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1. Introduction 
 

One of the basic challenges in the design of large systems is how to reduce time spent to 
attain the optimal point of the objective function of the design process. The design process 
itself includes optimization of the structure of the future system, but since this stage is 
related to an artificial intelligence problem still unresolved, in the general case it is 
performed “by hand”, and thus is absent in the CAD systems. In other words, the 
traditional approach to computer-aided design consists of two main parts: a model of the 
system set up in the form of a network described by some algebraic or integro-differential 
equations, and the parametric optimization procedure – to seek the optimum of the 
objective function corresponding to the sought characteristics of the system under design.  
There are some powerful methods that reduce the necessary time for the circuit analysis. 
Because a matrix of the large-scale circuit is a very sparse, the special sparse matrix 
techniques are used successfully for this purpose (Osterby & Zlatev, 1983). Other approach 
to reduce the amount of computational required for the linear and nonlinear equations is 
based on the decomposition techniques. The partitioning of a circuit matrix into bordered-
block diagonal form can be done by branches tearing as in (Wu, 1976), or by nodes tearing 
as in (Sangiovanni-Vincentelli et al., 1977) and jointly with direct solution algorithms gives 
the solution of the problem. The extension of the direct solution methods can be obtained by 
hierarchical decomposition and macromodel representation (Rabat et al., 1985). Other 
approach for achieving decomposition at the nonlinear level consists on a special iteration 
techniques and has been realized for example in (Ruehli et al., 1982; George, 1984) for the 
iterated timing analysis and circuit simulation. Optimization technique that is used for the 
circuit optimization and design exert a very strong influence on the total necessary 
computer time too. The numerical methods are developed both for the unconstrained and 
for the constrained optimization (Fletcher, 1980; Gill et al., 1981). The practical aspects of use 
of these methods are developed for VLSI circuit design, yield, timing and area optimization  
(Brayton et al., 1981; Ruehli, 1987; Massara, 1991). It is possible to suppose that the circuit 
analysis methods and the optimization procedures will be improved later on. Meanwhile, it 
is possible to reformulate the total design problem and generalize it to obtain a set of 
different design strategies. It is clear that a finite but a large number of different strategies 
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include more possibilities for the selection of one or several design strategies that are time-
optimal or quasi-time-optimal ones. This is especially right if we have infinite number of the 
different design strategies. 
The time required for optimization grows rapidly as the system complexity increases. The 
known measures of reduction of the time for system analysis (in the traditional approach) 
turned out to be insufficiently advanced. 
By convention, the generally accepted ideas of network design will be called the traditional 
strategy of design, meaning that the method of analysis is based on Kirchhoff’s laws. A new 
formulation of the network optimization problem without strict adherence to Kirchhoff’s 
laws was suggested in (Kashirskiy, 1976; Kashirskiy & Trokhimenko, 1979). This process 
was called the generalized optimization and used the idea of ignoring Kirchhoff’s laws for 
the whole network or some part of it. In this case, apart from minimization of the previously 
defined objective function, we also had to minimize the residual of the equation system 
describing the network model. In the extreme case, when the residual function included all 
equations of the network mathematical model, this idea was practically implemented in two 
CAD systems (Rizzoli et al., 1990; Ochotta et al., 1996). The authors of these works asserted 
that overall time of design was reduced considerably. This latter idea may be termed the 
modified traditional design strategy. As distinct from the traditional approach proper, 
including network model analysis at every step of the optimization procedure, the modified 
traditional strategy of deign may be defined as a strategy which does not  include at all the 
model analysis in the process of optimization. 
Another formulation of the network design problem based on the idea proposed in 
(Zemliak, 2001) can be introduced by generalization and formulation of this idea to obtain a 
set of different design strategies. Here we may pass to the problem of selecting, among this 
set, a strategy optimal in some sense – for instance, from the running-time viewpoint. Then 
the optimal strategy of design may be defined as a strategy permitting us to reach the 
optimal point of the objective function in minimal time. The main issue in this definition is 
what conditions have to be fulfilled to construct the algorithm providing for the optimal 
time. The answer to this question will make it possible to reduce substantially the computer 
time necessary for the design. 

 
2. Problem formulation 
 

By the traditional design strategy we mean the problem of design of an analogue network 
with a given topology based on the process of unconditional minimization of an objective 

function ( )C X  in a space KR , where K is the number of independent variables. 

Simultaneously, we are seeking the solution to a system of M dependent on some 
components of the vector X. It is assumed that the physical model can be described by a 
system of nonlinear algebraic equation: 

 

( )g Xj = 0, j M= 1 2, , . . . ,     (1) 

 
The vector X RN∈  is broken into two parts: ( )X X X= ′ ′′, , where the vector ′ ∈X RK  

is the vector of independent variables, the vector  ′′ ∈X RM ,  is the vector of dependent 
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variables and N K M= + . This partition into independent and dependent variables is a 
matter of convention, because any parameter may be considered independent or dependent. 
Due to such definition, some parameters of the design process, for example, frequency, 
temperature, etc., are beyond our consideration. We can easily include them in the general 
design procedure, but here we presume them to be constant and include them the 
coefficients of system (1).  

In the general case, the process of minimization of the objective function ( )C X  in the space 
KR of independent variables for the two-step procedure can be described by the following 

vector equation: 
 

           ′ = ′ + ⋅+X X t Hs s

s

s1
     (2) 

 
where s is the iterations number, t s  is an iteration parameter, t Rs ∈

1
 , and H is a function 

establishing the direction of lowering the objective function ( )C X . The constraints for 

independent variables can be bypassed easily, which is shown in the examples given in the 
second part of this work. 
A particular feature of the design process, at least for electronic network applications, is that 
we are not obliged to fulfill conditions (1) at every step of the optimization procedure. It is 
sufficient to satisfy these conditions at the final point of the design process. In this event the 

vector function  H  depends on the objective function ( )C X  and on some additional 

penalty function ( )ϕ X , whose structure includes all the equations of system (1) and can 

be defined, for instance, as: 
  

           ( ) ( )∑
=

=
M

j

s

j

s XgX
1

21

ε
ϕ      (3) 

 
In this case we define the design process as an unconditional optimization problem: 
 

         X X t Hs s

s

s+ = + ⋅1
     (4) 

 
in the space RN  without any additional system of constraints, but for a new objective 

function  ( )F X , which can be defined, for instance, as an additive function:  

 

       ( ) ( ) ( )F X C X X= + ϕ      (5) 

   
Then at the point of minimum of the objective function ( )F X  we also have the minimum 

of the objective function ( )C X , and system (1) is satisfied at the final point of the 

optimization process. This method can be called the modified traditional method of design: 

it reproduces a different strategy of design and a different trajectory in the space RN . 
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On the other hand, we can generalize the idea of using of an additional penalty function, if 
the penalty function is formed only from a part of system (1) while the remaining part is 
regarded as a system of constraints. In this event the penalty function includes, for example, 

only Z first terms of ( ) ( )ϕ
ε

X g Xs

i

s

i

Z

=
=
∑1

2

1

, where [ ]Z M∈ 0,  and other M - Z  

equations form, instead of (1), a modified system  make  up  one  modification  of  the 
system (1): 
 

              ( )g Xj = 0,     j Z Z M= + +1 2, , ... ,     (6) 

 
Obviously, every new value of the parameter Z generates a new design strategy and a new 
trajectory. This notion can be easily extended to a situation when the penalty function 

( )ϕ X  includes  Z  arbitrary equations of system (1). The overall number of different 

design strategies in this case equals 2M . All these strategies exist within the same 

optimization procedure. The optimization procedure is realized in the space RK Z+
. The 

number of dependent parameters M  grows together with complexity of the system while 
the number of different design strategies grows by  exponential law. These strategies are 
characterized by different numbers of operations and different overall running time. 
Accordingly, we may formulate the problem of searching for the design strategy optimal in 
time, i.e., having a minimum running time of the processor. 
Let us estimate the number of operations for several design strategies. The traditional design 
strategy includes two systems of equations. To be specific, assume that the optimization 
procedure is based on a gradient method and can be defined by a system of ordinary 
differential equations for independent variables in the form 
 

    ( )dx

dt
b
x
C X

i

i

= − ⋅
δ
δ

, i K= 1 2, , . . . ,      (7) 

 

where b  is the iterative parameter. The operator 
δ
δx i

 means that 

 

       ( )
( ) ( )δ

δ
ϕ

∂ϕ
∂

∂ϕ
∂

∂
∂x

X
X

x

X

x

x

xi i pp K

K M
p

i

= +
= +

+

∑
1

. 

 
Nevertheless, the use of the gradient method does not mean loss of generality of the results 
obtained. It is necessary only that we represent the optimization process as a system of 
ordinary differential equations for independent variables. The mathematical model of an 
electronic system in this case is a system of constraints and is described by equation (1). The 
number of operations for solution of system (1) by Newton’s method will be 

( )[ ]S M M P MP⋅ + + +3 2 1 , where P  is the average number of operations for 
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calculation of ( )g Xj , and S  is the number of iterations in  Newton’s method for resolving 

system (1). The number of operations in a single step of integration of system (7)  by 

Newton’s method is ( ) ( ) ( )[ ]K C K K S M M P MP+ ⋅ + + + ⋅ ⋅ + + +1 1 13 2 , where C is 

the number of operations for calculation of the objective function. The overall number of 
operations for resolving the problem (1) and (7) by Newton’s method, i.e., 
 

      ( ) ( )[ ]{ }{ }N L K K C S M M P MP1 1

3 21 1= + + + ⋅ + + +    (8) 

 
where L1  is the overall number of steps in the optimization algorithm.  

The modified traditional strategy of design is fully defined by the equation system of the 
optimization procedure without any additional limitations. In this case the number of 
independent variables equals K+M. The fundamental system has the form 
 

            ( )dx

dt
b
x
F X

i

i

= − ⋅
δ
δ

, i K M= +1 2, , . . . ,     (9) 

 

where  F(X)  is the generalized objective function: ( ) ( ) ( )F X C X g Xj
j

M

= +
=
∑1

2

1ε
.  

The overall number of operations for resolving (9) is 
 

       ( ) ( )[ ]{ }N L K M K M C P M2 2 1 1= + + + + ⋅ + +                 (10) 

 
A more general strategy of design can be defined as a strategy having a variable number of 
independent parameters equal to  K+Z. Here we use two systems of equations, (6) and (11): 
 

           ( )dx

dt
b

x
F X

i

i

= − ⋅
δ
δ

,   i K Z= +1 2, , . . . ,                 (11) 

 
where ( ) ( ) ( )XgXCXF

Z

j

j∑
=

+=
1

21

ε
. 

Then the overall number of operations 3N  for resolution of systems (6) and (11) can be 

evaluated as: 
 

   ( ) ( ) ( ) ( ) ( ) ( ) ]}}1[1{1{
23

33 PZMPZMZMSZPCZKZKLN −++−+−⋅+++++++=   (12) 
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This formula turns into (8) if Z=0, and into (10) when Z=M. Analysis of the number of 

operations 3N  as a function of the parameter Z permits us to find the conditions for defining 

the strategy characterized by a minimum running time. For linear system (1), in the Newton’s 
method the number of iterations S=1, and the traditional approach is optimal, but for a 
nonlinear system this is not the case. Also, we assume that the iterations number L3

 and the 

number of operations C for objective function calculation depend on the number of 

independent parameters as ( )L L K Z
n

3 0= ⋅ + , ( )C C K Z
m= ⋅ +0

. This assumption may be 

considered trivial, but the main difficulty consists in indeterminacy of the powers n and m. 
On the other hand, the number of iterations S in Newton’s method does not depend, to a first 

approximation, on the order of system (12), and represents some constant S0 . In practice, to 

obtain the accuracy δ = −− −10 1010 12
, this constant value is within 4 - 5. The average 

number of operations P for calculation of the function ( )g Xj  is invariant to Z in the case of 

analysis of an electronic system. This is true, because the conductance matrix of an electronic 

network is sparse. We assume that this number of operations is constant and equal to 
0P . 

Then expression (12) for calculation of the function ( )ZN3  can be reduced to the form 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) )]})1((

]1[1{

00

23

0

0003

PZMPZMZMS

PZZKCZKZKZKLZN
mn

−++−+−⋅+

+++⋅++++⋅+⋅=
   (13) 

 
In conformity with the fundamental definition of optimal design strategy, we can find this 

strategy from analysis of this formula. We have to find the optimum point optZ , in which 

the function ( )ZN 3
 has a minimum value. If the case of optZ =0, the traditional strategy 

is optimal. If optZ =M, the modified traditional strategy is optimum. If optZ  is confined 

within (0, M) interval, then some intermediate strategy is optimal. The derivative of the 

function ( )ZN3  defined by equation (13) is defined by the formula: 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) )]})1(23(1)1(

[)1(211{)]}

)1(()1([1{

00

2

00

2

3

00000

0

23

000

1

03

PPZMZMZKPZMPZM

ZMSPZKMKCZKLPZM

PZMZMSPZMKCZKZKZKnLZN

mn

mn

++−+−++−−++−+

−+++++++++−+

+−+−+++++++++=′ −

 

 
To ensure that the optimal point lies within the [0, M] interval, it is necessary and sufficient to 

fulfill the following two conditions for the derivative at the interval boundaries: ( )′ <N3 0 0 

and  ( )′ >N M3 0. It is expedient to introduce an additional parameter q
M

K
= . Then the 

value of derivative ( )03N ′ , under the conditions m=1 and M K, →∞, can be calculated by 
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the formula ( ) ( )[ ]′ = + −+N L K M S n qn

3 0

1 2

00 1 3 . We have to impose a special 

condition for the parameter   n   to meet the inequality ( )′ <N3 0 0. This condition is set by 

the formula n
q

< −
3

1. In the majority of systems, 1≤q . In this case, for the parameter n 

the condition is set in the form   n < +2 ε . On the other hand, the derivative  ( )′N Z3  in the 

point Z=M, under the condition M K, →∞ has the form: 

 

( ) ( ) ( )
( )( )

′ = + + +
+ + + +

+
−

⎡

⎣
⎢

⎤

⎦
⎥+

N M L K M C n
K M nM P

K M
S P

n

3 0

1

0

0

0 01
1 2 1

. 

 

Provided that n=2, the inequality ( )′ >N M3 0 provides the condition 

( )3
1 4

1
1 00 0 0 0C

q

q
P S P+

+
+

+ − >  . When q → 1  and  C P0 0≈  ,  this formula turns into 

( )P S0 055 25 0. .− + > . If n=1, then the condition ( )P S0 04 2 0− + >  is valid. The 

condition ( )′ >N M3 0 can be fulfilled if the number of iterations S0  equals 4 or 5. 

Consequently, in this case the optimal point optZ  lies within [0, M] interval. 

 
3. Problem formulation by control theory approach 
 

The most general approach to the problem of construction of the optimal design algorithm 
can be worked out based on the optimal control theory. We can define the design strategy 
with the aid of equations (4) and (6) with the variable parameter Z during the whole process 
of optimization. It means that we may change the number of independent variables and the 
number of terms in the penalty function formula at every point of optimization procedure. 
Also, it is worth introducing into our consideration a vector of control functions 

( )muuuU ,...,, 21= , where u j ∈Ω  and { }Ω= 0 1; . In other words, every control function 

u j  can take the value 0 or 1. These functions have the meaning of control functions of the 

design process and generalize this process. Particularly, the meaning of the control function 

u j  is as follows: the equation with the ordinal number  j  belongs to system (6), while the 

term ( )g Xj

2
 is eliminated from the right-hand part of formula (3) if u j = 0 , and vice versa - 

the j-th equation is excluded from system (6) and the respective term appears in the right-

hand part of formula (3) if u j = 1. Then the system model equations and the type of the 

penalty function can be rewritten in the form:  
 

            ( ) ( )1 0− =u g Xj j ,    j M= 1 2, , . . . ,     (14) 
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    ( ) ( )∑
=

⋅=
M

j

jj XguX
1

21

ε
ϕ      (15) 

All the control functions u j  are functions of a current point of the design process. In this case 

the directed motion vector ( )H f X U= ,  is the function of the vectors X and U. The 

number of various design strategies generated within a single optimization procedure is 
virtually unlimited. Among all these strategies, there are one or several strategies, which are 
optimal and accomplish all the goals of design in a minimum possible time. Hence, the 
problem of search for the optimal strategy is now formulated as a typical problem of 
minimization of some functional in the optimal control theory. The functional value 
represents the actual running time of the processor. The main difficulty of such definition 

consists in unknown optimal dependencies of the control functions u j . However, if we have 

an optimal vector of control functions, the optimal design strategy will be realized with the 
aid of this vector. 
The idea of formulation of optimal design of a system from the viewpoint of time as a 
problem of minimization of a functional invoked from the optimal control theory, does not 
depend on some specific realization of the optimization algorithm, and can be embedded into 
an arbitrary optimization procedure. All this has been shown in (Zemliak, 2001), with 
approbation of three different algorithms, which are typical representatives of three major 
groups of optimization methods: the gradient method, the Newton’s method and the 
Davidon-Fletcher-Powell method (DFP). 
Now the process of network optimization is formulated as a controllable dynamic process. 
We have possibility to control the design process by means of the control vector U variation. 
In the above formulation, every possible design strategy, defined by the vector U, has its own 
trajectory in the space of variables. Obviously, the comparison of different trajectories by the 
time of moving over them, or by some other parameters, is consistent only in situation when 
these trajectories have identical initial and final points. On the other hand, the objective 

function ( )C X  has a number of local minima, since design problems are nonlinear in 

principle, even if the design concerns a physically linear system. In this case, for consistent 
comparison of different strategies and their trajectories, it is desirable to impose additional 
conditions of single-valuedness for attainment of one and the same point in the space 
parameters. At the same time, the problem of ambiguity is not a peculiar feature of the new 
formulation of the design methodology. We face this problem every time when starting the 
design process from different initial points. In future, both in theoretical reasoning and in 
practical examples, we shall assume that the problem of single-valuedness of the final point is 
overcome by imposing some additional conditions on the variables. It should be specially 
stressed that this problem is essential only in comparison of different strategies and their 
trajectories, while in actual design we do not need any additional conditions except for 
feasibility requirements. 
The process of system design, formulated in the terms of the control theory, can be described 
either in discrete or in continuous form. The continuous form is traditional for the optimal 
control theory. To represent the problem in the continuous form, we assume that numerical 
equation (2) corresponding to the optimization process can be replaced by a differential 
equation: 
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    ( )dX

dt
f X U= ,     (16) 

where the right-hand part ( )UXf ,  is the vector of directed motion of  H  and depends on 

the generalized objective function ( )UXF , .  

 
What this means is that the design process is formulated as the problem of integration of 

system (16) with additional conditions (14). The structure of the function ( )UXf ,  can be 

defined as follows: 
 

( )( ) ( )UXFUXFf ,´, −=     (17) 

 
- for the gradient method, 

 

( )( ) ( ){ } ( )UXFUXFUXFf ,´,´´,
1 ⋅−= −

  (17´) 

 
- for the Newton method, where ( )UXF ,´´  is a matrix of second derivatives, 

 

( )( ) ( ) ( )UXFUXBUXFf ,´,, ⋅−=                (17´´) 

 
- for the DFP method, where  B(X,U) is a symmetric, positive definite matrix of the DFP 
algorithm. 
 
In this case the problem of construction of the optimal, in terms of running time, design 
algorithm is formulated as a typical problem of functional minimization of the control theory 
for differential equation system (16). The right-hand part of (16) depends on the particular 
method of optimization, for instance, (17), (17´), or (17´´), and has an objective function 
defined by formulas (5), (15) and constraints (14). An additional difficulty is that the right-
hand parts of system (16) are piecewise continuous functions rather than strictly continuous. 
Such a problem for system (16) with piecewise continuous control functions can be resolved 
most effectively based on the known maximum principle (Pontryagin et al., 1962), but 
straightforward application of this principle for nonlinear problems of large dimensionality is 
highly problematical. This problem can be resolved based on provisions developed in the 
process of approximate solution of control theory problems (Fedorenko, 1969; Pytlak, 1999). 
The fundamental system of equations of design process for the three algorithms of 
optimization is given below. System (16), which can be rewritten in component-wise form as 

 

      ( )UXf
dt

dx
i

i ,= , Ni ,...,2,1=     (18) 

      
in combination with (14) defines the design process. 
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In the case of gradient method, the right-hand part of (18), i.e., 

( ) ( )UXF
x

UXf
i

i ,,
δ
δ

−= , i K= 1 2, , ... ,    (19) 

 

( ) ( ) ( ) ( ){ }Xx
t

u
UXF

x
uUXf i

s

i

s

Ki

i

Kii η
δ
δ

+−
−

+−= −
−

1
,, ,    i K K N= + +1 2, ,...,  (19´) 

 

where ( ) ( ) ( )∑
=

+=
M

j

jj XguXCUXF
1

21
,

ε
. The function ( )Xiη , written in  an  implicit 

form, defines the current value of the variable 
1+s

ix  ( )( )Xx i

s

i η=+1
 obtained after 

resolving the system (14), and the control variables u j  are the functions of “current time”. 

In the case of Newton’s method or DFP, equations (19) and (19´) undergo some 
modifications: 

 

( ) ( )UXF
x

bUXf
k

N

k

iki ,,
1 δ

δ∑
=

−= ,  i K= 1 2, , ... ,  

 

( ) ( ) ( ) ( ){ }Xx
t

u
UXF

x
buUXf i

s

i

s

Ki

k

N

k

ikKii η
δ
δ

+−
−

+−= −

=
− ∑ 1

,,
1

,  i K K N= + +1 2, ,...,  

 

where ikb  is an element of the inverse Hessian ( ){ } 1
,´´

−
UXF  for Newton’s method, or an 

element of the matrix  B(X,U) in DFP method. 
In the latter case the matrix B(X,U) is defined by expressions 

( )
( )

( )( )
( ) s

s

Ts

Ts

s

s

s

sTs

Tss

ss

QBQ

QBQB

QR

RR
BB −+=+1

, where 0B  is the unitary matrix, 

,...1,0=s , while 
sss XXR −= +1

 and ( ) ( )sssss UXFUXFQ ,´,´ 1 −= +
. 

 
4. Numerical results 
 

Numerical results in conformity with the new approach to formulation of the design process 
are presented below. They point to the prospects arising in construction of the optimal (in 
terms of minimum running time) algorithm. The primary emphasis is placed on 
demonstration of new opportunities appearing due to application of the new methodology. 
The number of nodes in the networks taken for illustrations in this part varies from 3 to 5. We 

deal with the problem of dc analysis, where the objective function ( )XC  is defined as the 

sum of squared differences between the preset and current values of nodal voltages for some 
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nodes, supplemented with additional inequalities for some elements of the network. The 
calculations presented below correspond to the different optimization methods: the gradient 
method, the Newton’s method, and the Davidon-Fletcher-Powell method (DFP). 
The basic system of equations (16) was integrated by the fourth-order Runge-Kutta method. 
The integration step was variable and optimal for every new strategy to minimize the 
processor running time. The processor operation time indicated in the calculations 
corresponds to a computer with the processor Pentium 4, 2.2 GHz. 
Fig. 1 shows the equivalent circuit of the network to be designed. The circuit has four 

independent variables (K=4), conductances y y y y1 2 3 4, , , , three dependent variables 

(M=3), nodal voltages V V V1 2 3, , , and two nonlinear elements. 

 

 
Fig. 1. Topology of three-node network 

 

The nonlinear elements are defined as follows: ( )2

21111 VVbay nnn −+= , 

( )2

32222 VVbay nnn −+= . The nonlinearity parameters are 121 == nn bb . The 

components of the vector X are defined by formulas x y1

2

1= , x y2

2

2= , x y3

2

3= , 

x y4

2

4= , x V5 1= , x V6 2= , x V7 3= . Defining the components 4321 ,,, xxxx  by the 

above formulas automatically results in positive magnitudes of the conductances, which 
eliminates the issue of positive definiteness for each resistance and conductance and make it 
possible to carry out the optimization in the whole space of magnitudes of these variables 
without any limitations. 
 
In this case we have a system of seven equations playing the role of the optimization 
algorithm, while the network model can be expressed by three nonlinear equations: 
 

                                    ( )UXF
xdt

dx

i

i ,
δ
δ

−= ,  i = 1,2,3,4                 (20)                         
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( ) ( ) ( )g X x x a b x x a b x x xn n n n1 1

2

2

2

1 1 6

2

5 1 1 6

2

6 1

2 0≡ + + + − + − =  

( ) ( ) ( ) ( ) 07

2

7226

2

722

2

611

2

35

2

6112 =+−++++++−≡ xxbaxxbaxbaxxxbaXg nnnnnnnn   (21) 

( ) ( ) ( )g X a b x x x a b x xn n n n3 2 2 7

2

6 4

2

2 2 7

2

7 0≡ − + + + + =  

  
The system (21) can be transformed into the following one: 

 

( ) ( ) 0,,,,,,1 7654321 =− xxxxxxxgu jj  j = 1,2,3. 

 
The results of analysis of the full structural basis of design strategies, arising in this case at a 
fixed value of the controlling vector U, are given in Table 1. 
 

Table 1. Complete structural basis of design strategies for three- nodes passive network 

 
Here we have 8 different strategies. The strategy corresponding to the control vector (0, 0, 0) 
is a traditional design strategy (TDS); the strategy with the control vector (1, 1, 1) is a 
modified traditional design strategy (MTDS) while the rest are some new intermediate 
strategies. Strategy 5 is optimal for the gradient method, strategy 2 is optimal for Newton’s 
method and strategy 4 is optimal for the DFP method. Nevertheless, these strategies are not 
optimal in the whole. The optimal strategies for all methods have been found due to 
application of a special procedure – by variation of the control vector. The respective results 
are presented in Table 2. 

Table 2. Characteristics of optimal design strategy for three optimization methods 

 
The optimal strategy has two points of “switching” for gradient and Newton’s methods and 
one “switching” point for DFP optimization methods. The gain in time for the optimal 

N Control functions Gradient method Newton method DFP method

vector Iterations Total design Iterations Total design Iterations Total design

 U (u1, u2, u3 ) number time (sec) number time (sec) number time (sec)

1          ( 0 0 0 ) 59 0.229 8 0.1331 12 0.0853

2          ( 0 0 1 ) 167 0.273 6 0.0637 17 0.0552

3          ( 0 1 0 ) 174 0.291 11 0.1193 15 0.0503

4          ( 0 1 1 ) 185 0.154 11 0.0758 22 0.0421

5          ( 1 0 0 ) 63 0.122 8 0.0986 22 0.0839

6          ( 1 0 1 ) 198 0.245 9 0.0905 19 0.0499

7          ( 1 1 0 ) 228 0.258 15 0.1382 18 0.0442

8          ( 1 1 1 ) 293 0.176 17 0.0853 33 0.0504

N Method Optimal control Iterations Switching Total

functions vector number points design

   U (u1, u2, u3 )  time (sec)

1 Gradient method (101); (000); (111) 81        3;   7 0.0636

2 Newton method (111); (000); (011) 6        1;   2 0.0492

3 DFP method (101); (011) 15 2 0.0301

www.intechopen.com



Network Optimization as a Controllable Dynamic Process                                                                    435 

strategy, as compared with the traditional one, is 3.6 times for the gradient method, 2.7 for 
Newton’s method and 2.83 times for the DFP method. 
In the second case we analyze a network (Fig. 2) with five independent variables (K=5), 

conductances 54321 ,,,, yyyyy , four dependent variables (M=4), nodal voltages 

4321 ,,, VVVV , and two nonlinear elements. 

 

  
Fig. 2. Topology of four-node network 

 
The nonlinear elements are defined by formulas ( )y a b V Vn n n1 1 1 1 2

2

= + ⋅ − , 

( )y a b V Vn n n2 2 2 2 3

2

= + ⋅ − . System (16) includes nine equations, and system’s model includes 

four equations. The results of analysis of the full set of strategies are presented in Table 3. 
 

Table 3. Complete set of design strategies for four- nodes passive network 

N Control functions Gradient method Newton method DFP method

vector Iterations Total design Iterations Total design Iterations Total design

 U (u1,u2,u3,u4 ) number time (sec) number time (sec) number time (sec)

1       ( 0 0 0 0 ) 114 0.819 10 0.366 15 0.187

2       ( 0 0 0 1 ) 87 0.388 8 0.251 26 0.207

3       ( 0 0 1 0 ) 51 0.269 10 0.361 11 0.103

4       ( 0 0 1 1 ) 77 0.176 8 0.171 29 0.129

5       ( 0 1 0 0 ) 100 0.526 7 0.251 12 0.112

6       ( 0 1 0 1 ) 217 0.486 9 0.189 14 0.061

7       ( 0 1 1 0 ) 166 0.338 14 0.273 19 0.076

8       ( 0 1 1 1 ) 402 0.596 11 0.182 34 0.104

9       ( 1 0 0 0 ) 111 0.586 5 0.181 11 0.103

10       ( 1 0 0 1 ) 73 0.166 7 0.149 14 0.062

11       ( 1 0 1 0 ) 115 0.256 8 0.167 16 0.104

12       ( 1 0 1 1 ) 135 0.225 10 0.184 20 0.068

13       ( 1 1 0 0 ) 519 1.055 13 0.253 14 0.056

14       ( 1 1 0 1 ) 595 0.882 10 0.166 18 0.055

15       ( 1 1 1 0 ) 159 0.169 15 0.185 20 0.046

16       ( 1 1 1 1 ) 330 0.276 24 0.234 51 0.101
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There are 16 different design strategies for this case. Of interest is the fact that among all the 
diversity of the design strategies, for the gradient method we have thirteen strategies,  for 
Newton’s method – 15, and for DFP – 14 strategies, whose processor time is less than that of 
traditional strategy 1 with the vector of controlling functions such as (0, 0, 0, 0). Among the 
whole stock of the strategies, the optimal one is strategy 10 for the gradient method, which 
provides a gain in time by a factor of 4.93 – compared to the traditional strategy, strategy 10 
for Newton’s method with a gain by 2.46, and strategy 14 – for the DFP method, with a gain 
by 4.06 times. 
The optimal or, to be more exact, quasi-optimal strategies have been found by using a 
special procedure, whose application results are given in Table 4.  
 

Table 4. Characteristics of quasi-optimal design strategy for three optimization methods 

 
Here we have two switching point for the gradient method and one – for Newton’s method 
and DFP method. These quasi-optimal strategies provide a gain in time by a factor of 12.7 
for the gradient method, 2.89 for Newton’s method, and 4.6 for DFP method.  
In the next case we analyzed an electronic network of an amplifier in two transistors (Fig. 3). 
The design process was performed for dc conditions. The transistors are represented by the 
steady-state Ebers-Moll model embedded in the SPICE system (Massobrio & Antognetti, 
1993). The objective function was defined as the sum of squared differences between present 
and current values of voltages across transistor’s junctions. 
 

 
Fig. 3. Circuit topology for two-stage transistor amplifier 

 

N Method Optimal control Iterations Switching Total

functions vector number points design

   U (u1, u2, u3, u4 )  time (sec)

1 Gradient method (1011); (0000); (1110) 53        3;   4 0.0644

2 Newton method (1010); (1001) 6 3 0.1265

3 DFP method (0111); (1110) 17 2 0.0405
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For this example we establish five independent variables 54321 ,,,, yyyyy  (K=5), and five 

dependent variables 
54321 ,,,, VVVVV  (M=5). In this case the optimization algorithm is 

based on a system of ten equations, and the network model is defined by five 
nonlinear equations. The full set of design strategies includes 32 different strategies. Table 5 
contains the results of analysis of the TDS, and some other strategies among those requiring 
less time for implementation than the traditional one. Strategy 17 is optimal for gradient 
method and strategy 13 is optimal for DFP method. It makes possible to obtain a gain in 
time, as compared to the traditional one, by 19.7 times for the gradient method, and by 26.2 
times for the DFP method. However, as in the previous examples, these strategies are not 
“optimal-in-whole”. The results of quasi-optimal strategies are listed in Table 6. 

Table 5. Some design strategies for two-stage transistor amplifier 
 

Table 6. Characteristics of quasi-optimal design strategy for two-stage transistor amplifier 

 

N Control functions Gradient method DFP method

vector Iterations Total design Iterations Total design

 U (u1,u2,u3,u4,u5) number time (sec) number time (sec)

1     ( 0 0 0 0 0 ) 979 20.466 274 7.361

2     ( 0 0 1 0 0 ) 889 15.396 196 6.381

3     ( 0 0 1 0 1 ) 704 9.571 57 1.474

4     ( 0 0 1 1 0 ) 989 13.455 251 5.818

5     ( 0 0 1 1 1 ) 512 5.405 154 2.986

6     ( 0 1 1 0 0 ) 859 11.861 218 5.631

7     ( 0 1 1 0 1 ) 420 4.503 125 2.522

8     ( 0 1 1 1 0 ) 751 8.011 129 2.591

9     ( 0 1 1 1 1 ) 528 4.228 90 1.371

10     ( 1 0 1 0 0 ) 780 10.745 199 2.956

11     ( 1 0 1 0 1 ) 249 1.734 62 0.462

12     ( 1 0 1 1 0 ) 1253 13.297 135 1.545

13     ( 1 0 1 1 1 ) 386 2.161 30 0.281

14     ( 1 1 1 0 0 ) 1683 17.702 105 1.187

15     ( 1 1 1 0 1 ) 263 1.471 56 1.769

16     ( 1 1 1 1 0 ) 1191 9.459 77 0.656

17     ( 1 1 1 1 1 ) 637 1.039 65 0.296

N Method Optimal control Iterations Switching Total Computer

functions vector number points design time gain

  U (u1, u2, u3, u4, u5 )  time (sec)  

1 Gradient method  (11101); (11111) 220 11 0.403 50.8

2 DFP method  (10111); (11111) 37 11 0.157 46.9
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The optimal strategy in both cases has a single switching point. The gain in time, as 
compared to the traditional strategy, in this case is 50.8 times for the gradient method and 
46.9 times for DFP method. 
The results of analyzed passive circuits for M from 1 to 5 are presented in Fig. 4 for three 
different optimization procedures. 

 

 
Fig. 4. Computer time gain for passive networks 

 
This is the computer time gain of the optimum design strategy with respect to the 
traditional design strategy as the function of the dependent parameters' number M. The 
traditional design approach is not time-optimal and the time gain increases very fast with 
the  M  increasing. 
The results of the active networks optimization for different number of transistor cells NTR 
are shown in Fig. 5.  
 

 
 
Fig. 5. Computer time gain for active networks for different number of transistor cells 

 
This result confirms the rule that the total computer time gain of the time-optimal design 
strategy increases when the complexity of the network increases. The obtained results 
permit us to make the following current conclusions: 
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1) In practice, the traditional design strategy is never optimal in terms of time. 
 2) The new design strategies form a basis, which can be used for generation of a design 
strategy optimal by the running time criterion.  
 3) The potential gain in time, attained with the aid of optimal strategy, grows as the size 
and complexity of the electronic network increase.  

 
5. Acceleration effect 
 

We can obtain the possible gain in the computation time for quasi-optimal strategy. 
However, this expected gain can become reality only if we manage to generate the 
algorithm making it possible to determine the optimal trajectory of the design process. Thus 
the problem of investigation of major intrinsic properties and restrictions of the optimal 
trajectory of design is the principal task to be resolved in creation of the optimal algorithm. 
Based on the concepts suggested, it is possible to analyze new effects (Zemliak, 2002) arising 
in the process of network design by the control theory methods. The inquiries started from a 
simplest nonlinear circuit with a single node and two parameters (N=2), which has no 
practical applications but serves a good illustration for comprehension of the process in the 
network design based on the new methodology. After that an N-dimensional problem will 
be considered. All the examples included demonstrate some phenomenon, which may be 
called the effect of acceleration of design process. The latter arises because of different 
behavior of design trajectories having different control functions. The circuit diagram of the 
nonlinear electronic network with a single node is shown in Fig. 1. 
 

 
 

Fig. 6. Simplest nonlinear electronic network 

 
Assume that the element 

nR  is described by a nonlinear function having the form 

2

110 VbrR nn ⋅+= . For this example we defined only two parameters: resistance 
1R  as 

independent parameter (K=1), and nodal voltage 
1V as dependent parameter (M=1). In this 

example, as well as in the subsequent ones, we also assume that all the resistances are 
positive-valued. For automatically meeting the latter requirement the following definition of 

the vector X can be used: X x x= ( , )1 2  where 1

2

1 Rx ≡  and x V2 1≡ .  

The structural basis of various design strategies, defined for the control vector U in our case 

consists of two strategies – at u1=0 and u1=1. The first one is the TDS while the second is the 
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MTDS. The design trajectories for the initial point ( )1,10 =X , are depicted in Fig. 7a: the 

solid line – for TDS, and the dashed one – for MTDS. The number of iterations and the 
processor time in the first case are equal to  44  and  0.09210-3 s and in the second case – 78 
and 0.14910-3 s. As can be seen, the traditional strategy is preferable. An insignificant 
reduction of the designing time (5%) can be obtained if in the process of motion the control 

function u1 changes form 0 to 1 at step 18. A different result is observed in the event of 

selecting a negative value of initial point for the variable 2x , for instance, -1, i.e., 

( )1,10 −=X . The trajectories corresponding to this situation are depicted in Fig. 7b. 

 

  
    (а)    (b) 
 
Fig. 7. Trajectories for TDS (solid) and for MTDS (dash) for: (a) X in  =(1,1), (b) X in =(1,-1) 

 
The trajectory corresponding to TDS remains almost unchanged. In the first case we have a 
jump downward from the initial point to the line corresponding to the matched solution. In 
the second case we have the jump to the same line, but upward. Since the jump occurs 
instantaneously, the time in both cases is the same. A somewhat different situation is 

observed for MTDS trajectory. At the negative initial value of the variable 2x  ( 2x = -1) the 

first part of the trajectory lies in the unfeasible (negative in terms of the variable 2x ) half-

space, while the second part – in the positive one. It is pertinent to note that the motion of 
the current point over the first part of the trajectory from the point S to point R occurs 
rapidly enough, and then slows down. The total time in this event is larger than at the 
positive initial approximation. We emphasize that the trajectories of both different strategies 
approach the final point F of the design process from opposite sides. There opens a 

possibility for accelerating the process by changing the control function u1 from 1 to 0 in the 

C, which represents the projection of the final point F on the trajectory corresponding to 
MTDS. In this case the optimal strategy has two parts. The first one, described by the curve 

SC, corresponds to u1=1, and MTDS lies in the physically unreal space. In the point C the 
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value of the control function u1 takes the zero value, and we make a jump to the final point 

F or close to it, which depends on the step of integration and on prescribed accuracy. The 

second part of the trajectory, starting in the point C and corresponding to u1=0, and TDS 

either degenerates into a jump, so that we have a single step in addition to the first part of 
the trajectory, or into several (few in number) additional steps corresponding to TDS. The 

number of iterations for our example, corresponding to u1=1, is equal to 9, plus a single step 

(a jump) corresponding to u1=0. The time for this optimal trajectory is 0.019410-3 s, which 

means acceleration of the process by a factor of 4.7. The effect of acceleration can be also 
observed for more complex examples. However, in this case the trajectories lie in the N-
dimensional space, and we must analyze various projections of N-dimensional curves. Some 
different passive and active nonlinear networks were investigated to observe an additional 
acceleration effect. The potential computer time gain of the optimum design strategy with 
an additional acceleration as the function of the transistor cell number  NTR  is  presented  in  
Fig. 8 for two different optimization procedures (gradient and DFP methods).  
 

 
Fig. 8. Computer time gain for active networks with acceleration effect for different number 
of transistor cells. 1-Gradient method, 2-DFP method 

 
Fig. 8 shows that the time gain for three-stage transistor amplifier increase till 500-600 due to 
the acceleration effect. 
The analysis of acceleration effect shows that this effect appears with special initial 
conditions. For instance for the network in Fig. 6 this effect exists when the initial point has a 

negative value of the coordinate x2 , and the value of this coordinate itself, corresponding to 

the position under the special line - separatrix, are the sufficient conditions for obtaining the 
acceleration effect. A more detailed analysis shows that in reality these conditions are not 
necessary. Fig. 9 shows the phase portrait of design process, corresponding to MTDS for the 

network in Fig. 6, but for all possible values of the coordinate x2 .  
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Fig. 9. Design trajectories for MTDS and separatrix for one-node network 

 
The portrait includes two types of separatrix. The first one is separatrix AFB separating the 
trajectories approaching the final point from the left and from the right. The second type 
separatrix CTFB divides the phase space in two other subspaces. The points of the subspace 
surrounded by this separatrix do not give trajectories permitting to realize the acceleration 
effect. Conversely, the points lying outside the separatrix correspond to trajectories able to 
produce the acceleration effect. The jump to the final point can be performed from below as 
well as from above the separatrix CTFB along the extension of the line TF. These geometric 
conditions are necessary and sufficient for existence of the acceleration effect. 
The examples given below refer to design of a transistorized amplifier in one and two 
transistors presented in Fig. 3. The design of the single- and two-stage amplifiers has been 
performed separately. In the case of the single-stage amplifier, there are three independent 

variables 321 ,, yyy  (K=3), and three dependent ones 321 ,, VVV  (M=3). The vector X 

includes six components: 1

2

1 yx = , 2

2

2 yx = , 3

2

3 yx = , 14 Vx = , 25 Vx = , 36 Vx = . 

For the two-stage amplifier, the vector X contains 10 components. Fig. 10 shows two-
dimensional projections of phase portraits of the design process for MTDS in both cases: a, b 
– for the single stage, and c, d – for the two-stage amplifier. Fig. 10a,b illustrate behavior of 

the trajectories on the plane 63 xx −  at initial values 
0

ix =1,0,  i =1,2,3 (case a) and at initial 

values 
0

ix =2,0 (case b). We can see a pronounced difference in behavior of phase trajectories 

for passive and active networks. 
 

  
(a) (b)  
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          (c)               (d) 

Fig. 10. Family of curves that correspond to MTDS and separatrix for: (a), (b) one-stage;  
(c), (d) two-stage amplifier 

 
Projections of the separatrix SL1 and separatrix SL2 are clearly expressed in the case of 

0

ix =1,0, which is indicative of the presence or absence of the trajectories offer the possibility 

of the “jump” into the final point of the design process. Of interest is the fact that an increase 
in network complexity results in expansion of the domain of existence of acceleration effect, 
which can be seen in Fig 10c for the two-stage amplifier. Here we analyze the behavior of 

projections of trajectories on the plane 105 xx −  at 
0

ix =2,0, i =1,2,…,5. The zone confined by 

the separatrix, where the acceleration effect is absent, becomes narrower for the two-stage 

amplifier. An increase in initial values of originally independent variables
0

ix  up to 3,0,  i 

=1,2,…,5 for the two-stage amplifier (Fig. 10d) results in disappearance of separatrix 
projections – as in the case of the single-stage network. Based on analysis of the above 
examples we come to the conclusion that complication of electronic network structure and 
an increase  in initial values of originally independent variables expands the domain of 
existence of the acceleration effect of design process. 
 
The optimal choice of the initial point of the design process permits to realize the 
acceleration effect with a larger probability. Analysis of trajectories for different design 
strategies shows that the separatrix concept is useful for comprehension and determination 
of necessary and sufficient conditions of existence of the design acceleration effect. The 
separatrix divides the whole phase space of design into a domain where we can achieve the 
acceleration effect, and a domain in which this effect does not exist. The first domain may be 
used for constructing the optimal design trajectory. Selection of the initial point of design 
process outside the domain encircled by separatrix constitutes the necessary and sufficient 
conditions for existence of the acceleration effect. In the general case, a separatrix is a hyper 
surface having an intricate structure. However, the real situation is simplified in the most 
important case, corresponding to active nonlinear networks, because of narrowing the area 
inside the separatrix, or its complete disappearance – at the initial values of the originally 
independent variables large enough. It means that the acceleration effect can be realized 
almost in any case for the networks of large complexity. 
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6. Stability analysis 
 

Basic concepts of a new methodology in analogue networks optimization in terms of the 
control theory were stated in previous sections. It was shown that the new approach 
potentially allows to significantly decreasing the processor time used to design the circuit. 
This quality appears due to a new possibility of controlling the design process by 
redistributing computational burden between the circuit’s analysis and the procedure of 
parametric optimization. It may be considered to be a proven fact that traditional design 
strategy (TDS) including the circuit’s analysis at every step of its design is not optimal with 
respect to time. More over the benefit in time used to design the circuit for some optimal or 
more precisely quasi-optimal strategy compared to TDS increases with increasing size and 
complexity of the designed circuit. This optimal strategy and corresponding design’s 
trajectory were obtained using special search procedure and serve only as a proof existing 
strategies which are much more optimal than TDS. However, it is clear that the problem lies 
in the ability to move along an optimal trajectory of the circuit’s design process from the 
very beginning of designing the circuit. Only in this case it is possible to obtain the 
mentioned potentially tremendous advantage in time, which corresponds to the optimal 
design strategy. During the building the optimal strategy and its corresponding trajectory at 
the present moment it is necessary to analyze their most significant characteristics. The 
study of the optimal trajectory’s qualitative characteristics and their differences from those 
of the other trajectories appears to be the only possible way to solve the problem. 
The discovery of an effect expecting additional acceleration of the design process and 
exploration of conditions determining this effect’s existence lead to increased time 
advantage and serve as an initial point of quasi-optimal design strategy building. The 
analysis of this effect allowed to state three most significant moments: 1) to obtain the 
acceleration effect the initial point of the design process should be chosen outside the 
domain limited with a special hypersurface (separatrix), 2) the acceleration effect appears 
during a transition from a trajectory corresponding to a modified traditional design strategy 
(MTDS) to the trajectory which corresponds to TDS and from any trajectory similar to MTDS 
to any trajectory similar to the trajectory of TDS, 3) the most significant element of the 
acceleration effect is an exact position of the switch point corresponding to a transition from 
one strategy to another. 
To obtain an optimal sequence of switching points during the design process it is necessary 
to select a special criterion, which depends on the internal properties of the design strategy. 
The problem of searching for the optimal with respect to time design strategy deals with a 
more general problem of convergence and stability of each trajectory. On the basis of 
experiment, the design time for each strategy determines by properties of convergence and 
stability of corresponding trajectory. One of the common approaches of analysis of dynamic 
systems stability is based on the direct Lyapunov method (Barbashin, 1967; Rouche et al., 
1977). We consider that the time design algorithm is a dynamic controlled process. In this 
case, the main control aim is determined as minimization problem of transient time of this 
process. As result, the analysis of stability and characteristics of transient process (process of 
designing is one of these) for each trajectory are possible on the basis of the direct Lyapunov 
method. Let’s introduce Lyapunov function of process of designing. It will be used for 
analysis of properties and structure of optimal algorithm and for searching of optimal 
switch point positions of control vector particularly. 
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There is a certain freedom of Lyapunov function choice as the latter has more than one form. 
Let’s denote the Lyapunov function of process of designing (1)–(5) in form: 
 

           ( ) ( )∑ −=
i

ii axXV
2

                 (22) 

where ia  is a stationary value of coordinate ix . The set of all coefficients ia  is the main 

result of process of designing as the minimum of target function ( )XC  is achieved at these 

values of coefficients, i.e. the aim of designing is succeeded. It is clear, that these coefficients 

are accurately known only at the end of designing. The other variables iii axy −=  could 

be determined instead of ix    variables. In this case equation (5) takes the form: 

 

    ( ) ∑=
i

iyYV 2
                  (23) 

Taking into account the new variables iy , the process of designing (1)–(5) remains the same 

form. However, equation (23) satisfies all conditions of Lyapunov function definition. 
Indeed, this function is piecewise continuous function having piecewise continuous first 
partial derivatives. In addition, three main properties of function (23) V(Y)>0, 2) V(0)=0, and 

3) ( ) ∞→YV  for ∞→Y ) are presented. In this case we obtain the possibility to 

analyze the stability of equilibrium position (point Y=0) by Lyapunov theorem. On other 

hand, the stability of point ( )Naaaa ,...,, 21=  analyzes on basis of (22). It is clear, both of 

these problems are identical. The point ( )Naaaa ,...,, 21=  can be defined only at the end 

of the process of designing that is inconvenience of equation (22). As result, we could 
analyze the stability of various designing strategies by the equation (22) if the problem’s 
solution (i.e. point a) was determined already in another way. Moreover, the possibility to 
control the stability of process during optimization procedure is of interest. In this case we 
have to determine another form of Lyapunov function which would be irrespective of final 
stationary point a. Let’s define Lyapunov function in the form: 
 

          ( ) ( )[ ]rUXFUXV ,, =                   (24) 

 

               ( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

i ix

UXF
UXV

2

,
,                           (25) 

 
where  F( X,U )  is a  generalize  target  function of  process  of  designing  and   r > 0.  Under 
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additional conditions both of these equations determine Lyapunov function having 
properties similar to (23) in the sufficiently great neighborhood of stationary point. 
Meanwhile the dependence on control vector U appears too. Indeed, we can see that the 

value of (24) is equal zero in the stationary point if the target function of this process ( )XC  

in the same point is equal zero as well. The equation (24) is positive defined function in all 

points distinct from a stationary point as the function ( )XC  is nonnegative. The function 

( )UXV ,  increases without bound when we are going away from the stationary point. 

The equation (25) also determines Lyapunov function if 
ixF ∂∂ /  = 0 in the stationary point 

( )Naaaa ,...,, 21=  and V(a,U)=0. On the other hand, V(X,U)>0 for all X. In conclusion, 

Lyapunov function determined by (25) is a function of vector U i.e. all coordinates ix  

depend on U. The third property of Lyapunov function is proven wrong as the behavior of 

function V(X,U) when ∞→X  is unknown. However, as known a posteriori, the 

function V(X,U) is the increasing function in the sufficiently great neighborhood of a 
stationary point. According to Lyapunov method, the information about trajectory stability 
is connected with time derivative of Lyapunov function. Direct calculation of time 

derivative of Lyapunov function 
•

V  lets estimate the dynamic system stability. The process 

of designing and a corresponding trajectory is stable if this derivative is negative. On the 
other part, the direct Lyapunov method gives sufficient but not necessary stability 
conditions. This implies that the process can lose stability or can remain stable in the case of 

positive derivative. The appearance of positive values of derivative 
•

V on set of positive 

measure only states the instability displaying in a few growth of Lyapunov function instead 
of decreasing latter. If such process exists far from the stationary point, then the process of 
designing is divergent function and we cannot obtain the solution of this trajectory. In this 
case the initial point of process of designing or strategy should be changed. If the positive 

derivative 
•

V  appears at the end of process of designing (i.e. not far from the stationary 

point), then we could say that the process of designing significantly decelerates. This 
designing strategy is going round in a circle and cannot provide required accuracy. As 
result, the engineering time substantially grows. This effect is well known in practical 
designing. If we obtain the unacceptable accuracy, the strategy of designing or initial point 
have to be changed. The detailed behavioral analysis of Lyapunov function and its 
derivative for different strategies of designing makes it possible to choose the perspective 
strategies. This analysis also allows determining on qualitative level the relationship 
between design time and Lyapunov function and its derivative being the main factors of the 
process of designing. 
Two-stage transistor amplifier, depicted in Fig.3, is used for stability analysis of different 

strategies of design. The direct calculation of time derivative 
•

V  of Lyapunov function, 

determined by (29) for r=0.5, shown that the derivative is negative in the initial point of 
design for all trajectories, i.e., all possible design’s strategies and its trajectories are stable at 
the beginning if integration step of system (1) is enough small. In the same time, when the 
current point of trajectory reaches some ε -neighbourhood of the stationary point 
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( )Naaa ,...,, 21 , the derivative of Lyapunov function comes positive and the current 

design’s strategy loses stability. This implies that this strategy dose not ensure the  

convergence of trajectories to the stationary point ( )Naaa ,...,, 21
 starting from some 

value of ε -neighbourhood, i.e. achievement of minimum of target function F(X,U) and so 

function C(X) with accuracy to ε  dose not guarantee. In fact, each trajectory has eigen ε -

neighbourhood determining maximum available accuracy for this one and the convergence 
problem arises inside this area. The process of designing significantly decelerates for current  
strategy before approaching of the critical value of ε -neighbourhood. Alias, the derivative 
•

V  remains negative but has enough small absolute value. The results for two-stage 

amplifier are presented in Table 7. The design realized on the basis of strategies coming into 
structural basis 2M and determined by control vector U. The appearance of positive values of 

derivative 
•

V  on set of positive measure determines the termination of process of designing. 

Process optimization realized on the basis of equation (18) and gradient method with a 

variable optimal step 
st  hereupon this step st  could be both small and large. As result, we 

have non-smooth behavior of derivative from one step to other. 
 

Table 7. Critical value of the ε -neighborhood for design strategies for two-stage amplifier 

 

For smoothing of derivative 
•

V  the value averaging on the interval 30  steps  was  used.  The  

N Control vector Iterations Computer Critical value of

U(u1,u2,u3,u4,u5) number time  (sec)     -neighborhood

1        ( 0 0 0 0 0 ) 3177 7.25 2.78E-08

2        ( 0 0 0 0 1 ) 3074 8.02 3.36E-07

3        ( 0 0 0 1 1 ) 11438 26.36 8.18E-07

4        ( 0 0 1 0 1 ) 799 1.16 9.38E-09

5        ( 0 0 1 1 0 ) 1798 2.61 1.61E-08

6        ( 0 1 0 1 1 ) 43431 76.89 3.16E-05

7        ( 0 1 1 0 0 ) 1378 2.25 1.67E-08

8        ( 0 1 1 0 1 ) 571 0.72 6.83E-09

9        ( 0 1 1 1 0 ) 1542 2.03 2.05E-08

10        ( 1 0 0 1 1 ) 11839 21.37 1.68E-05

11        ( 1 0 1 0 0 ) 2097 3.57 5.47E-07

12        ( 1 0 1 1 0 ) 6026 8.31 4.94E-07

13        ( 1 1 1 0 0 ) 6602 8.84 7.41E-07

14        ( 1 1 1 0 1 ) 935 0.71 1.33E-08

15        ( 1 1 1 1 0 ) 2340 2.31 1.62E-07

16        ( 1 1 1 1 1 ) 1502 0.38 1.09E-08

ε
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analysis of results of Table 7 has shown some important laws. First of all, the strong 
correlation between processor time and critical value of ε  -neighbourhood, after which the 

value of derivative 
•

V  stays positive, is presented. As a rule, the fewer available value of ε  

-neighbourhood corresponds to the fewer processor time. We could order all strategies in 
Table 7. from the smallest processor time (0.38 sec, No. 16) to the longest one (76.89 sec, No. 
6).  
On the other hand, the strategies in ascending order of critical value ofε -neighbourhood 

are presented in Table 8. 
 

 

Table 8. Strategies’ ordering by processor time and by critical value of ε -neighborhood  

 
The No. of each strategy in Table 8 determined by two different ways of order is slightly 
different. Two strategies (13 and 6) have the same number. Seven strategies have the 
difference in one place, four ones – in two places, and three strategies – in three places. The 
average difference is equal to 1.5. Taking into account that the critical values of ε  -

neighbourhood are obtained approximately by the averaging during integration of system 
(1) we can see that the correspondence of processor time with critical value of ε -

neighbourhood is enough acceptable. Contrariwise, the parameters of ε -neighbourhood 

are obtained on the basis of Lyapunov function and its derivative analysis. Therefore, we 
could say that the strong correlation between processor time and properties of Lyapunov 
function is presented.  
From the analysis above the assumption is induced: Lyapunov function of process of 
designing and its derivative are enough informative source to select more perspective 
design strategies. 

 
7. Conclusion 
 

The traditional approach for the analogue network optimization is not time-optimal. The 
problem of the minimal-time design algorithm construction can be solved adequately on the 
basis of the control theory. The network optimization process in this case is formulated as a 
controllable dynamic system. Analysis of the different examples gives the possibility to 
conclude that the potential computer time gain of the time-optimal design strategy increases 
when the size and complexity of the system increase. The Lyapunov function of the 
optimization process and its time derivative include the sufficient information to select more 
perspective strategies. The above-described approach gives the possibility to search the 

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of strategies                

regulated by the                 

computer tim 16 14 8 4 9 7 15 5 11 1 2 12 13 10 3 6

Number of strategies                

regulated by the       
    -neighborhood 8 4 16 14 5 15 7 9 1 2 12 11 13 3 10 6ε
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time-optimal algorithm as the approximate solution of the typical problem of the optimal 
control theory. 
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