cells [36]. Severe spermatozoa variations associated with a topological redistribution of

the sample and a gradual decrease in the Raman signal intensity were detected in a label-free

configuration (Figure 7a–c). Importantly, at laser fluences (30 MJ/cm2) where no morphological

alterations were detected by digital holography, high specific spectral variations were moni-

tored to evaluate the cell photodegradation. More specifically, Raman analysis provided pre-

cise information on the most affected biochemical structures, finding that DNA phosphate

Figure 6. (a) Raman spectra and (b) false-color Raman map of different regions of the sperm cell head: middle piece

(yellow), nucleus (red), acrosome (blue), and membrane (green). (c) 3D digital holographic reconstruction of the sperm

cell morphology [49].
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backbone (900–1100 cm�1) and lipids and proteins (1200–1400 cm�1) are very sensitive to

photoxidative denaturation (Figure 7d) [36].

To test the biochemical/morphological ability of the proposed multimodal approach, we addi-

tionally tested bovine sperm cells. The sex preselection of the offspring reveals a high signifi-

cant impact on animal production management as well as genetic improvement programs.

Since a noninvasive method for sex predetermination in animals is still not available, we used

our multimodal approach for identifying and separating X and Y-bearing sperm cells. The key

parameters estimated in our works [49, 51], on hundreds bovine spermatozoa of different

bulls, were the Raman bands correlated to DNA content and head volume.

Indeed, specific peaks related to the vibrational modes of the DNA bases (726 and 785 cm�1) can

be used to sort X- and Y-bovine sperm cells (Figure 8a and b). However, additional significant

spectral variations can be observed in the Raman bands mainly associated with the presence of

lipids and proteins (1400–1600 cm�1, Figure 8a and b), due to the different composition of the

Figure 7. (Top) Reconstructed phase map of the (a) nonirradiated and (b) irradiated region of interest at the focus plane.

The star (*) indicates the cell position where the Raman spectrum is acquired that corresponds to the irradiated area. (c)

Raman spectra of the sperm cell at three different selected laser fluences (0, 61 and 107 MJ/cm2). (d) Zoom of four selected

Raman spectra acquired at laser fluences of 0, 30, 61 and 107 MJ/cm2 in the spectral region between 700–800 cm�1, 1050–

1120 cm�1, 1200–1400 cm�1 and 1550–1720 cm�1 [36].
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sex-associated membrane proteins in X- and Y-bearing sperm cells. In order to quantify the

efficiency and the accuracy of the Raman spectroscopy in discriminating the two sperm cell

populations, we have analyzed the data using a multivariate statistical method, known as princi-

pal component analysis, that allows to visualizing the separation of the two classes of cells into

two well distinct clusters (Figure 8c), only on the base of the differences in their Raman finger-

print. The sorting accuracy resulted of 90.6%, which is comparable to the accuracy (90–94%)

achievable with standard sorting techniques such as fluorescence-activated cell sorting (FACS).

Then, the spectroscopic results have been correlated with the morphological analysis, where

the sperm head volume has been evaluated by applying the Otsu’s method [51] on the

holographic phase map, a procedure generally used to indirectly measure morphological

properties of the region under investigation (results not reported, see [49, 51]). As the main

differences between X and Y chromosomes are the size (X chromosome is bigger than Y one)

and the total DNA content, these major differences can be reflected in the head sperm volume,

representing therefore a fast and automated way to identify the chromosome type [49, 51].

Therefore, by combining holographic with Ramanmicroscopy provides label-free, quantitative

morphological and chemical information from unfixed sperm cells. The combination offers an

excellent system for a complete, morphological and physiological, monitoring of the sperm cell

quality.

5. Towards clinical applications: a demanding path

Despite the feasibility of Raman spectroscopy and holography microscopies has been success-

fully demonstrated in many medical and biological applications [14, 16, 30, 52–55], there is still

a significant lack of translation and implementation of such innovative techniques into clinical

practice. Indeed, while thanks to the technological advances the capability and information

achievable are quickly expanding, there are some concerns to consider [56].

Figure 8. (a) Average Raman spectra of 900 X- (purple line) and 900 Y- (blue line) sperm cell spectra acquired in the

“fingerprint” spectral region. (b) Measured peak area of the bands at 726 and 785 cm�1, highlighting the different DNA

content measured for X and Y sperm cells, ΔA = 4.2 � 0.9%. (c) PCA score plots of PC2, PC3 and PC4 showing the

separation of data corresponding to X- and Y- sperm cells [49, 51].
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The Raman signals are generally low and often obscured by the presence of the cell auto-

fluorescence. However, the fluorescence-free detection can be achieved using instruments

working in the near-IR region of the spectrum, also reducing the cell photodamage. Alterna-

tively, modulating or multiwavelengths approaches can be employed to eliminate the fluores-

cence background [57–59].

Another crucial aspect for translational applications is the time required to collect the spectral

data and reconstruct the Raman images. Indeed, for reproductive medicine applications,

performing experiment in real-time is crucial. Recently, several approaches have been pro-

posed providing a faster imaging modality and allowing investigation of several sperm cells

simultaneously such as the Coherent anti-Stokes Raman scattering (CARS) and surface-enhanced

Raman scattering (SERS) imaging [60, 61] or the use of structured illumination [62, 63]. Moreover,

in our specific case, the sample is moving while measuring. This represents another problem that

researchers are trying to overcome using the laser trapping capability [64, 65], slide functiona-

lization procedures [25, 66], or microfluidic devices [67, 68].

A further obstacle to the clinical success of these new methods is the complexity in interpreting

the results. Indeed, the newer instruments for Raman/holographic imaging are fast, efficient,

and reliable; however, they require specialized operators. An useful system should be easier to

use, providing clear and automated answers to biomedical problems instead of spectra or

holograms. The ongoing implementation of computer-assisted diagnosis algorithms is helping

the interpretation of the holographic images, while further work on the creation of larger

Raman database is still required.

The economical aspect has also to be considered. Raman spectroscopy and digital holography

use precise equipment. If we consider that a holographic imaging system is sensitive to optical

pathway differences on the nanoscale and has to be isolated to any kinds of vibrations for

avoiding artifacts, we can well image that the precision required in the construction of such

devices is more expansive than that of conventional microscopes currently in clinical use.

The path to clinical implementation of innovative multimodal imaging techniques for sperm

cell assessment passes through the following milestones: 1. identification of the medical prob-

lem and the need for a new technique; 2. experimental tests of the technique, showing the

proof of principle and the feasibility of the specific application; 3. closely collaboration between

researchers and clinicians for evaluating the clinical relevance of the information the new

technique provides; 4. optimisation of the technique for the specific application in order to

improve its sensibility, specificity and robustness; 5. clinical trials; 6. industrial implementation

of the system for making it clinician and patient friendly; and 7. Clinical implementation.

The proof of principle of Raman spectroscopy and holographic imaging as sperm selection

techniques has been successfully demonstrated. Their use for detecting epigenetic alterations,

including DNA packaging and spatial conformation, methylation, and histone modification,

that could seriously affect the embryonic development has been showed [21]. Researches in

this field are currently focusing on the points 3 and 4, as highlighted in this chapter. Our efforts

aim to assess the feasibility and the reliability of the two techniques before initiating the clinical

trials, filling in such a way the gap between experimentation and clinical implementation.
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