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Abstract

Tuberculosis (TB) remains to be a serious health problem worldwide. There is an increased 
transmission of Mycobacterium tuberculosis strains with drug resistance, hence complicat‐
ing TB control. The deciphering of the M. tuberculosis genome, together with the imple‐
mentation of new molecular biology tools, has allowed the identification of changes in 
nucleic acid sequences with a functional impact. These mutations have become important 
in the design of early‐diagnostic kits to identify the resistance profile of M. tuberculosis. 
Since the conventional methods to determine the identity of M. tuberculosis strains based 
in cultures are laborious, time‐consuming and performed by specialized technicians, the 
result is generated until 4 months after receiving the samples. During this time, patients 
with TB are not adequately treated, and resistant strains may be transmitted to the rest of 
the population. In this chapter, we describe the most relevant mutations in genes associ‐
ated with drug resistance in M. tuberculosis, the analysis of gene expression to identify 
new markers of drug resistance strains, and the development of new antituberculosis 
drugs against drug‐resistant strains.

Keywords: Mycobacterium tuberculosis, drug resistance, mutations, gene expression, 
antituberculosis drugs

1. Introduction

Tuberculosis (TB) has remained a serious health problem since Mycobacterium tuberculosis, the main 

agent of this disease, infects about one third population. In 2015, 10.4 million cases of TB were esti‐

mated and, although only a small percentage (5–10%) develops the illness, its control has compli‐

cated due to the emergence of drug resistance strains [1]. Tuberculosis regiment treatment includes 

the first line drugs rifampicine, isoniazide, ethambutol and pyrazinamide and strains that develop 
resistance to the two more effective antituberculosis drugs, isoniazide and rifampicine, named 
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multidrug resistance strains [2, 3]. The resistance phenomenon in M. tuberculosis has been highly 

related to mutations in specific genes [4], and this association has been the base for the implemen‐

tation of rapid diagnostics kits [5] but unfortunately mutations do not explain completely the resis‐

tance in all cases [6, 7], suggesting that other mechanisms could be involved. New approaches to 

search new markers and mechanisms of resistance have been performed. One of these is the evalu‐

ation of changes in gene expression [8]. Together with the diagnostics of TB, the implementation 

of new schemes of treatments is necessary to restrict the transmission. The development of new 

drugs against drug resistance M. tuberculosis has resulted promissory to control TB [9].

2. Mutations that confer resistance in Mycobacterium tuberculosis

Although the rate of resistance to first and second line drugs in M. tuberculosis varies among 

countries, the resistance phenomenon has complicated the tuberculosis control worldwide. 

There two types of observed resistance in M. tuberculosis, one is the genetic resistance 

where mutations in genomic regions, on target genes, confer the capacity to avoid the drug 

effect; the second is the phenotypic resistance, where epigenomic modifications, including 
alteration of protein structures, generate resistance to drugs without mutation on DNA. 

Although the current knowledge of the molecular genetic basis of resistance to antituber‐

culosis drugs has advanced rapidly the last years [10], there are unknown mechanisms 

in how bacilli is able to resist to drugs. Identification of clinical isolates with resistance 
to antituberculosis drugs would facilitate the timely and accurate diagnosis to initiate an 

appropriate treatment.

Many works have revealed, using microbiological and clinical data, mutational events in clin‐

ical isolates from patients with tuberculosis. Multidrug resistance appears to result from the 

sequential acquisition of mutations. Possible reasons for the acquisition of mutations include 

inadequate prescription and delivery of chemotherapy, poor compliance, or an insufficient 
number of active drugs in the treatment regimen [11]. Mutations or combinations of muta‐

tions have been found in strains displaying single or multidrug resistance. Here, we summa‐

rized the most common mutation found in clinical isolates that confer resistance to the first 
and second line antituberculosis drugs (Table 1).

2.1. Isoniazid

Due to its properties as a bactericidal drug, isoniazid has been widely used as the first line 
drug in the treatment against M. tuberculosis complex members. Mutations on katG and mabA‐

InhA genes have repeatedly been associated with isoniazid resistance [10] (Table 1). In the 

case of katG, the most common of mutation is S315, which is present in 50–95% of isoniazid 

resistant clinical isolates [12]. The occurrence of mutations is also observed in the promoter 

region of mabA/inhA. Mutations in the inhA promoter can also confer cross‐resistance to ethi‐

onamide [13]. There are other genes as ahpC, kasA, and ndh, encoding for alkyl hydroper‐

oxidase reductase, β‐ketoacyl‐ACP synthase, and NADH dehydrogenase, respectively, which 
have also been associated with isoniazid resistance.
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Drugs MIC (µg/mL) Drug mode of  

action

Gene Target enzyme Frequency of 

mutations (%) 

associated with 

resistance

Isoniazide 0.02–0.2 Inhibits mycolic  

acid synthesis and 

other multiple  

effects

katG Catalase peroxidase 30–60

InhA Fatty acid enoyl  
acyl carrier protein  

reductase A

70–80

ahpC Alkyl hydroperoxidase  

reductase

Not known

kasA β‐ketoacyl‐ACP  
synthase

Not known

ndh NADH dehydrogenase 9.5

Rifampicin 0.05–1 Inhibits RNA  

synthesis

rpoB β subunit of RNA  
polymerase

95

Streptomycin 2–8 Inhibits protein  

synthesis

rpsL Ribosomal protein S12 65–67

rrs 16S rRNA

gidB 7‐Methylguanosine  

methyltransferase

33

Ethambutol 1–5 Inhibits 

arabinogalactan  

synthesis

embCAB Arabinosyl transferase 70–90

Pyrazinamide 16–100 Disrupts 

plasmamembrane  

and energy  

metabolism  

(inhibits  

pantothenate and  

CoA synthesis)

pncA Pyrazinamidase >70

IS6110 

insertion

Not known

Fluoroquinolones 0.5–2.5 Introduces  

negative  

supercoils in  

DNA molecules

gyrA DNA gyrase 42‐85

gyrB

Kanamycin/

Amikacin

2–4 Inhibits protein  

synthesis

rrs 16S rRNA >60

Capreomycin/
Viomycin

2–4 Inhibits protein  

synthesis

rrs 16S rRNA 40‐100

tlyA rRNA  

methyltransferase

80

Ethionamide 2.5–10 Disrupts cell  

wall biosynthesis  

by inhibition  

of mycolic acid  

synthesis

InhA Fatty acid enoyl  
acyl carrier protein  

reductase A

>60

ethA Flavin monooxygenase >60

ethR Transcriptional  

repressor

Not known

Data taken and modified from [16] and [17].

Table 1. Genes associated with resistance to various anti‐TB drugs.
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2.2. Rifampicin

Rifampicin is highly bactericidal for M.tuberculosis, where this drug is able to bind to the β 
subunit of RNA polymerase, and this event induces hydroxyl radical formation in susceptible  

mycobacteria [14]. Resistance to rifampicin is acquired by mutations in a region of the 81‐bp 

region of the rpoB gene, encoding the β subunit of RNA polymerase, and these mutations 
have been found in ∼96% of rifampicin‐resistant clinical isolates. The most frequent muta‐

tions are located in positions 516, 526, and 531. Also, there is evidence that mutations in the 

rpoB gene generate cross‐resistance to rifamycins [15]. It is important to mention that not all 

mutations in rpoB are associated with rifampicin resistance [16].

2.3. Streptomycin

It has been considered as a second line antituberculosis drug, which binds to the 30S subunit 

of the ribosome and blocks protein synthesis. The resistance is provoked by mutations in the 

rpsL gene, which encoded the S12 protein, and the rrs gene, which encoded the 16S rRNA. 

The mutations in both genes are the main mechanism of streptomycin resistance, and it has 

been found in 65–67% of resistant clinical isolates [16]. There is another gene, gidB, involved in 

streptomycin resistance. This gene encoded a 7‐methylguanosine (m(7)G) methyltransferase, 

and mutations have been found in 33% of clinical isolates resistant to streptomycin.

2.4. Ethambutol

Ethambutol has a target, the inhibition of the enzyme arabinosyl transferase, which is involved 

in the biosynthesis of cell wall arabinogalactan. The enzyme is encoded by the embB gene, 

harboured in the embCAB operon, and mutation in this gene is related to ethambutol resis‐

tance. The most frequent mutation found in the embB gene is located in codon 306. More than 

68% of resistant clinical isolates have mutations in the embB gene [16].

2.5. Pyrazinamide

This pro‐drug is converted to its active form, pyrazinoic acid, and it only kills non‐growing 

persistent bacteria. The mutations of the pncA gene are scattered along this genomic region, 
and it is the main mechanism of pyrazinamide resistance. The majority of pyrazinamide‐

resistant clinical isolates (72–99%) have showed mutations on the pncA gene sequence. Due 

to a high correlation between mutations and pyrazinamide resistance, it has been suggested 

that the use of mutations to predict the resistance profile to pyrazinamide; however, there are 
silent mutations that do not confer resistance [16].

2.6. Fluoroquinolones

Fluoroquinolones are able to inhibit the activity of DNA gyrase. When the activity of DNA 

gyrase is affected, the chromosomal DNA acquires a supercoiled conformation [17]. Then, 

mutations on gyrA, encoding DNA gyrase, are strongly associated with fluoroquinolone 
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resistance. There are many reports where mutations located in the gyrA region are present in 

42–85% of clinical isolates resistant to fluoroquinolones (Louw et al., 2009). Also, mutations on 

the gyrB gene have also been associated with fluoroquinolone resistance, where 3% of clinical 
isolates harbor the mutation in this gene. The most common mutations of the gyrA gene are 

located in codons 90, 91 and 94 [16].

2.7. Amikacin/kanamycin

Amikacin and kanamycin are considered as second‐line antituberculosis drugs. It has been 

identified that the rrs gene as the target of action of these drugs; however, the molecular 
mechanisms that confer resistance are focused to inhibition of protein synthesis [18]. About 

60% of the clinical isolates resistant to amikacin/kanamycin have mutations on the rrs gene 

[17]. The most common mutations are located at the position 1400 of the rrs gene, which causes 

high‐level resistance these drugs.

2.8. Ethionamide

This prodrug requires to be activated by the mono‐oxygenase EtaA/EthA. It has been 

described as the only bactericidal agent against M. tuberculosis. Ethionamide inhibits 

mycolic acid synthesis. Mutations in inhA also confer resistance to ethionamide. Frequency 

of mutations on etaA/ethA, ethR, and inhA genes in clinical isolates resistant to ethionamide 

reaches 60% [16].

Mutations described in M. tuberculosis have led to the implementation of rapid molecular 

diagnostic kits with the aim to diagnose TB and detect drug resistance in a shorter period 

compared to drug susceptibility testing based on the culture of the microorganism [19].

Within the rapid methods approved by the WHO, there are real‐time PCR‐based assays, 
as Xpert MTB/RIF, the line probe assays Genotype MTBDRplus and Genotype MTBDRsl. 

The XpertMTB/RIF tests allow M. tuberculosis detection as well as resistance to rifampicine.  

A multicenter study in which 6648 patients were evaluated, the Xpert MTB/RIF test allowed 

the detection of 90.3% of the TB confirmed cases based on culture, as well as 67.1% of the TB 
cases diagnosed by microscopy. For detection of rifampicine resistance, a sensitivity of 94.4% 

and specificity of 98.3% were reported, and an indeterminate rate of 2.4%, which was lower 
than that of culture diagnose with 4.6% [20]. On the other hand, the Genotype MTBDRplus 

allows detection of resistance for the first line drugs, while Genotype MTBDRsl detects resis‐

tance to the second line drugs. A meta‐analysis of Genotype MTBDRplus reported a pooled 

sensitivity of 0.91, 0.96, and 0.91 and a pooled specificity of 0.99, 0.98 and 0.99 for the detec‐

tion of isoniazide‐, rifampicine‐, and multidrug‐resistance, respectively. Both, sensitivity and 

specificity settings have 95% confidence intervals [21]. Finally, in a multicenter study realized 

in 2012, the accuracy of the Genotype MTBDRsl was evaluated in 200 M. Tuberculosis isolates; 
in this study, the sensitivity reported was between 77.3 and 92.3% for the detection of resis‐

tance to fluoroquinolones, ethambutol, amikacin, and capreomycin while for kanamycin was 
42.7 and 22.6% for XDR detection; the specificity was 82% for all drugs [22].
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3. Searching for new markers to identify drug resistance of  

Mycobacterium tuberculosis

In the understanding and linking‐up of genetic associations with the drug resistance phe‐

notype in M. tuberculosis, mutations in specific genes have been the most common associa‐

tion as previously described; nevertheless, not all resistant M. tuberculosis strains have the 

related mutations previously reported suggesting that other mechanisms could be involved 

in this  phenomenon [6, 23, 24]. For this purpose, the expression level of some genes has been 

studied. One of them is efflux pump genes, these are important elements that play a role 
in the extrusion of drugs out of the cells conferring M. tuberculosis resistance to drugs [25]. 

The efflux pumps have been classified in super families: ATP‐binding cassette (ABC), major 
facilitator super‐family (MFS), resistance nodulation division (RND), small multidrug resis‐

tance (SMR), and multidrug and toxic‐compound extrusion (MATE) [23]. In M. tuberculosis, 

the efflux pumps consist of (a) 12 mycobacterial large membrane proteins (MmpL) belonging 
to RND‐type transporters [26], (b) 37 ABC transporters (26 complete and 11 incomplete) from 
which 21 are putative exporters which include antibiotic transporters that represent the 2.5% 

of the genome [27, 28] and (c) 16 putative MFS drug efflux pumps [29]. Some findings have 
reported efflux pump genes to be overexpressed in drug resistance M. tuberculosis strains 

(Table 2) [25, 30‐32]. The importance of efflux pumps involved in drug resistance has led to 
suggest the analysis of the implementations of a combined therapy of antituberculosis drugs 

together with efflux pump inhibitors [23].

Locus Symbola Gene namea Drug‐resistant 

phenotype

References

Rv2688c Antibiotic‐transport ATP‐binding 

protein ABC transporter
XDR [32]

Rv1634 Drug efflux membrane protein XDR [32]

Rv2936 drrA Daunorubicin‐dim‐transport ATP‐

binding protein ABC transporter 
drrA

XDR [32]

[30]

Rv2937 drrB Daunorubicin‐dim‐transport 

membrane protein ABC transporter 
drrB

XDR [32]

[30]

Rv0820 phoT Phosphate‐transport ATP‐binding 

protein ABC transporter phoT
XDR [31]

Rv2136c uppP Conserved membrane protein MDR [25]

Rv2846c efpA Membrane efflux protein efpA MDR [30]

Rv0849 Conserved membrane transport 
protein

MDR [30]

Rv1250 MDR [30]

Rv1410 Aminoglycosides/tetracycline‐

transport membrane protein

MDR [30]

Rv1634 Drug efflux membrane protein MDR [30]

Rv2994 Conserved membrane protein MDR [30]
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Furthermore, studies in drug resistance strains have reported other genes as differentially 
expressed between sensitive and drug‐resistant strains. Functional categories of these genes 

are among others, stress response and translation (Table 3). On the other hand, expression 

of intergenic regions (IGs) has also been associated with a drug resistance phenomenon in  

M. tuberculosis [8, 25, 31], suggesting that an additional analysis is necessary to evaluate and 

confirm the contribution of these regions in drug resistance.

With the aim to demonstrate the resistance association between the level of expression of 

some genes and drug resistance, assays using recombinant strains of M. tuberculosis as well 

as other Mycobacterium strains treated with different drugs and/or overexpressing genes 
of interest have been analyzed [25, 33‐35]. The new findings related to differences of gene 
basal expression between susceptible and resistant M. tuberculosis strains can contribute to 

identify newly genetic drug‐resistant markers that could contribute in the early diagnosis of 

drug‐resistant tuberculosis, which could be applied in the establishment of a more efficient 
drug therapy [8, 30].

Locus Symbola Gene namea Drug‐resistant 

phenotype

References

Rv2333c stp Involved in transport of drug across 

the membrane (export)

MDR [30]

Rv2459 Conserved membrane transport 
protein

MDR [30]

aData obtained from TB database and/or TubercuList, XDR: extensively drug‐resistant.

Table 2. Overexpressed efflux pump genes in drug‐resistance Mycobacterium tuberculosis strains.

Locus Symbola Gene namea Expression level 

modification
Drug‐resistant 

phenotype

References

Rv1181 pks4 Polyketide beta‐ketoacyl synthase 

pks4

I XDR [31]

Rv1182 ppA3 Polyketide synthase associated 

protein papA3

I XDR [31]

Rv1184c Hypothetical exported protein I XDR [31]

Rv0826 Conserved hypothetical protein I XDR [31]

Rv1483 fabG1 3‐oxoacyl‐[acyl‐carrier protein] 

reductase fabG1

I XDR [31]

Rv1592c Conserved hypothetical protein I XDR [31]

Rv1623c cydA Membrane cytochrome D 

ubiquinol oxidase subunit I cydA

I XDR [31]

Rv2585c Conserved lipoprotein I XDR [31]

Rv2621 Transcriptional regulator I XDR [31]

Rv3269 Conserved hypothetical protein I XDR [31]

Rv0287 esxG Esat‐6 like protein esxG I MDR [8]

Rv0288 esxH Low molecular weight protein 

antigen 7 esxH

I MDR [8]
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4. Development of new drugs against Mycobacterium tuberculosis drug 

resistance strains

Even though tuberculosis antibiotic treatment therapy is described, drug resistance in  

M. tuberculosis complicates the TB control. In 2015, 480,000 MDR tuberculosis cases were esti‐

mated and, in addition, 100,000 more cases were added which had resistance to rifampicin 

[1], these cases are more likely to develop multi‐drug resistance. Drug‐resistant TB has led 

to the implementation of new therapeutic regimens involving second line drugs, once drug 

susceptibility testing results are available [36].

Drug therapy for a patient infected with a susceptible M. tuberculosis strain lasts 6 months 

with diverse combinations of the first‐line drugs rifampicine, isoniazid, ethambuthol, and 
pyrazinamide, while treatment therapy for a patient with DR tuberculosis can last up to  

20 months and include a fluoroquinolone, an injectable aminoglycoside plus an oral bacterio‐

static second line drug and a first line drug (for details consult D’Ambrosio et al. [36]).

Because the problem of resistant tuberculosis is increasing, searching for new drugs contin‐

ues with the aim of improving the therapeutic regimens currently used, shorten treatment 

duration in addition to find more effective drugs for latent TB and drug‐resistant strains. The 
development of new antituberculosis drugs implicates the following stages: basic research, 
discovery of new antituberculosis compounds or drugs, preclinical and clinical studies con‐

formed by phases I, II, and III to finally get to the technology transfer; all these processes 
entail long periods of time [37]. In this continuous search for better antituberculosis drugs, 
many natural, semi‐synthetic, and synthetic compounds have been evaluated in vitro and 

in vivo. We will mention some new drugs that are based on the structure of first line drugs, 
among which some analogues have been described with activity against sensitive and drug 

resistant M. tuberculosis strains. Thereby based on ethambutol, some of the novel described 

Locus Symbola Gene namea Expression level 

modification
Drug‐resistant 

phenotype

References

Rv1037c esxI Esat‐6 like protein esxI I MDR [8]

Rv1642 rpmI 50S ribosomal protein L35 rpmI I MDR [8]

Rv1630 rpsA 30S ribosomal protein S1 rpsA I MDR [8]

Rv3487c lipF Esterase/lipase lipF R MDR [8]

Rv3418c groES 10 kda chaperonin groES R MDR [8]

Rv1161 narG Respiratory nitrate reductase alpha 

chain narG

R MDR [8]

Rv1819c Drugs‐transport transmembrane 

ATP‐binding protein ABC 
transporter

R MDR [25]

aData obtained from TB database. XDR: extensively drug‐resistant, MDR: multidrug‐resistant, I: gene with induced 
expression in the resistant strain analyzed, R: gene with repressed expression in the resistant strain analyzed.

Table 3. Differential expressed genes in drug‐resistance Mycobacterium tuberculosis strains.
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compounds comprise SQ109 and analogues based on carbamate prodrugs [38], S2824 and 

analogues with a homopiperazine ring [39], 1,2 diamines [40], ferrocenyl compounds [41] 

and dihydrosphingosine‐ethambutol analogues [9]. Within pyrazinamide analogues, it has 

been described POEs (pyrazinoic acid esters) and 5‐Cl‐substituted pyrazinoic acid deriva‐

tives [42]. However, it is necessary to consider the adverse effects of these compounds. For 
isoniazide‐based compounds, there has been reported aromatic and heterocyclic aldehydes 

containing electron‐withdrawing or donating groups [43], and rifampicin has been described 

within the rifamycins as well as among others as rifabutin, rifapnetine, rifalazil, and rifam‐

etane [44].

As general conclusion, although mutations are commonly associated with drug resistance in 

M. tuberculosis, other studies are necessary to discover genetic markers that support the early 

diagnostic of drug resistance in strains that enable the establishment of optimized therapeutic 

schemes limiting their transmission.
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