
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



3 

 
Moving usability forward to the beginning of the 

software development process 
 

Natalia Juristo*, Ana Moreno*, Maria-Isabel Sanchez-Segura¥ 

*School of Computing - Universidad Politécnica de Madrid 
Spain 

¥Department of Computing - Universidad Carlos III de Madrid 
Spain 

 
1. Introduction 

 

Software usability is a quality attribute found in a number of classifications (IEEE, 1998), 
(ISO9126, 1991), (Boehm, 1978). Nielsen gave one of the most well-known descriptions 
related to software system learnability and memorability, efficiency of use, ability to avoid 
and manage user errors, and user satisfaction (Nielsen, 1993). In spite of the relevance of 
usability in software development it is still insufficient in most software systems (Seffah, 
2004) (Bias, 2005). 
 

For the past two decades, software usability has been perceived, from a software 
development perspective, as related to the presentation of information to the user (Seffah & 
Metzker, 2004) (Folmer et al., 2004). Software engineers have treated usability primarily by 
separating the presentation portion from the system functionality, as recommended by 
generally accepted design strategies (e.g. MVC or PAC (Buschmann et al.)). This separation 
would make it easier to modify the user interface to improve usability without affecting the 
rest of the application. Accordingly, there is a belief that usability can be considered late in 
the development process (generally after testing) as it should not take too much rework to 
improve this quality attribute. 
 

Recently, however, usability’s implications in the application core have been highlighted. 
Some authors have already illustrated, albeit informally, a possible relationship between 
usability and architectural design (Bass, 2003) (Folmer, 2004). If this relationship is 
confirmed, the cost of rework to achieve an acceptable level of usability would be much 
higher than expected according to the hypothesis of separation. If this is the case, usability 
should be dealt with earlier in the development process in order to define and evaluate its 
impact on design as soon as possible. Notice that this approach is consistent with the 
tendency in SE to carefully consider quality attributes early on in the development process 
(Barbacci, 2003). This strategy has already been applied to other quality attributes like 
performance, modifiability, reliability, availability and maintainability, where a number of 
authors have proposed techniques to deal with these attributes, for example, at architectural 
design time (Klein, 1999) (Bass 1999) (Eskenazi, 2002) (Bosch, 2003). 

www.intechopen.com



Human-Computer Iteraction 

 

24 

In this context, the objective of this paper is twofold. On the one hand, we will offer some 
evidence to demonstrate the relationship between usability and software design. To do this, 
we will first analyze what different sorts of impact usability heuristics and guidelines 
discussed in the human computer interaction (HCI) literature are likely to have on a 
software system. We have identified usability features with a potential impact on the user 
interface, on the whole development process, and on the design models. To confirm this 
potential impact, we are particularly interested in design models. Therefore, the next step in 
this book chapter is to examine what sort of effect such usability features have on software 
design. With this aim in mind, we have surveyed several real systems that have the usability 
features in question built in. By way of an illustration, we will detail our study in terms of 
new classes, methods and relationships derived from adding one particular usability 
feature. As a result of this analysis we are able to demonstrate that usability really does 
effect the system’s core functionality. With the goal of quantifying as far as possible the 
effect of usability features with an impact on design, this book chapter goes on to discuss the 
data gathered from applying a number of usability features to develop several real systems. 
We used these data to demonstrate the relationship between usability and software design 
and to get an informal estimation of the implications of building these features into a 
system. 

 

Consequently, we can demonstrate that particular usability issues have a real impact on 
software design. Such issues have big functional implications and, therefore, need to be 
considered from as of the early development phases to avoid design rework, like any other 
functional requirement. 

 

Accordingly, the second objective of this paper is to discuss how to deal with such usability 
issues at requirements time. In particular, we present some completeness problems caused 
by incorporating functional usability features as requirements, and discuss how the 
traditional solutions for dealing with incompleteness are hard to apply in this case. Then we 
present the approach we followed to avoid such problems, using a pattern-oriented 
approach to capture the knowledge to be managed to elicit and specify usability 
requirements. Finally we show some results related to pattern use. 
 

To achieve the above objectives, this book chapter has been structured as follows. Section 2 
discusses the different usability recommendations that can be found in the HCI literature. 
Section 3 provides some evidence about the relationship between particular usability 
recommendations and software design. This evidence shows that incorporating such 
recommendations involves modifying the core of the software design, as required to build 
in any other functionality. Section 4 shows the problems of dealing with usability during the 
requirements phase, and section 5 discusses a pattern-based representation of usability 
recommendations that avoid such limitations. Finally, section 6 presents some data gathered 
from the evaluation of such patterns. 

 
2. Usability Recommendations in the HCI Literature 

 

The usability literature has provided an extensive set of guidelines to help developers to 
build usable software. Each author has named these guidelines differently: design heuristics 
(Nielsen, 1993), principles of usability (Constantine, 1998) (Shneiderman, 1999), usability 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

25 

guidelines (Hix, 1993), etc. Although all these recommendations share the same goal of 
improving software system usability, they are very different from each other. For example, 
there are very abstract guidelines like “prevent errors” (Nielsen, 1993) or “support internal 
locus of control” (Shneiderman, 1999), and others that provide more definite usability 
solutions like “make the user actions easily reversible” (Hix, 1993) or “provide clearly 
marked exits” (Nielsen, 1993). It is not our aim to provide a detailed classification of these 
usability features, as this is outside the scope of software engineering. What we can do, 
though, is structure these features depending on their potential impact on software 
development. Accordingly, such features can be divided into three groups: 
1) Usability recommendations with a potential impact on the UI. Examples of such 

recommendations refer to presentation issues like buttons, pull-down menus, colors, 
fonts, etc. Building these recommendations into a system involves slight modifications 
to the detailed UI design. 

2) Usability recommendations with a potential impact on the development process, 
which can only be taken into account by modifying the development process itself, e.g. 
recommendations referring to reducing the user cognitive load, involving the user in 
software construction, etc. 

3) Usability recommendations with a potential impact on the design. They involve 
building certain functionalities into the software to improve user-system interaction. 
We have termed these set of usability recommendations Functional Usability Features 
(FUFs). Examples of FUFs are providing cancel, undo, feedback, etc.  Let’s suppose that 
we want to build the cancel functionality for specific commands into an application. To 
satisfy the requirements for this functionality the software system must at least: gather 
information (data modifications, resource usage, etc.) that allow the system to recover 
the status prior to a command execution; stop command execution; estimate the time 
to cancel and inform the user of progress in cancellation; restore the system to the 
status before the cancelled command; etc. This means that, apart from the changes that 
have to be made to the UI to add the cancel button, specific components should be 
built into the software design to deal with these responsibilities. Table 1 shows the 
most representative FUFs that can be foreseen to have a crucial effect on system design. 
This table also includes the HCI authors that suggest each recommendation. 

In this chapter, we are interested in usability recommendations with a potential impact on 
design and try to provide real evidence about their impact on design. 

 
3. Analyzing the Effect of Usability on Software Design 
 

To study the relationship between FUFs and software design we have worked on a number 
of real development projects carried out by UPM Master in Software Engineering students 
as part of their MSc dissertations from 2004 to 2005. Students originally developed the 
respective systems without any FUFs. These designs were then modified to include the 
FUFs listed in Table1. 
 

 

 

www.intechopen.com



Human-Computer Iteraction 

 

26 

 
Functional Usability Features Goal 

FEEDBACK 
(Tidwell, 1999) (Brigthon, 1998) 
(Coram, 1996) (Welie, 2003) 
(Tidwell, 2005) (Nielsen, 1993) 
(Constantine, 1999) (Shneiderman, 1998) 
(Hix, 1993) (Rubinstenin, 1994) (Heckel, 1991) 

To inform users about what is 
happening in the system 

UNDO 
(Tidwell, 2005)  (Welie, 2003) (Brigthon, 1998) 

To undo system actions at several 
levels 

CANCEL 
(Tidwell, 2005) (Brigthon, 1998) 
(Nielsen, 1993) 

To cancel the execution of a 
command or an application 

USER INPUT ERRORS 
PREVENTION/CORRECTION 
(Tidwell, 2005) (Brigthon, 1998) (Shneiderman, 1998) 
(Hix, 1993) 
(Rubinstein, 1984) (Constantine, 1999) 

To improve data input for users 
and software correction as soon as 
possible 

WIZARD 
(Welie, 2003) (Tidwell, 2005) 
(Constantine, 1998) 

To help to do tasks that require 
different steps involving user input 

USER PROFILE 
(Tidwell, 1999) (Welie, 2003) (Hix, 1993) 
(Rubinstenin, 1994) (Heckel, 1991) 

To adapt system functionality to 
users’ profile 

HELP (Tidwell, 2005)(Welie, 2003)(Nielsen, 1993) To provide different help levels for 
different users 

COMMAND AGGREGATION (Nielsen, 1993) 
(Constantine, 1999) (Hix, 1993) 

To help users to create commands 
to execute more than one task at a 
time 

SHORTCUTS (Nielsen, 1993) (Constantine, 1999) 
(Hix, 1993) (Shneiderman, 1998) 

To allow users to activate a task 
with one quick gesture. 

REUSE INFORMATION (Constantine, 1999) To allow users to easily move data 
from one part of a system to 
another 

Table 1. Preliminary list of usability features with impact on software design 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

27 

The  projects used were interactive systems (an on-line table booking for a restaurant chain, 
an outdoor advertising management system, a car sales system, an adaptable surface 
transport network system, a computer assembly warehouse management system; an on-line 
theatre network ticket sales and booking system; and an employee profile and job offer 
processing and matching software system). We deliberately chose interactive systems 
because usability is more relevant in these cases, and FUFs can be expected to have a bigger 
impact. 
 

For each of the systems to which the FUFs listed in Table 1 were added, we quantified a 
number of criteria: 

• FUF impact on system functionality (FUF-Functionalities). This parameter mirrors the 
number of functionalities (in terms of expanded use cases) affected by the FUF in 
question. To assess this criterion we calculated the percentage of expanded use 
cases affected by each FUF, which was rated as low, medium or high depending on 
the interval to which the percentage belongs (under 33%, from 33% to 66%, over 
66%). 

• FUF-derived classes (FUF-Classes). This criterion refers to the number of classes that 
appear in the design as a result of adding a FUF. This has been assessed by 
calculating the percentage of new classes derived from the feature, which was 
rated as low, medium or high depending on the interval to which the percentage 
belongs (under 33%, from 33% to 66%, over 66%). 

• FUF-derived methods complexity (FUF-Methods Complexity). The criterion refers to 
how complex the methods that need to be created as a result of incorporating a 
given FUF into the system are. It is not easy to provide a measure of the complexity 
of a method at design time. For the purposes of our study, however, we have 
classified the possible class methods based on their functionality as follows: 

o Methods related to displaying information, running checks, etc., have 
been rated as low 

o Methods related to filters, error corrections, etc., have been rated as 
medium. 

o Methods related to returning to the earlier state of an operation, saving 
the state, etc., have been rated as high. 

• Interaction with other system components (FUF-Interaction). This parameter represents 
how the classes involved in FUF design couple with the other system classes. To 
assess this parameter, we measured the percentage of interactions between the 
FUF-derived classes or between these and other system classes that can be 
observed in the interaction diagrams. The value of this criterion will be low, 
medium and high depending on what third this percentage belongs to (under 33%, 
from 33% to 66%, over 66%). 

 

The need to build different FUFs into a particular project will depend on the project 
features. For example, shortcuts will have a low value for impact on system functionality 
(FUF-Functionality) if we are dealing with a software system that will only be executed from 
time to time, whereas it will have a high value if the application runs continuously and 
performs the same tasks again and again. Similarly, the other FUFs could be designed to 
affect more or fewer parts of the software system. In our study, all usability features 
addressed were specified as being included in the whole system and related to the 

www.intechopen.com



Human-Computer Iteraction 

 

28 

maximum number of functionalities to which they applied. For example, when feedback was 
added, it was considered that the whole breadth of this feature was needed, including 
progress bars, clocks, etc., for all the tasks that have need of this functionality. 
 

Additionally, the FUF-Classes, FUF-Methods and FUF-Interactions criteria will very much 
depend on the type of design. The values output for our systems should not be construed as 
absolute data. On the contrary, they are intended to illustrate to some extent what  effect 
adding the respective FUFs could have on design. 
Readers are referred to (Juristo et al. 2007) for details of this study for one of the above 
applications. Table 2 summarizes the mean values of the metrics derived from incorporating 
the FUFs in the above systems. It is clear from this table that the cancel and undo FUFs have 
the biggest impact on design. Not many more classes (FUF-Classes) are added (as in the 
chosen design a single class is responsible for saving the last state for whatever operations 
are performed, although another equally valid design could have envisaged a separate class 
to save the state for each operation). However, the complexity of the methods (FUF-
Methods-Complexity) that need to be implemented is high, as is the number of interactions 
between the different classes (FUF-Interactions). In the cancel case especially, this feature is 
closely related to all system functionalities (FUF-Functionalities), because the HCI literature 
recommends that easy exit or cancellation should be provided for each and every one of the 
tasks that the user uses the system to do (Tidwell, 99). 
 

Another FUF with a big impact on all system functionality is feedback. Apart from the system 
status feedback discussed in the last section, the HCI literature also recommends that the user 
should receive feedback reporting the progress of the operations when the user is doing long 
tasks (Tidwell, 2005) (Brigthon, 1998) (Coram, 1996) (Welie, 2003), when the tasks are 
irreversible (Brigthon, 1998) (Welie, 2003) and, additionally, every time the user interacts with 
the system (Brighton, 2003). It is this last recommendation especially that leads to the high 
FUF-functionality for this feature, as it means that feedback affects all a software system’s 
non-batch functionalities. 
 

On the other hand, we find that the impact of adding other FUFs, like for example user 
profile, are less costly because they can be easily built into a software system and do not 
interact very much with the other components. A similar thing applies to help. In this case, 
though, despite its low impact on functionality (because this functionality was designed as a 
separate use case, yielding a 5% and therefore low FUF-functionality value), its interaction is 
high, as it can be called from almost any part of the system. 
 

It is noteworthy that no big differences where found among the applications because they 
were similar, i.e. they were all management systems. Note that these same FUFs may have a 
slightly different impact on other software system types, for example, control systems (in 
which FUFs like user input errors prevention/correction or commands aggregation may have a 
bigger impact than shown in Table 2 due to the criticality of the tasks performed) or less 
interactive systems (in which feedback or cancel will have less impact). 
 

In sum, the data in Table 2 confirm that some usability recommendations, in particular the 
ones we have named FUFs, affect the core functionality of a software system. As with any 
other functionality, specific design components will have to be created to build such FUFs 
into a software application. The approach we take is to consider such FUFs as functional 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

29 

requirements and deal with them during the requirements process as any other 
functionality. The rest of the chapter focuses on how to address this proposal. 
 

Summary FUF-
Functionality 

FUF-Classes FUF-
Methods 
Complexity 

FUF-Interactions 
 

Feedback HIGH 90% LOW 27% MEDIUM MEDIUM/HIGH 
66% 

Undo MEDIUM 40% LOW 10% HIGH MEDIUM/HIGH 
66% 

Cancel MEDIUM 95% LOW 8% HIGH MEDIUM/HIGH 
66% 

User Input Errors 
Prevention/Correcti
on 

MEDIUM 36% LOW 11% MEDIUM LOW 6% 

Wizard LOW 7% LOW 10% LOW HIGH 70% 

User Profile LOW 8% MEDIUM 37% MEDIUM LOW 10% 

Help LOW 7% LOW 6% LOW HIGH 68% 

Commands 
aggregation 

LOW (10%) LOW (5.8%) MEDIUM LOW 15% 

Table 2. Mean values for design impact of FUF 

 
4. Limitations of Usability Requirements 
 

The idea of dealing with usability at the requirements phase is not new. Both HCI (Jokela, 
2005) and SE (Swebok, 2004) have considered usability as a non-functional requirement. In 
this context, usability requirements specify user effectiveness, efficiency or satisfaction levels 
that the system should achieve. These specifications are then used as a yardstick at the 
evaluation stage: “A novice user should learn to use the system in less than 10 hours”, or 
“End user satisfaction with the application should be higher than Z on a 1-to-5 scale”. 
Dealing with usability in the shape of non-functional requirements does not provide 
developers with enough information about what kind of artifacts to use to satisfy such 
requirements. 
 

Recent studies have targeted the relationship between usability and functional 
requirements. Cysneiros et al. suggest identifying functional requirements that improve 
particular usability attributes (Cysneiros, 2005). We propose a complementary approach in 
which usability features with major implications for software functionality, FUFs, are 
incorporated as functional requirements. 
 

Usability functionalities could be specified by just stating the respective usability features. 
For example, “the system should provide users with the ability to cancel actions” or “the 
system should provide feedback to the user”. This is actually the level of advice that most 

www.intechopen.com



Human-Computer Iteraction 

 

30 

HCI heuristics provide. However, descriptions like these provide nowhere near enough 
information to satisfactorily specify the feedback functionality, let alone design and 
implement it correctly. 
To illustrate what information is missing let us look at the complexity and diversity of the 
feedback feature. As we will see later, the HCI literature ((Tidwell, 1996)(Welie, 
2003)(Laasko, 2003)(Brighton, 1998)(Coram, 1996)(Benson, 2002)) identifies four types of 
Feedback: Interaction Feedback to inform users that the system has heard their request; 
Progress Feedback for tasks that take some time to finish; System Status Display to inform 
users about any change in the system status, and Warnings to inform users about 
irreversible actions. Additionally, each feedback type has its own peculiarities. For example, 
many details have to be taken into account for a system to provide a satisfactory System 
Status Feedback: what states to report, what information to display for each state; how 
prominent the information should be in each case (e.g., should the application keep control 
of the system while reporting, or should the system let the user work on other tasks during 
status reporting), etc. Therefore, a lot more information than just a description of the 
usability feature must be specified to properly build the whole feedback feature into a 
software system. Developers need to discuss this information with and elicit it from the 
different stakeholders. 
 

Note that the problem of increasing functional requirements completeness is generally 
solved by adding more information to the requirements (Kovitz, 2002)(Benson, 2002). 
However, in this case, neither users nor developers are good sources of the information 
needed to completely specify a usability feature. Users know that they want feedback; what 
they do not know is what kind of feedback can be provided, what is best for each situation, 
and less still what issues need to be detailed to properly describe each feedback type. 
Neither do software engineers have the necessary HCI knowledge to completely specify 
such functional usability requirements since they are not usually trained in HCI skills 
(Kazman et al, 2003). 
 

The HCI literature suggests that HCI experts should join software development teams to 
provide this missing expertise (ISO, 1999)(Mayhew, 1999). However, this solution has 
several drawbacks. The first is that communication difficulties arise between the software 
developer team and HCI experts, as HCI and SE are separate disciplines (Seffah & Metzker, 
2004). They use different vocabulary, notations, software development strategies, 
techniques, etc. Misunderstandings on these points can turn out to be a huge obstacle to 
software development. Another impediment is the cost. Large organizations can afford to 
pay for HCI experts, but many small-to-medium software companies cannot. 

 
4. Generating Usability Elicitation Patterns 
 

Our approach consists of packaging guidelines that empower developers to capture 
functional usability requirements using the information provided by the HCI literature as 
input. We have analyzed this information from a software development point of view and 
have elaborated elicitation and specification guidelines that have been packaged in a pattern 
format. 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

31 

The first task was to analyze the different varieties of usability features identified by HCI 
authors. We denoted these subtypes as usability mechanisms, and gave them a name that is 
indicative of their functionality (see Table 3) 
Then we defined the elicitation and specification guides for the usability mechanisms, 
focusing on the information provided by HCI authors. We analyzed and combined all the 
recommendations on the same mechanism, and then removed redundancies. The resultant 
HCI recommendations cannot be used directly to capture software requirements, but they 
can be studied from a development point of view to generate issues to be discussed with the 
stakeholders to properly specify such usability features. 
 

The outcome of the previous tasks is packaged in what we call a usability elicitation pattern. 
Other authors have already used patterns to reuse requirements knowledge. Patterns that 
capture general expertise to be reused during different requirements activities (elicitation, 
negotiation, documentation, etc.) are to be found in (Hagge, 2005)(Repare, 2005), for 
example. In (Whitenak, 1995), the author proposes twenty patterns to guide the analyst 
through the application of the best techniques and methods for the elicitation process. 
 

Our usability elicitation patterns capitalize upon elicitation know-how so that requirements 
engineers can reuse key usability issues intervening recurrently in different projects. These 
patterns help developers to extract the necessary information to completely specify a 
functional usability feature. 
 

We have developed one usability elicitation pattern for each usability mechanism in 
Pogreška! Izvor reference nije pronađen.3 (second column). They are available at 
http://is.ls.fi.upm.es/research/usability/usability-elicitation-patterns. Table 4 shows an 
example of the elicitation pattern for the System Status Feedback mechanism. 
 

The developer can use the identification part of the pattern to find out the basics of the 
usability mechanism to be addressed. The discussion with the stakeholders starts by 
examining the pattern context section that describes the situations for which this mechanism 
is useful. If the mechanism is not relevant for the application, it will not be used. Otherwise, 
the respective usability functionality will be elicited and specified using the solution part of 
the pattern. 
 
The solution part of the pattern contains two elements: the usability mechanism elicitation guide 
and the usability mechanism specification guide. The usability mechanism elicitation guide 
provides knowledge for eliciting information about the usability mechanism. It lists the 
issues that stakeholders should discuss to properly define how the usability mechanism 
should be considered, alongside the respective HCI rationale (i.e. the HCI recommendation 
used to derive the respective issues). Developers should read and understand the HCI 
rationales in the guide. This will help them to understand why those issues need to be 
discussed with stakeholders. 
 

The elicited usability information can be specified following the pattern specification guide. 
This guide is a prompt for the developer to modify each requirement affected by the 
incorporation of each mechanism.  An example of the application of this usability elicitation 
pattern is given in (Juristo, et al, 2007a) . 

www.intechopen.com



Human-Computer Iteraction 

 

32 

Usability 

Feature 

Usability 

Mechanism 

HCI Authors’ Label Goal 

Feedback System Status Modeless Feedback Area (Coram, 1996) 

Status Display (Tidwell, 1996) 

To inform users about the internal 

status of the system 

 Interaction Interaction Feedback (Brighton, 1998) 

Modeless Feedback Area (Coram, 1996) 

Let Users Know What is Going On 

(Benson, 2002) 

To inform users that the system has 

registered a user interaction, i.e. 

that the system has heard users 

 Warning Think Twice (Brighton, 1998) 

Warning (Welie, 2003) 

To inform users of any action with 

important consequences 

 Long Action 

Feedback 

Progress Indicator (Tidwell, 1996) 

(Tidwell, 2005) 

Show Computer is Thinking (Brighton, 

1998) 

Time to Do Something Else (Brighton, 

1998) 

Progress (Welie, 2003) 

Modeless Feedback Area (Coram, 1996) 

Let Users Know What is Going On 

(Benson, 2002) 

To inform users that the system is 

processing an action that will take 

some time to complete 

Undo 

Cancel 

Global Undo Multi-Level Undo (Tidwell, 1996) 

(Tidwell, 2005) 

Undo(Welie, 2003) 

Global Undo (Laasko, 2003) 

Allow Undo (Brighton, 1998) 

Go Back One Step (Tidwell, 1996) 

To undo system actions at several 

levels 

 Object-

Specific Undo 

Object-Specific Undo (Laasko, 2003) To undo several actions on an 

object 

 Abort 

Operation 

Go Back One Step (Tidwell, 1996) 

Emergency Exit (Brighton, 1998) 

Cancellability (Tidwell, 2005)� 

To cancel the execution of an 

action or the whole application 

 Go Back Go Back to a Safe Place (Tidwell, 1996) 

Go Back One Step (Tidwell, 1996) 

To go back to a particular state in a 

command execution sequence 

User Input 

Error 

Prevention/ 

Correction 

Structured 

Text Entry 

Forms, Structured Text Entry (Tidwell, 

1996) 

Structured Format (Tidwell, 2005) 

Structured Text Entry (Brighton, 1998) 

To help prevent the user from 

making data input errors 

Wizard Step-by-Step 

Execution 

 

Step-by-Step (Tidwell, 1996) 

Wizard (Welie, 2003) (Tidwell, 2005)� 

To help users to do tasks that 

require different steps with user 

input and correct such input 

User Profile Preferences User Preferences (Tidwell, 1996) 

Preferences (Welie, 2003) 

To record each user's options for 

using system functions 

 Personal 

Object Space 

Personal Object Space (Tidwell, 1996) To record each user's options for 

using the system interface. 

 Favorites Favorites (Welie, 2003) 

Bookmarks (Tidwell, 1996) 

To record certain places of interest 

for the user 

Help Multilevel 

Help 

Multilevel Help (Tidwell, 2005) To provide different help levels for 

different users 

Command 

Aggregation 

Command 

Aggregation 

Composed Command (Tidwell, 1996) 

Macros (Tidwell, 2005) 

To express possible actions to be 

taken with the software through 

commands that can be built from 

smaller parts. 

Table 3. Usability mechanisms for which usability elicitation and specification guides have 
been developed 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

33 

IDENTIFICATION 
Name:  System Status Feedback 

Family:  Feedback 

Alias:  Status Display  
Modeling Feedback Area (Coram, 1996) 

PROBLEM 
Which information needs to be elicited and specified for the application to provide users with status 

information. 

CONTEXT 
When changes that are important to the user occur or when failures that are important to the 
user occur, for example: during application execution; because there are not enough system 
resources; because external resources are not working properly. 
Examples of status feedback can be found on status bars in windows applications; train, bus or 
airline schedule systems; VCR displays; etc. 

SOLUTION 

Usability Mechanism Elicitation Guide: 

HCI Rationale Issue to discuss with stakeholders 
1. HCI experts argue that the user wants to 
be notified when a change of status occurs 
(Tidwell, 1996) 

Changes in the system status can be triggered by user-
requested or other actions or when there is a problem with an 
external resource or another system resource. 
1.1 Does the user need the system to provide notification of 
system statuses? If so, which ones? 
1.2 Does the user need the system to provide notification of 
system failures (they represent any operation that the 
system is unable to complete, but they are not failures caused 
by incorrect entries by the user)? If so, which ones? 
1.3 Does the user want the system to provide notification if 
there are not enough resources to execute the ongoing 
commands? If so, which resources? 
1.4 Does the user want the system to provide notification if 
there is a problem with an external resource or device with 
which the system interacts? If so, which ones? 

2. Well-designed displays of information 
to be shown should be chosen. They need 
to be unobtrusive if the information is not 
critically important, but obtrusive if 
something critical happens. Displays 
should be arranged to emphasize the 
important things, de-emphasize the trivial, 
not hide or obscure anything, and prevent 
one piece of information from  

2.1. Which information will be shown to the user? 
2.2. Which of this information will have to be displayed 
obtrusively because it is related to a critical situation? 
Represented by an indicator in the main display area that 
prevents the user from continuing until the obtrusive 
information is closed. 

2.3. Which of this information will have to be  

being confused with another. They should 
never be re-arranged, unless users do so 
themselves. Attention should be drawn to 
important information with bright colors, 
blinking or motion, sound or all three – 
but a technique appropriate to the actual 
importance of the situation to the user 
should be used (Tidwell, 1996). 

highlighted because it is related to an important but non-
critical situation? Using different colors and sound or 
motion, sizes, etc. 
2.4. Which of this information will be simply displayed in the 
status area? For example, providing some indicator. 
Notice that for each piece of status information to be 
displayed according to its importance, the range will be 
from obtrusive indicators (e.g., a window in the main 
display area which prevents the user from continuing 
until it has been closed), through highlighting (with  

www.intechopen.com



Human-Computer Iteraction 

 

34 

HCI Rationale Issue to discuss with stakeholders 

being confused with another. They should 
never be re-arranged, unless users do so 
themselves. Attention should be drawn to 
important information with bright colors, 
blinking or motion, sound or all three – but a 
technique appropriate to the actual 
importance of the situation to the user 
should be used (Tidwell, 1996). 

highlighted because it is related to an important but non-
critical situation? Using different colors and sound or 
motion, sizes, etc. 
2.4. Which of this information will be simply displayed in the 
status area? For example, providing some indicator. 
Notice that for each piece of status information to be 
displayed according to its importance, the range will be 
from obtrusive indicators (e.g., a window in the main 
display area which prevents the user from continuing 
until it has been closed), through highlighting (with 
different colors, sounds, motions or sizes) to the least 
striking indicators (like a status-identifying icon placed 
in the system status area). Note that during the 
requirements elicitation process, the discussion of the 
exact response can be left until interface design time, 
but the importance of the different situations about 
which status information is to be provided and, 
therefore, which type of indicator (obtrusive, 
highlighted or standard) is to be provided does need to 
be discussed at this stage. 

Table 4. (a) System status feedback usability elicitation pattern 

 
SOLUTION (Cont.) 

Usability Mechanism Elicitation Guide (Cont.): 

HCI Rationale (Cont.) Issue to discuss with 
stakeholders (Cont.) 

3. As regards the location of the feedback indicator, HCI 
literature mentions that users want one place where they know 
they can easily find this status information (Coram, 1996). On 
the other hand, aside from the spot on the screen where users 
work, users are most likely to see feedback in the centre or at 
the top of the screen, and are least likely to notice it at the 
bottom edge. The standard practice of putting information 
about changes in state on a status line at the bottom of a 
window is particularly unfortunate, especially if the style guide 
calls for lightweight type on a grey background (Constantine, 
1998). The positioning of an item within the status display 
should be used to good effect. Remember that people born into 
a European or American culture tend to read left-to-right, top-
to-bottom, and that something in the upper left corner will be 
looked at most often (Tidwell, 1996). 

 
 
 

3.1. Do people from different 
cultures use the system? If so, 
the system needs to present the 
system status information in the 
proper way (according to the 
user’s culture). So, ask about the 
user’s reading culture and 
customs. 
3.2. Which is the best place to 
locate the feedback information 
for each situation? 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

35 

Usability Mechanism Specification Guide: 

The following information will need to be instantiated in the requirements document. 
- The system statuses that shall be reported are X, XI, XII. The information to be shown in the status 

area is..... The highlighted information is … The obtrusive information is…. 
- The software system will need to provide feedback about failures I, II, III occurring in tasks A, B, 

C, respectively. The information related to failures I, II, etc…. must be shown in status area…. The 
information related to failures III, IV, etc , must be shown in highlighted format. The information 
related to failures V, VI, etc , must be shown in obtrusive format. 

- The software system provides feedback about resources D, E, F when failures IV, I and VI, 
respectively, occur. The information to be presented about those resources is O, P, Q.  The 
information related to failures I, II, etc….must be shown in the status area..... The information 
related to failures III, IV, etc , must be shown in highlighted format. The information related to 
failures V, VI, etc , must be shown in obtrusive format. 

- The software system will need to provide feedback about the external resources G, J, K, when 
failures VII, VIII and IX, respectively, occur. The information to be presented about those resources 
is R, S, T. The information related to failures I, II, etc….must be shown in the status area..... The 
information related to failures III, IV, etc., must be shown in highlighted format. The information 
related to failures V, VI, etc., must be shown in obtrusive format. 

RELATED PATTERNS1: 

Table 4. (b) System status feedback usability elicitation pattern (cont.)     

 
5. Preliminary Evaluation of Usability Elicitation Patterns 
 

The potential benefits of the usability elicitation patterns have been evaluated at different 
levels. 
 

We studied how useful the patterns were for building the usability mechanisms into a 
software system. We expected pattern use to lead to an improvement on the original 
situation where developers did not have any compiled or systematic usability information. 
We worked with SE Master students. In particular, we worked with five groups of three 
students. Each group was given a different software requirement specification document 
(for a theatre tickets sale system, for a PC storage and assembly system, for a temping 
agency job offers management system, for a car dealer vehicle reservation and sale system, 
and for a travel agency bookings and sale system). All the systems were real applications, 

                                                 
1 Related patterns refer to other usability elicitation patterns whose contexts are related to the one 

under study and could also be considered in the same application. In this case, no related patterns 

have being identified. However, readers are referred to other patterns, like Long Action Feedback or 

Abort Operation, at the above-mentioned web site. 

 

www.intechopen.com



Human-Computer Iteraction 

 

36 

and each one was randomly allocated to a group. Each of the three students in the group 
was asked to add the functionality derived from the functional usability features listed in 
section 4 to the original SRS independently and to build the respective software system. The 
procedure was as follows: 

 
- We gave one of the students the usability elicitation patterns discussed in this 

paper. This student used the pattern content to elicit the corresponding usability 
functionality. 

 
- Another student was given reduced patterns. See Appendix, including the reduced 

pattern for System Status Feedback, to get a taste of the difference between the 
reduced and full patterns. This short pattern is just a compilation of information 
from the HCI literature about the usability mechanisms. We have not elaborated 
this information from a development perspective, i.e. the reduced patterns do not 
include the “Issues to be discussed with stakeholders” column in Table 3. 
The idea behind using the reduced patterns was to confirm whether our processing 
of the HCI information resulting in the formulation of specific questions was useful 
for eliciting the functionality related to the mechanisms or whether developers are 
able to extract such details just from the HCI literature. 

- Finally, the third student was given just the definitions of the usability features 
according to the usability heuristics found in the HCI literature and was 
encouraged to take information from other sources to expand this description. 

 

Students of each group were randomly allocated the usability information they were to use 
(completed patterns, reduced patterns, no patterns) to prevent student characteristics from 
possibly biasing the final result. 
 

Final system usability was analyzed differently to determine how useful the elicitation 
patterns were for building more usable software. We ran what the HCI literature defines as 
usability evaluations carried out by users and heuristic evaluations done by usability experts 
(Constantine, 1998) (Shneiderman, 1999)(Nielsen, 1993). 

 
6.1. Users’ usability evaluation 

The usability evaluations conducted by users are based on usability tests in which the users 
state their opinion about the system. We used an adaptation of the QUIS usability test (QUIS, 
2007). Each test question is scored on a scale of 1 (lowest usability) to 5 (highest usability). 
The final usability score is the mean of the responses to each question. We worked with three 
representative users for each system. Each user evaluated the three versions of each 
application (the one developed with the full patterns, with the reduced patterns and with no 
patterns) in different order. 
 

The mean usability values for the five applications are 4.4, 3.2 and 2.5, with standard 
deviations of 0.3, 0.2, and 0.4, respectively. The Kruskal-Wallis test confirmed that there was 
a statistically significant difference among these usability means (p-value<0.01; chi-square = 
36.625). The Tamhane test (for unequal variances) showed that the usability value for the 
systems developed using the full patterns was statistically greater than the score achieved 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

37 

using the reduced patterns, and both were greater than the usability value attained without 
any pattern (in all cases p-value<0.01). Therefore, we were able to confirm that the users 
perceived the usability of the systems developed with the full usability elicitation patterns to 
be higher. 

 

With the aim of identifying the reasons that led users to assess the usability of the different 
types of applications differently, we had an expert in HCI run a heuristic evaluation. 

 
6.2. Usability Expert Evaluation 
A paid independent HCI expert ran the usability evaluation of the applications developed 
by our MSc students. The expert analyzed the applications focusing on how these systems 
provided the usability features listed in Table 2. 
 

Table 5 shows the results of the heuristic evaluation. It indicates the extent to which the 
evaluated software incorporates the functionality related to each usability mechanism. In the 
case of feedback, for example, the developers that used the respective elicitation patterns 
included, on average, 94% of the functionalities associated with this mechanism. Developers 
that used the reduced patterns incorporated 47% of the respective functionalities. Finally, 
developers that used no pattern included only 25%. 
 

Applying the Kruskal-Wallis test to the expert results for each usability feature we found 
that there were statistically significant differences among the three groups of data (see last 
column of Table 5 with p-value<0.01 in all cases). Again the Tamhane test showed that all 
the usability features were built into the systems developed using the full patterns better 
than they were into systems developed using the reduced patterns, and both provided more 
usability details than systems developed without patterns (with feature definitions only). 
This explains why users perceived differences in the usability of the systems. 
 

 Full 
usability 
elicitation 
patterns 

Reduced 
patterns 

No 
pattern 

Kruskal-
Wallis(chi-
square; p-
value) 

Feedback 94% 47% 25% 12,658; 
0,002* 

Undo/Cancel 90% 66% 43% 12,774; 
0,002* 

User Profile 95% 80% 65% 12,597; 
0,002* 

Users Input 
Errors 
Prevention/ 
Correction 

97% 85% 72% 12,727; 
0,002* 

www.intechopen.com



Human-Computer Iteraction 

 

38 

 Full 
usability 
elicitation 
patterns 

Reduced 
patterns 

No 
pattern 

Kruskal-
Wallis(chi-
square; p-
value) 

Wizard 100% 89% 71% 13,109: 
0,001* 

Help 100% 81% 74% 13,109; 
0,001* 

* Statistically significant at 99% of confidence 
Table 5. Mean percentage of functonality added for each usability mechanism by each 
information type 

 
Note that the functionality added using the full elicitation patterns is less than 100% for the 
most complex patterns like Feedback and Undo. These differences are due to the fact that 
the complexity of these features calls for a very thorough analysis of the specifications to 
properly identify what parts of the system are affected. The final result then depends on 
how detailed and thorough the analyst is. 
 

Although bringing an HCI expert into systems development could possibly have led to 
100% of all the usability details being identified, elicitation pattern use is an efficient 
alternative because of its cost. Also, developers should become more acquainted with the 
patterns as they apply them, and efficiency in use should gradually improve. 
 

Although these are interim data and further checks need to be run, the usability evaluations 
performed have revealed trends that need to be formally tested with a larger group of users 
and applications. The users’ evaluation has shown that users perceive usability to be better 
in the versions of the application developed with the full usability elicitation patterns. On 
the other hand, the expert evaluation found no significant weaknesses in the usability 
functionality provided in the applications built using such patterns, whereas it detected 
sizeable gaps in applications built with reduced patterns or without any pattern at all. 
These findings give us some confidence in the soundness of the usability elicitation patterns 
as a knowledge repository that is useful in the process of asking the right questions and 
capturing precise usability requirements for developing software without an HCI expert on 
the development team. 

 
7. Conclusions 
 

The goal of this chapter was first to provide some data about the impact of including 
particular usability recommendations in a software system. The data gathered show that 
building certain usability components into a software system really does entail significant 
changes to the software system design. Therefore, it is important to move usability issues 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

39 

forward to the early development phases, i.e. to requirements time (like any other 
functionality). However, this is not a straightforward objective primarily due to the fact that 
development stakeholders are not acquainted with HCI. 
 
We propose a possible solution to overcome these snags. To do this, we have developed 
specific guidelines that lead software practitioners through the elicitation and specification 
process. This approach supports face-to-face communication among the different 
stakeholders during requirements elicitation to cut down ambiguous and implicit usability 
details as early as possible. These guidelines help developers to determine whether and how 
a usability feature applies to a particular system, leading to benefits for the usability of the 
final system. 
 
Evidently, the use of usability patterns and any other artifact for improving software system 
usability calls for a lot of user involvement throughout the development process. This is a 
premise in the usability literature that is also necessary in this case. If this condition cannot 
be satisfied, the final system is unlikely to be usable. In our opinion, then, a balance has to be 
struck between user availability, time and cost constraints, on the one hand, and usability 
results, on the other, at the beginning of development. 

 
8. References 
 

Andrés, A., Bosch, J., Charalampos, A., Chatley, R., Ferre, X., Folmer, E., Juristo, N., Magee, 
J, Menegos, S., Moreno, A. 2002. Usability Attributes Affected by Software 
Architecture. Deliverable. 2. STATUS project. Available at: 
http://www.ls.fi.upm.es/status 

Barbacci M, Ellison R., Lattanze A., Stafford J.A, Weinstock C.B., Wood W.G. 2003. Quality 
Attribute Workshop, 3rd ed. CMU/SEI-2003-TR-016, Pittsburgh, Software 
Engineering Institute, Carnegie Mellon University, USA. 

Bass, L. and John, B.E. 2003. Linking usability to software architecture patterns through 
general scenarios. Journal of Systems and Software, Volume 66, Issue 3, pp. 187-197 

Bass, L., et al. 1999. Architecture-Based Development. CMU/SEI-1999-TR-007. SEI/CMU. 
Bass, L., John, B., Kates, J. 2001. Achieving Usability Through Software Architecture. 

Technical Report. CMU/SEI-2001-TR-005 
Battey, J. 1999. IBM´s redesign results in a kinder, simpler web site. Available at: 

http://www.infoworld.com/cgi-
bin/displayStat.pl?/pageone/opinions/hotsites/hotextr990419.htm . 

C. Benson, A. Elman, S. Nickell, C. Robertson. GNOME Human Interface Guidelines. 
http://developer.gnome.org/projects/gup/hig/1.0/index.html 

 
Bias, R.G., Mayhew D.J. 2005. Cost-Justifying Usability. An Update for the Internet Age. 

Elsevier. 
Black, J. 2002. Usability is next to profitability. BusinessWeek Online. Available at: 

http://www.businessweek.com/technology/content/dec2002/tc2002124_2181.ht
m 

Boehm B., et al. 1978. Characteristics of Software Quality. North Holland, New York. 

www.intechopen.com



Human-Computer Iteraction 

 

40 

Bosch, J.,  Lundberg, L. 2003. Software architecture – Engineering quality attributes. Journal 
of Systems and Software, Volume 66, Issue 3, pp. 183-186. 

Brighton. 2003. Usability Pattern Collection. 
http://www.cmis.brighton.ac.uk/research/patterns/ 

Constantine, L., Lockwood, L. 1999. Software for Use. A Practical Guide to the Models and 
Methods of Usage-Centered Design. Addison-Wesley. 

F. Buschmann, R. Meuneir, H. Rohnert, P. Sommerland, M. Stal. Pattern-Oriented Software 
Architecture, A System of Patterns. J. Wiley and Sons, 1996 

Coram, T., Lee, L. 1996. Experiences: A Pattern Language for User Interface Design. 
http://www.maplefish.com/todd/papers/experiences/Experiences.html 

Chidamber, S., Kemerer, C. 1994. A Metrics Suite for Object Oriented Design. IEEE 
Transactions on Software Engineering, June, pp. 476-492. 

Donahue G. M. 2001. Usability and the Bottom Line. IEEE Software, vol. 16, n. 1. pp 31-37. 
Eskenazi, E.M., Fioukov, A.V., Hammer, D.K., Obbink, H., 2002. Performance Prediction for 

Software Architectures, in Proceedings of PROGRESS 2002 workshop, 
Netherlands. 

Ferre, X. ,Juristo, N., Moreno, A. 2006. Integration of HCI Practices into Software 
Engineering Development Processes: Pending Issues. Encyclopedia of Human-
Computer Interaction. pp. 422-428. C. Ghaoui (ed.).  Idea Group Inc. 

Fetcke, T., Abran, A., Nguyen, T., 1997. Mapping the OO - Jacobson. Approach into 
Function Point Analysis. Software. 
Technology of Object-Oriented Languages and Systems. Proceedings of  TOOLS 
1997. 

Folmer, E., Group, J., Bosch, J. 2004.. Architecting for usability: a survey. Journal of Systems 
and Software, vol 70. pp. 61-78. 

Griffith, J. 2002. Online transactions rise after bank redesigns for usability. The Business 
Journal. 2002. Available at: 
http://www.bizjournals.com/twincities/stories/2002/12/09/focus3.html 

L. Hagge. K. Lappe. “Sharing Requirements Engineering Experience Using Patterns”. IEEE 
Software. Jan-Feb 2005, pp. 24-31. 

Heckel, P. 1991. The elements of friendly software design. (2nd ed.) CA: Sybex Inc. 
Hix, D., Hartson, H. R.. 1993. Developing User Interfaces: Ensuring Usability Through 

Product and Process. John. Wiley & Sons, New York. 
IBM, 2005. Cost Justifying Ease of Use. Available at: http://www-

3.ibm.com/ibm/easy/eou_ext.nsf/Publish/23 (current 18 May. 2005). 
IEEE. 1998. IEEE Std 1061: Standard for a Software Quality Metrics Methodology. 
ISO. 1998. ISO 9241-11, 98: Ergonomic Requirements for Office work with Visual Display 

Terminals. Part 11: Guidance on Usability. ISO. 
ISO. 2000. ISO 18529, 00: Human-Centered Lifecyle Process Descriptions. ISO. 
ISO/IEC, 1991. ISO 9126: Information Technology - Software quality characteristics and 

metrics. 
ISO/IEC. 1999, ISO14598-1, 99: Software Product Evaluation: General Overview. ISO/IEC. 
ISO Std 13407: Human-Centred Design Processes for Interactive Systems. ISO, 1999.1 
T. Jokela. “Guiding Designers to the World of Usability: Determining Usability 

Requirements through Teamwork”. In Human-Centered Software Engineering. A. 
Seffah, J. Gulliksen and M. Desmarais, Kluwer 2005 

www.intechopen.com



Moving usability forward to the beginning of the software development process 

 

41 

Juristo, N.,  Moreno A.M., Sánchez-Segura, M. Guidelines for Eliciting Usability 
Functionalities (pp. 744-758). IEEE Transactions on Software Engineering. 
November 2007, vol 33 (11). 

Juristo N., Moreno A.M., Sánchez-Segura M. Analysing the Impact of Usability on Software 
Design (pp:1506 – 1516). Journal of System and Software. Vol. 80(9) September 
2007. 

R. Kazman, J. Gunaratne, B. Jerome. “Why Can't Software Engineers and HCI Practitioners 
Work Together?” In Human-Computer Interaction Theory and Practice. C. 
Stephanidis, L. Erlbaum (Eds.). Elsevier, 2003. 

Klein, M., et al. 1999. Attribute-Based Architectural Styles. CMU/SEI-99-TR-022. SEI/CMU. 
B. Kovitz. “Ambiguity and What to Do about It”. IEEE Joint International Conference on 

Requirements Engineering 2002 (Key talk). 
Laasko, S. A. 2003. User Interface Designing Patterns. 

http://www.cs.helsinki.fi/u/salaakso/patterns/index_tree.html Visited October 
2004. 

Mayhew, D.J. 1999. The Usability Engineering Lifecycle. Morgan Kaufmann. 
McKay, E.N. 1999. Developing User Interfaces for Microsoft Windows, Microsoft Press 
Nielsen, J. 1993. Usability Engineering, AP Professional, Boston, Mass. 
Perry, D., Wolf, A. 1992. Foundations for the Study of Software Architecture. ACM Software 

Engineering Notes, vol 17 (4), pp. 40-52. 
Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T. 1994. Human-Computer 

Interaction. Addison Wesley. 
QUISTM  Questionnaire For User Interaction Satisfaction. http://lap.umd.edu/QUIS/ 
REPARE http://repare.desy.de/Repare/RepareController. 
Rubinstein, R, Hersh, H. 1984. The Human Factor. Digital Press, Bedford, MA. 
Scapin, D. L., Bastien, J.M. C. 1997. Ergonomic criteria for evaluating the ergonomic quality 

of interactive systems, Behaviour & Information Technology, vol 16, no 4/5, 
pp.220-231. 

Seffah, A., Metzker E. 2004. The Obstacles and Myths of Usability and Software 
Engineering. Communications of the ACM, Vol. 47(12), pp. 71-76. 

Shneiderman, B. 1998. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. (3rd ed. ed.). Menlo Park, CA: Addison Wesley. 

SWEBOK. Guide to the Software Engineering Body of Knowledge. 2004 Version. 
http://www.swebok.org 

Thibodeau, P. 2002. Users Begin to Demand Software Usability Tests. ComputerWorld. 
Available at: 
http://www.computerworld.com/softwaretopics/software/story/0,10801,76154,0
0.html 

Tidwell, J. 2005. Designing Interfaces. Patterns for Effective Interaction Design. O´Reilliy, 
USA. 

Tidwell, J. 1999. Common Ground: A Pattern Language for Human-Computer Interface 
Design. http://www.mit.edu/%7Ejtidwell/interaction_patterns.html 

Trenner L., et al. 1998. The Politics of Usability. Springer, London, UK. 
Welie M. 2003. Amsterdam Collection of Patterns in User Interface Design. 

http://www.welie.com/.ž 

www.intechopen.com



Human-Computer Iteraction 

 

42 

B.G. Whitenak.. “RAPPeL: A Requirements-Analysis Pattern Language for Object Oriented 
Development”. In Pattern Languages of Program Design, J.O. Coplien and D.C. 
Schmidt (eds.), Addison-Wesley, 1995. 

 
 

 

 
 

 

www.intechopen.com



Human Computer Interaction

Edited by Ioannis Pavlidis

ISBN 978-953-7619-19-0

Hard cover, 522 pages

Publisher InTech

Published online 01, October, 2008

Published in print edition October, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book includes 23 chapters introducing basic research, advanced developments and applications. The

book covers topics such us modeling and practical realization of robotic control for different applications,

researching of the problems of stability and robustness, automation in algorithm and program developments

with application in speech signal processing and linguistic research, system's applied control, computations,

and control theory application in mechanics and electronics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Natalia Juristo, Ana Moreno and Maria-Isabel Sanchez-Segura (2008). Moving Usability Forward to the

Beginning of the Software Development Process, Human Computer Interaction, Ioannis Pavlidis (Ed.), ISBN:

978-953-7619-19-0, InTech, Available from:

http://www.intechopen.com/books/human_computer_interaction/moving_usability_forward_to_the_beginning_

of_the_software_development_process



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


