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Abstract

Avocado native “Mexicano” (Persea americana var drymifolia) has been a really impor-
tant species in agricultural and indigenous medicine. In the agricultural world, it has 
been the germplasm source for the generation of economically important cultivars like 
Hass and it is the main source of rootstocks for the world production of Hass avocado 
fruit. In spite of its importance, little is known about the molecular network of seed-fruit 
development. The aim of this work was to know the expressed genes (ESTs) during the 
early avocado native “Mexicano” seed development. Using total RNA we constructed 
cDNA libraries of fourth months seed development, sequencing, assembling and bio-
informatic analysis was made. For validation, a semi-quantitative PCR experiments 
with the most abundant genes were made. About 5005 ESTs from the 5’ representing 
1653 possible unigenes were isolated. After assembling process, we have 171 genes that 
are closely related to Nelumbo nucifera sequences. The transcriptome is dominating by 
one bHLH transcription factor, three metallothioneins and snakin, suggesting its main 
role in seed development. Until now, there are no molecular studies in avocado seed 
development.

Keywords: avocado fruit, transcriptome, transcription factor, stress, antimicrobials, 
cotyledon, alignment, domain, phylogenetic, metal homeostasis, cysteine, seed 
development, gene expression
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1. Introduction

Avocado (Persea americana Mill.) is an oleaginous fruit produced by a tree belonging to 

the magnoliid clade, a basal linage of flowering plants. It belongs to the large plant fam-

ily of Lauraceae, with approximately 2500–3000 species [1, 2]. Avocado has been rapidly 

incorporated as a component of human diet in many countries [3]. Due to low cost, vigor 

of seedling growth and easy propagation, most of the countries are still using seeds to 

produce rootstocks for grafted avocado trees despite their genetic variability [4]. Several 

Mexican varieties are derived from seeds that are resistant to attack by Phytophthora cin-

namomi [5, 6] and are adapted to the soil and environmental conditions of the region. The 

Mexican state of Michoacán is the primary avocado-producing region in the world, and 

all the rootstocks used for the commercial production of cultivar Hass are obtained from  

P. americana var. drymifolia (“nativo mexicano”) [7]. The principal consume form is as fresh 

fruit, but is really important in cosmetic industry [8]. Avocado plant has medicinal properties, 

including cancer prevention [9–11]. There is ethnopharmacological information on the use of 

avocado seeds for the treatment of health-related conditions, especially in America. Recent 

research has shown that the avocado seeds are rich in phenolic compounds and these maybe 

play a role in putative health effects [12]. The avocado fruit is a berry of one carpel containing 

a single seed. This large and very conspicuous seed is made up of two fleshy cotyledons and 
a central attached plumule, hypocotyl and radicle, the whole surrounded by two papery seed 
coats closely adherent to each other. There is no endosperm left in the seed at maturity. The 

cotyledons are formed of indifferentiated parenchyma tissue interspersed with occasional 
idioblasts. Starch is the main storage material of the cotyledons and is present in great abun-

dance [13]. Despite its importance, avocado seed development remains uncharacterized. To 

date, little information is available regarding the molecular biology of the seed. Analysis of 
expressed sequence tags (ESTs) is a rapid and effective method to identify novel genes or to 
investigate gene expression in different tissues, organs and plants [14, 15]. Furthermore, EST 

libraries and databases could provide valuable resources for functional genomic studies [16].

In principle, the frequency with which the sequence of a given gene is read in ESTs sequenc-

ing projects should reflect the relative abundance of the corresponding mRNA. This approach 
uses EST counts to infer the relative level of expression of a gene [17–19].

In this work, we report the analysis of an ESTs collection from immature avocado nativo 

mexicano seeds and the analysis of expression of bHLH transcription factor, metallothioneins 

(MTs) and snakin like more abundantly expre3ssed.

2. Materials and methods

2.1. Biological material

Seeds from avocado nativo mexicano fruits of three stages of development (1, 4 and 8 months) 

were excised from fruits and frozen immediately in liquid nitrogen until use. The materials 

Advances in Seed Biology46



were collected in the avocado Germplasm Bank of the Instituto Nacional de Investigaciones 

Forestales y Agropecuarias (INIFAP; Uruapan, Michoacán México).

2.2. cDNA library construction and sequencing by Sanger method

Total RNA from frozen seed tissue of 4 months of development was extracted using López-

Gómez et al.’s protocol with some modifications [20]. The cDNA complementary library was 

built from 1 μg of total RNA using SMART™ cDNA Library Construction Kit (Clontech). The 

obtained cDNA sequences were cloned into pTripIEx2 vector. Cleavage experiments were 

made using E. coli BM25.8 cells to obtain the plasmid pTriplEx2. Sequencing reactions were 

performed using ABI PRISM BigDye Terminators v3.0 kit (Applied Biosystems), by 5′ end 
of plasmids extracted from random clones. The sequences obtained were filtered by quality 
using PHRED [21]; vector masked and trimming of poly A/T were performed using LUCY2 

software [22] resulting in 5002 high-quality reads.

2.3. Assembly and identification of full-length cDNA

Sanger sequences were assembled using default parameters of the 454 Newbler-Assembler 

v1.1.03.24 (454 Life Science, Branford, CT) using 16,526 generated by the University of Florida 

and the Washington University Genome Sequencing Center.

Unigene set was generated by combining all assembled contigs and non-assembled reads 

(singlets). The consensus sequences of the Unigenes were analyzed with EuGeneHom [23] to 

identify the Unigenes that contained the components of a complete cDNA (5′ UTR, ORF and 3′ 
UTR): http://genoweb.toulouse.inra.fr/eugene/EuGeneHom/cgi-bin/EuGeneHom.pl.

2.4. Functional annotation

Stand-alone BLAST software was obtained from the National Center for Biotechnology 

Information (NCBI, http://www.ncbi.nlm.nih.gov). The unigenes were compared by BLAST 

against nucleotides and proteins plant databases. The BLAST results from different data-

bases were used for gene ontology (GO)  mapping and annotation. Blast2Go software was 
used to perform GO functional classification.

2.5. Transcript characterization and homologous search

The transcripts were analyzed by UGENE V1.26.1 software for the identification of ORF, 
CDS and hypothetical protein sequence and physicochemical parameters, using the standard 

genetic code.

2.6. Alignment and phylogeny

Mega7.0.14 software was used for alignment (Clustal W algorithm with Blossom 62 matrix) 

and reconstruction of the phylogenetic pattern (Neighbor Joining model with JTT matrix-
based model for distance computing and 1000 replicates as bootstrap test).
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2.7. Semi-quantitative RT-PCR

The RNA from different seed stages (1, 4 and 8 months of development) digested with 
DNAse I amplification grade (Invitrogen) was used as a template in sqPCR reactions, 
and the synthesis of cDNAs was carried out with the First Strand cDNA Synthesis Kit 

(Thermo Scientific). In Veriti 96-well Thermal cycler (Applied Biosystems), in reactions of 
10 μl (100 ng/μl cDNA,10X Reaction Buffer, 2 mM dNTPs, 50 mM MgCl

2
, 1 U Taq DNA 

polymerase), sqPCR primers (Table 1) were designed by Primer3 webtool (http://bioinfo.
ut.ee/primer3-0.4.0/); the primers for bHLH transcription factor, three metallothioneins, 

snakin and ubiquitin as reference gene were selected. The amplification procedures were 95°C 

- 10min., 30 cycles (95°C - 45 s, annealing 30 s, amplification 72°C - 45 s), 72°C - 7 min. Gene 

expression ratio between selected gene and endogenous control was calculated using band 

intensity measured with GelAnalyzer 2010. The semi-quantitative PCR was performed with 

three repeats.

3. Results

3.1. Sequencing and assembly of Persea americana var. drymifolia seed transcriptome

A total of 5005 sequences was assembled and obtained 3328 sequences (171 contigs of 3222 

sequences + 106 singletons); these sequences were imported into BLAST analysis. In contig 

GenBank Accession Gene name Primer sequence (5′–3′) Tm (°C)

MF353071 PabHLHS1 F: TAGCGACAGGATTTGGCAGTTT 65°C

R: TGCCCCGTCGTCTCTTTCTTCTACC

MF353072 PaMT2a F: TGAGAGGGAGATTGGAGGAG 54°C

R: TCCCAACCACAGCATAGTACC

MF353073 PaMT2b F: CATGCACCTGCAAATGAGAG 60°C

R: CACCCAGATACAGCAGGAGAA

MF353074 PaMT3 F: TTGGTGTTGGTGTCCTATGC 57°C

R: CATGACTCAACCACACACACC

AGC92009 PaSn F: TCCTTGCTTTCCTTCTCTTCAC 64°C

R: AGATGTCCCGCAATCTATTTGT

SUMO F: GATAAGAAGCCCACGGATCA 55°C

R: GACGGCCATCGAATAAGAAC

Table 1. Primers used in semi-quantitative PCR.
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assembly for the avocado seed ESTs, a total number of contigs was 171, derived from 3222 

sequences and unique transcripts represented was 106 sequences. Contig length ranged 

from 84 to 1149 bp (Figure 1), the peak EST length was 84–195 bp with 478 sequences in 

range. The shortest sequence examined was 84 bp to known genes like GTP-binding nuclear 

protein.

3.2. Functional annotation

Functional interpretation is an important step in the analysis of transcriptomics which cannot 

be done without the availability of functional annotation. The most widespread and prob-

ably most extensive functional annotation schema for gene and protein sequences is the Gene 

Ontology (GO) [24] as standard in all public databases. Automatic functional annotation 

methods basically rely on sequence, structure, phylogenetic or co-expression relationships 

between known and novel sequences [25]. A total of 277 uniESTs sequences were manually 

annotated for a closer understanding of gene expression in avocado seed. The annotation pro-

ceeds through three basic steps: homologs search, GO term mapping and actual annotation. 
At the first step, NCBI-BLASTX and BLASTN are typically used, and for this work, the e-value 
1xE−5, cut-off:33 and the number of 20 retrieved BLAST hits are used. These uniESTs were clas-

sified into five functional categories, including  antioxidative protection (677, 20.34%), tran-

scription regulatory (1013, 30.44%), defense (507, 15.23%), cellular structure and organization 
(287, 8.62%) and unknown (844, 25.36%).

Figure 1. Sequence length distribution of ESTs from avocado native mexicano seed transcriptome. Total number of 

sequences analyzed were 3328. Data include both contigs and singletons.
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Gene ontology annotations and functional analyses of avocado seed transcriptome were 

carried out with automated software Blast2GO. These were assigned into three standard 
 classifications: biological processes, molecular functions and cellular components, and sum-

marized according to GO criteria. The majority GO annotation was for biological process 
(65.34%), cellular component (19.34%) and molecular function (15.33%). In addition, the 
organisms closely related to the genetic load on avocado seed were reviewed within the data-

bases, and the majority of analyzed sequences (23.47%) (Figure 2) were closely related to 

Nelumbo nucifera sequences (Figure 3). The 20 most abundant uniESTs and their annotations 

are shown in Table 2.

3.3. Avocado seed abundant genes and validation

The most abundant sequences match with metallothionein genes. This result suggests that 

metallothionein genes dominate the avocado seed transcriptome like avocado fruit [26]. 

Metallothioneins (MTs) were discovered by Margoshes and Vallee as cadmium-bound proteins 

isolated from the cortex of the equine kidney. These proteins were named for the high sulfur 

content and metals they are able to bind; depending on the metal species, these may possess 

more than 20% of its nature of metal ions [27, 28]. Mammalian metallothioneins are 60 amino 

acid peptides with 20 Cys residues and a molecular mass of about 6–7 kDa. Mammalian MTs 

are capable of binding up to 7 divalent metal ions via mercaptide bonds (sulfur-metal) with the 

Cys residues. By convention, any peptide or protein that resembles several characteristics of 

mammalian metallothioneins can be classified as metallothionein [28]. Plant metallothioneins 

have two (highly conserved) sequence similarity regions corresponding to the two Cys-rich 

terminal domains joined by a less conserved “spacer” (about 40 aa without Cys residues). In 

plants, the most distinctive feature is to have a large spacer, which differs from the MT of the 

Figure 2. Gene ontology classification of P. americana var. drymifolia seed transcriptome. Unigenes with BLASTX 

matches were classified into three main GO categories: biological process, cellular components and molecular functions.
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animals in which the Cys-rich domains are separated by a short spacer of less than 10 amino 

acids which do not include aromatic residues. The distribution of Cys residues as well as the 

length of the spacer region served to classify more MT of plants into four types, namely group 

1, 2, 3 and 4 [29].

From the analysis of these abundant transcripts, we founded the existence of three MT’s 

genes on avocado seed: PaMT2a, PaMT2b and PaMT3, which were registered in GenBank 

database with an accession code shown in Table 3. Characteristics predicted in silico for 

avocado metallothioneins, we have two sequences belonging to Methallotionein-2 super-

family due to the two highly conserved Cys-rich motifs and the long spacer in the middle 

of them. PaMT3 keeps the spacer but Cys-rich motifs are not so conserved grouping this 

as part of the third family of plant metallothioneins (MT3). Alignment shown that the 

most conserved amino acids are around the Cys residues for both MT2 and MT3 groups, 

which are associated with the “metal binding clusters” (Figures 4 and 5). The alignments 

performed identify the amino and terminal carboxyl regions as having the most conserved 

Cysteine sequences, which correspond to the metal binding clusters. The intermediate 

spacer of about 40 amino acids is much more variable but has no cysteines. In mammalian 

metallothioneins, this spacer is very small (8 amino acids) and has no aromatic amino 

acids. However, in the family 2 to which the plants belong, we can find conserved tyro-

sine residues in the spacer, as well as several less conserved phenylalanines present in the 

metallothionein sequences of types 2 and 3 (Figures 4 and 5). Seed metallothioneins cor-

respond with the three reported: NnMT2a, NnMT2b and NnMT3 [30]; the avocado seed 

metallothioneins are closely related with Nelumbo nucifera metallothioneins like 79% for 
NnMT2a-PaMT2a; 66% NnMT2b-PaMT2b and 71% for NnMT3-PaMT3 Figure 6. NnMT2a 

and NnMT3 were associated with processes of seed germination, tolerance to acceler-

ated aging and salt on Arabidopsis [30]. However, avocado seeds have a low tolerance 

Figure 3. Main organisms with which the avocado seed transcriptome is closely related.
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to aging. Basic function of MTs is metal homeostasis and has been reported during biotic 

and abiotic stress conditions too [31]. Recently, it has been reported that one metallothio-

nein interacts with a cytoskeleton protein in the nucleus of rice cells in response to salt 

stress [32].

ESTs Description Length e-value GO IDs Abundance

arlgES1 Transcription factor 

bHLH96

942 1.35E-103 GO:0046983 123

arlgES153 Metallothionein type 3 195 4.52E-28 GO:0043167 123

arlgES154 Stress response nst1 696 1.68E-34 GO:0009507; GO:0010207 113

arlgES2 40S ribosomal S29 171 1.77E-32 GO:0003735; GO:0043167; 
GO:0005829; GO:0005840; 
GO:0006412

100

arlgES3 PREDICTED: 

uncharacterized protein 

LOC104611921

282 4.53E-37 N/A 96

arlgES4 Vesicle-associated 

membrane 726

579 5.71E-130 GO:0016192; GO:0005575 90

arlgES6 ras-related RIC2 525 2.61E-118 GO:0007165; GO:0043167; 
GO:0005622

78

arlgES7 Metallothionein 2 240 3.91E-30 GO:0043167 77

arlgES8 Isocitrate dehydrogenase 

[NADP]

588 1.02E-132 GO:0044281; GO:0006091; 
GO:0016491; GO:0043167

74

arlgES10 kDa proline-rich 483 4.35E-25 N/A 69

arlgES155 Early nodulin-93-like 318 8.41E-43 GO:0005575 69

arlgES156 PREDICTED: 

uncharacterized protein 

LOC103701850 isoform X3

552 2.83E-19 GO:0005739 66

arlgES157 Potassium transporter 12 

isoform X1

366 2.97E-55 GO:0022857; GO:0009536 64

arlgES12 60S ribosomal L24 492 5.32E-63 GO:0003735; GO:0022618; 
GO:0005829; GO:0042254; 
GO:0005840; GO:0006412

58

arlgES13 60S ribosomal L7–2-like 738 1.65E-136 GO:0003735; GO:0005829; 
GO:0042254; GO:0005840; 
GO:0006412

57

arlgES15 Ethanolamine utilization 

eutQ

291 3.63E-61 N/A 54

arlgES158 Programmed cell death 4 636 1.00E-80 N/A 52

arlgES16 Type 2 metallothionein 243 5.56E-24 GO:0043167 51

arlgES159 Mitochondrial 178 4.72E-35 GO:0005739 50

arlgES161 Snakin 318 4.00E-57 GO:0009740 48

Table 2. Top 20 most abundant annotated ESTs of avocado nativo mexicano seed transcriptome.
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Sequences of related proteins were obtained from Zhou et al. [30] and downloaded from 

NCBI-GenBank: BAD18376.1 GmMT1 (Glycine max); BAD18378.1 VaMT1 (Vigna angularis); 

AAF04584.1 MsMT1 (Medicago sativa); BAD18382.1 PsMT1 (Pisum sativum); BAD18380.1 

VfMT1 (Vicia faba); ABL10085.1 LbMT2 (Limonium bicolor); BAD18383.1 PsMT2 (Pisum sati-

vum); Q39459.2 CaMT2 (Cicer arietinum); BAD18379.1 VaMT2 (Vigna angularis); ABA08415.1 

AhMT2 (Arachis hypogaea); AAL76147.1 AtMT2a (Arabidopsis thaliana); NP_195858.1 AtMT2B 

(Arabidopsis thaliana); ABN46987.1 NnMT2a (Nelumbo nucifera); ABN46988.1 NnMT2b 

(Nelumbo nucifera); CAA10232.1 FsMT2 (Fagus sylvatica); ABR92329.1 SmMT2a (Salvia miltior-

rhiza); NP_566509.1 AtMT3 (Arabidopsis thaliana); AAS99234.1 NcMT3 (Noccaea caerulescens); 

BAB85599.1 BjMT3 (Brassica juncea); ACB10219.2 EgMT3 (Elaeis guineensis); ACV51811.1 

TaMT3 (Typha angustifolia); Q40256.1 MaMT3 (Musa acuminata); ABN46986.1 NnMT3 (Nelumbo 

Name GenBank Length (aa) Weight (kDa) Isoelectric Point Cys Residues % Cys

PaMT2a MF353072 80 7.9 5.11 14 17.5

PaMT2b MF353073 80 7.9 4.54 14 17.5

PaMT3 MF353074 64 67 4.5 10 15.6

Table 3. Characterization of Persea americana var. drymifolia metallothioneins.

Figure 4. Alignment of plant metallothioneins of subfamily 2.

Figure 5. Alignment of plant metallothioneins of subfamily 3.
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nucifera); ACC77568.1 PjMT3 (Prosopis juliflora); CAH59438.1 PmMT3 (Plantago major); 

NP_181731.2 AtMT4 (Arabidopsis thaliana); AAB65792.1 GmMT4 (Glycine max); P30570.2 TaMT4 

(Triticum aestivum); AAS78805.1 OsMT4 (Oryza sativa Japonica Group) and NP_001105499.1 
ZmMT4 (Zea mays), [30].

Figure 6. Phylogenetic analysis of avocado and plant metallothioneins. The evolutionary history was inferred using the 

neighbor-joining method. The bootstrap consensus tree inferred from 1000 replicates. The evolutionary distances were 

computed using the JTT matrix-based method. The analysis involved 33 amino acid sequences. All positions with less 
than 85% site coverage were eliminated.
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Another abundant transcript is a messenger codified for a transcription factor type bHLH. The 
basic domain (bHLH) is a highly conserved amino acid motif that defines a group of transcrip-

tion factors, which was initially described in animals and was soon discovered in all major 

eukaryotic lineages [33]. Proteins containing a bHLH domain (referred to as bHLH proteins) 

are involved in a variety of regulatory processes; their functions include the regulation of neu-

rogenesis, myogenesis and the development of the heart in animals [34, 35], control of phos-

phate uptake and glycolysis in yeast [36] or modulation of secondary metabolism pathways, 

epidermal differentiation and environmental responses in plants [37]. The bHLH domain con-

sists of two distinct segments composed by 50–60 amino acids, 10–15 mostly basic amino acids 

form the stretch (basic region) and approximately 40 amino acids form the two amphipathic 

helices separated by a loop (helix-loop-helix region). The analysis of the structure of bHLH 

proteins (yeast and mammalian) showed the basic region made in the DNA contact, while the 

two helices promote the formation of heterodimers between bHLH proteins [35]. These bHLH 

transcription factors are generally classified into six major groups (FAs) based on their ability 
to bind to DNA [35, 38, 39]. Most bHLH proteins are classified into group A or B; in group 
A, it is expected to bind to E-box consensus sequences (CACCTG or CAGCTG), in group B, 

it is specifically bind to G-Box consensus sequences (CACGTG or CATGTTG) and in group 
C, bHLH proteins share a PAS domain and bind to the recognized sequences without a need 

a E-box (ACGTG or GCGTG) sequences. The E group includes bHLH proteins containing 

a conserved Pro or Gly residue at a key position within the basic region, preferably bind to 

sequences referred to as N-boxes (CACGCG or CACGAG), and further share an additional 

WRPW motif. Groups D and F represent particularly proteins which were separated in the 

basic region. Some group D proteins have been described as being unable to bind to DNA 

and could form heterodimers that function as negative regulators of bHLH binding to DNA 

[40]. Group F includes so-called COE proteins. A phylogenetic study indicated that group A 
contained mammalian bHLH proteins and lacked bHLH plant proteins. The other groups had 

a mixture of different species and most of the bHLH proteins of plants belonged to group B 
[41, 42], It has been shown that the bHLH family of proteins in plants is monophyletic and 

subjected to significant radiation before the evolution of mosses; bHLH groups established 
in terrestrial plants during the first 400 million years were conserved during the later evo-

lution of plants, although there were many duplications of genes. The transcription factors 

are very varied since it does not have many amino acids conserved throughout its sequence; 

nevertheless in the sites of union to the DNA like the case of the bHLH, the great majority of 

its amino acids is conserved within its main motive. Due to their propensity to form homodi-

mers or heterodimers, bHLH proteins can participate in an extensive set of a combinatorial 

interactions leading to the regulation of multiple transcriptional programs. The development 

of fleshy fruits involves complex physiological and biochemical changes. Recent studies have 
described the involvement of bHLH proteins in the determination of plant organ size. The 

SPATULA protein was shown to control cotyledon, leaf and petal expansion by affecting cell 
proliferation in Arabidopsis thaliana [43]. Nicolas et al. [44] described a bHLH transcription fac-

tor preferentially expressed in grape berry fruit, but is weakly detected in seeds. This gene is 

involved in cell size determination. Three basic helix-loop-helix transcription factors (bHLH) 

were also found to be involved in Arabidopsis fruit dehiscence process: ALCATRAZ (ALC), 

SPATULA (SPT) and INDEHISCENT (IND); they form a regulatory network that orchestrates 
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the differentiation of the valve margin, allowing seed dispersal [45]. A protein Blast was per-

formed and the sequences that were selected for a multiple alignment were the ones that 

presented greater coverage and identity with the transcription factor bHLH of Mexican native 

avocado seed. High sequence variability was found for the nearest bHLH motif, which pre-

senting a large number of conserved amino acids (Figure 7).

However, since they do not have any additional information regarding the function and/or 

tissue in which the function is performed, we analyzed our sequence with bHLH sequences 

of which their function or organospecificity is known; two bHLH factors were chosen with 
these characteristics of Arabidopsis thaliana, bHLH Zoupi (GenBank Accession: OAP16519) 
involved in seed development and SPATULA (GenBank Accession: AT4G36930) involved in 

Figure 7. bHLH (PabHLHS1) avocado seed transcription factor alignment with bHLH transcription factors of some 

plant species. Arabidopsis thaliana (Ath96bHLH), Vitis vinifera (Vvi96bHLH), Glicine max (Glm96Bhlh), Nelumbo nucifera 

(96bHLH), Theobroma cacao (ThcbHLH), in shadow black are the bHLH motif represented in black letters the amino acids 

that are conserved in these proteins and gray letters the amino acids differs between them.
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cell development; however, no conserved amino acids were found with the avocado bHLH 

(data not shown). To try to infer the function of this transcription factor highly expressed in 

avocado seed, it will be necessary to carry out research studies of the recognition boxes inside 

in DNA to infer the possible association to the group to which it belongs. It is probable that 

the bHLH transcription factor of the avocado seed has a principal paper in seed differentia-

tion and development.

Multicellular organisms produce small cysteinerich antimicrobial peptides (AMPs) as an 

innate defense against pathogens. Native Mexican avocado seed abundantly express Snakin 

(PaSn) gene. These kind of AMPs were initially isolated from potato but were later found to be 

ubiquitous. Novel plant APs isolated include in Arabidopsis (family of 12-cysteine peptides).

We identified a single cDNA sequence for snakin/GASA (gibberellic acid-stimulated), which 
contains a coding sequence of 318 bp and encodes a predicted 106 amino acid peptide. This 

molecule comprises a 26 amino acid signal peptide (residues 1–26), identified by SignalP 
(http://www.cbs.dtu.dk/services/SignalP/) and a 79 amino acid mature peptide (Figure 8). An 

amino acid alignment of avocado snakin with other similar APs (Figure 9) showed that PaSn 

has the longest sequence compared with the previously reported StSN1 and StSN2 genes 

from potato. In addition, PaSn has the 12 characteristic Cys residues of this type of AP. In 

addition to the highly conserved 12 Cys residues, the other motifs in the PaSn protein consist 

of residues that are mostly polar, non-polar and basic (Figure 9). From these analyses, we 

hypothesized that the Mexican avocado snakin gene could be involved in plant defense in 

a similar way to that of the StSN1 and StSN2 genes in potato [7]. Until now, this is the first 
Snakin gene isolated from a seed.

Figure 8. PaSn nucleotide sequence with amino acid frame translation (GenBank: KC012806). ORF in gray shaded; signal 
peptide (bold-underlined) is followed by the amino acid sequence of the mature peptide; the signal peptide prediction 

was performed using SignalP program (http://www.Cbs.Dtu.Dk/services/SignalP/).
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3.4. Expression patterns of selected genes measured by sqPCR

Expression patterns of five genes from the seed library were studied by semi-quantitative 
PCR (Figure 10); bHLH transcription factor, three metallothioneins, antimicrobial peptide 

snakin and SUMO like reference gene during avocado seed development. These genes could 
be divided into three stages according to the time of growth of the seed in avocado fruit. The 

bHLH gene has an expression pattern comparable to the endogenous gene SUMO (Ubiquitin), 
suggesting a role throughout the formation and development of the avocado fruit seed pos-

sibly modulating the biogenesis of the seed or embryo; since from the first month of forma-

tion (E1) to ripening (E8), similar expression levels were present. For the Metallothionein 

gene group, PaMT3 presented a pattern of constant expression in the three stages of seed 

Figure 9. Plant snakin amino acid sequences alignment. Amino acids conserved are indicated by an asterisk in the 

consensus sequence. The black-shaded cysteine residues are present in all sequences. The sequences included are: 

Avocado PaSn (KC012806); potato: StSN1 (Q948Z4), StSN2 (Q93X17); Medicago truncatula: MtGBRP1 (XP_003603759), 

MtGBRP2 (XP_003589486); Capsicum annum: CaSN1 (ACC91329); Jatropha curcas: JcGAST1 (ACV70139), JcLTRCOR12 
(ACU30848); Solanum lycopersicum: SlSNP1 (ADR32106) and Fragaria x ananassa: FaGAST1 (AAB97006).

Figure 10. Transcript profiling of PaMT2a, PaMT2b, PaMT3, PaSn and PabHLHS1 during seed development. (A) Total 

RNA was extracted from avocado seeds of 1, 4 and 8 months of development. cDNAs were synthetized and used for 

sqPCR , the normalizing gene was avocado ubiquitin SUMO. (B) The amount of mRNA of different genes is expressed 
as the ratio of the densitometric measurement of the sample RT-PCR product to the SUMO corresponding product.
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 development used slightly above at the peak of expression compared to the endogenous gene 

but not for PaMT2a which has an initial level of expression low in first month of development, 
having its maximum expression peak in the stage of 4 months; PaMT2b has its maximum 

expression peak at the beginning of the fruit formation in the first month, decaying this by 
month 4 and recovering expression levels for ripening; it should be noted that metallothio-

neins have been directly involved within various roles within the functions. Some of them 

as carriers or facilitators of metal ions for processes of defense, synthesis or hydrolysis of 

reserve components to make them more bioavailable [46]; however, the authors do not reach 

an agreement to say that the different types or families of metallothioneins play a specific role. 
The snakin gene has a similar behavior throughout the development of the fruit emphasizing 

its role within the defense against pathogens or as the first barrier of protection or signal-
ing of attack, making it therefore important to maintain the levels of expression throughout 
development and possibly after this for fruit protection (Figure 10). The expression patterns 
of the selected genes identified by sqPCR and the different expression patterns of avocado 
seed transcriptome suggested various roles of these genes in response to seed development 

and protection in avocado fruit.

4. Conclusions

In this work, we identified and characterized three novel metallothioneins and one transcrip-

tion factor gene from avocado nativo mexicano seeds, which are expressed abundantly during 

seed development. This suggests that they can have a protagonic paper during seed develop-

ment and probably form a network to protect the embryo for drought stress. More studies 

are necessary to elucidate the paper of these genes during avocado seed-fruit development.
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