
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

22

Extending AI Planning to Solve more Realistic

Problems

Joseph Zalaket
Holy Spirit University of Kaslik

Lebanon

1. Introduction

Applying AI planning to solve real-world problems is still difficult despite many attempts
done in this area. Classical planning systems are able to handle a limited number of
symbolic data elements, without taking into account the numerical aspect of many real-
world problems. Some recent planners have moved to solve more realistic problems
involving resource consumptions and time management (Bresina et al., 2002; Bacchus &
Ady, 2001; Edelkamp, 2002), but the most of these planners deal with the numerical side of
the planning problem as an assisting feature to a main symbolic problem, without being
able to tightly mix the two sides of the problem to be solved as one homogeneous problem.
However, there are still many real-world problems that involve dominant even absolute
numerical processing (Zalaket & Camilleri, 2004b; Hoffmann et al., 2007) and for which
planning problem representation and data type handling are to be extended. In order to
cover this latter type of problems, we propose many extensions that allow the application of
the planning process evenly over symbolic and numerical data that can constitute any
realistic planning problem.
Despite the multiple extensions that have been made to the Planning Domain Definition
Language (PDDL) (Ghallab et al., 1998; Fox & Long, 2002; Gerevini & Long, 2005), this
language is still insufficient for representing real-world problems that need complex action
representation and complex state transformation expression. This lack motivates the
organizers of the sixth international planning competition (IPC-6) to request a new
extension to PDDL (the PDDL3.1 version). Inspiring from the continuous extensions to
PDDL, we propose our first extension that concerns the data representation, in which we
introduce the concept of using non-invertible functions to update the numerical and non-
numerical data throughout a planning process. This type of functions allows the integration
and the handling in an easy way of uncertainty as well as of temporal and numerical
knowledge into planning.
As non-invertible functions can be only applied in forward traversal in a search space,
hence we focus on the adaptation of forward planning systems to support the application
of this kind of functions. We show that our technique can be used by any forward planner
with a minor expansion, and we detail the extension of the Graphplan (Blum & Furst, 1995)
structure and algorithm to support the execution of functions. The advantage of the

www.intechopen.com

Frontiers in Robotics, Automation and Control

402

Graphplan compared to other forward planning algorithms is that: Graphplan is
constructed in progression, thus it can support the application of our proposed functions
like any other forward planning system. Furthermore, the compact structure of Graphplan
and its capability of delaying the search of the plan (the sequence of operators) to the end
of the graph construction process give it the ability of dealing with the effects of our
proposed non-invertible functions during the regression search phase.
As we illustrate in this chapter, it is enough to simply save the effects of functions during
the construction phase of the Graphplan to be able to extract the plan later in backward
search. Saving these effects allows also the application of black-box functions with no side
effects over state variables irrespective of their content. This can lead to the integration of
control structures like conditional and iteration structures into functions in order to
perform more complex computation.
As additional extensions: we present the relaxation of the numeric tasks of planning by
ignoring the effects of actions that move away the values of numeric variables from their
goal values.
We present the calculation of a heuristic function, which can be uniformly derived for
numerical and symbolic facts from a relaxed planning graph-like structure.
We introduce the representation of numerical facts as multi-valued attributes in the relaxed
graph to ease the search of a relaxed plan. In this way, the effects of the applied non-
invertible functions will be transparent during the search for a relaxed plan.
Finally, we present some empirical results that show the effectiveness of our extensions to
solve more realistic planning problems.

2. Apply functions in planning

Using functions in planning has been studied in Functional Strips (Geffner, 1999) and
FSTRIPS (Schmid et al., 2002). Functional Strips has argued that the generated literals can be
reduced by replacing relations by functions. We are still supporting this idea in our
extension, but our main interest in functions is their ability to handle complex numerical
and conditional effects, as well as to express complex preconditions and goals. For example,
to plan the motion of a robot that is expected to travel from an initial position to a target
position in the presence of physical obstacles in its environment. To avoid collisions
between the robot and the obstacles, we have to use trigonometric functions that allow the
robot to follow a circular path in its environment (Samson & Micaelli, 1993; BAK et al.,
2000). Trigonometric expressions are simple to be solved by classical programming
languages, but they can not be expressed in classical AI planning languages like PDDL3.0.
For this reason we introduce the extension of AI planning to allow the application of
external functions that can be written in any programming language. Inspiring from the
representation of functions in object-oriented database, we add to the problem definition
written in PDDL3.0 (Gerevini & Long, 2005) the declaration of external functions by
specifying their execution path. In addition to their capabilities of solving numerical
problems like the circular movement of a robot external function are able to handle all kind
of conditional and probabilistic effects.
Non-invertible function can be only applied during a forward traversal in the search space,
as at each state we can apply functions that generate the next state in that space. This
process can continue by testing at each new state the satisfaction of the goal conditions, until

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

403

reaching a state that satisfies the goal or until no more memory space is available to
continue the search. In this way, a function can act as a black-box irrespective of its content,
but domain independent forward planning systems are not able to solve large planning
problems because of the high space and time complexities. So, heuristic functions should be
used to guide the search in forward chaining in order to allow the application of functions
and the resolution of large planning problems. As Graphplan is constructed in forward
chaining traversal, thus it can support the application of this kind of functions. It will be also
possible to extract the plan in backward search from the Graphplan structure by navigating
through the effects of the functions irrespective of their content.
To avoid all kind of side effects during the construction of the planning graph we restrict all
the formal parameters of the functions to be constant, which means, a function can only
return a value without updating any state variable. This returned value can then be affected
to one state variable at a time.
Many real-world problems have complex characteristics, such that durative actions,
temporal or uncertain conditions, resource consumption, numeric functions, etc. Most of
these characteristics can be modeled with the PDDL3.0 language which is the mostly used
by recent planners. PDDL3.0 gives the possibility of expressing optimization criterion such
that maximization or minimization of resource consumption. Many planners have been
extended from propositional versions to deal with optimization problems like Metric-FF
(Hoffmann, 2002) and SAPA (Do & Kambhampati, 2001). The most of these extensions are
paying attention to one or the other of the real world complex characteristics, each time with
a special computation procedure which is added to a classical propositional planner.
We propose an extension to the Graphplan (Blum & Furst, 1995) that allows its structure to
handle all kind of non-invertible functions application. In the next section, we start by
presenting the extension of the planning language to allow the integration of external
functions that we will integrate later to the Graphplan.

3. Language extension

The language that we propose to define a planning problem is an extension to PDDL3.0
language in which we introduce the integration of external functions to update numeric
values in addition to the arithmetic expressions allowed in PDDL3.0. This extension allows
the use of mathematical functions like COS, SIN, SQRT, EXP, ROUND,. . . and user defined
functions instead of simple arithmetic expressions supported by PDDL3.0 in which only
classical arithmetical operators (+, -, /, *) are allowed. The control flow (conditional
statements and loops) can be used within an external function to hold up complex
numerical computation and thus complex conditional effects of actions can be expressed
and handled within the core of external functions. Note that, external functions can also be
used to update non numeric variables such as propositional facts. But, we restrict in this
chapter the use of external functions for updating numeric variables which is more
beneficial for the planning process.
We also introduce the separation of the constraints from the precondition in the definition of
actions, in a way that the constraints will be added to a new separate list that should be
tested before the instantiation of the action. Hence, an action will be instantiated if and only
if its constraint list is satisfied by the current state which can reduce the number of ground

www.intechopen.com

Frontiers in Robotics, Automation and Control

404

actions, and consequently useless tests that should be done for precondition satisfaction will
be avoided and the memory space used to store the ground actions will be reduced.

3.1 State space nature and transition

Each distinct instance of the world is called a state, denoted by s. The set of all possible
states is called a state space S.
S is formed by two disjoint sets: a set of logical propositions P and a set of numeric variables
N.
We denote by P(s) the subset of logical propositions of a state s and by N(s) the subset of its
numeric variables.

The transformation of the world from a state s ∈ S into another state s’ ∈ S is done through
the application of a set of actions A, such that s’ = t(s, A) where t is a state transition
function. A state transition function t transforms s by 3 ways:

- Adds logical propositions to P(s)
- Removes logical propositions from P(s) (when propositions become false)
- Assigns new values to existing numeric variables in N(s)

3.2 Action definition

An action a is defined as a tuple (args, con, pre, eff), where:
- args is the list of arguments made by variables which represent constant symbols in

S and/or numeric variables in N.
- con is the list of constraints. The constraints are tested before the instantiation of

the actions to avoid instantiating actions with incoherent arguments.
Constraints follow the same definition format as preconditions.

- pre = preP ∪ preN is the list of preconditions.
o preP defined over P are propositional preconditions

o preN are numerical preconditions, such that: ∀ c ∈ preN, c = (n θ g), where

n ∈ N, θ ∈ {<, ≤, =, >, ≥} and g is an external function or an expression.

Definition-1: An expression is an arithmetic expression over N and the rational numbers, using the
operators +, -, * and /.

Definition-2: An external function f is a constant function written in a high level programming

language on the form of: type f(n1, n2, , nm), where arguments n1, n2, , nm ∈ N.

The function and all its arguments (if exist) are declared as constants in a way that the
function calculates and returns a value without affecting any numeric state variable. By
constant function we mean that the function is not allowed to internally modify the state
variables.

- eff = effP ∪ effN is the list of effects.

o effP = effP+ ∪ effP- : defined over P are positive and negative propositional
effects that add or remove literals.

o effN are numeric effects, such that: ∀ e ∈ effN, e = (n := g), where n ∈ N
and g is an external function or an expression.

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

405

Figure-1 illustrates the definition of the water jugs domain using the above extensions to the
planning domain definition language.

Example-1: The water jugs domain definition using condition list and external functions.

(define (domain Jugs)
(:requirements :typing :fluents :external)
(:types jug int)
(:functions ((capacity ?j - jug) – int)
((fill ?j - jug) – int))
(:external java (and ((path (int max (int, int, int)) (c:/javaplan/WaterJug.max))
(path (int min (int, int, int)) (c:/javaplan/WaterJug.min))))

(:action poor
 :parameters

 (? j1 ? j2 – jug)
:constraints
 (not(= ?j1 ?j2))
:precondition
 (and (<(fill ?j) (capacity ?j)) (> (fill ?j) 0))
:effect
 (and (assign (fill ?j1) (max ((fill ?j1), (fill ?j2), (capacity ?j2)))
 (assign (fill ?j2) (min ((fill ?j1), (fill ?j2), (capacity ?j2))))

External functions written in Java at c:\javaplan\.;
public class WaterJug{

public static final int max (final int v1, final int v2, final int c2){
 if (v1+v2 > c2) return v1+v2-c2;
 return 0;
}

public static final int min (final int v1, final int v2, final int c2){
 if (v1+v2 < c2) return v1+v2;
 return c2;
}

}

Fig. 1. The water jugs domain definition

Remark: An external function can be written in any host programming language in this
example we show functions written in java language, but these same functions can be
written in a different programming language like the C++ for example. A special parameter
should be set to allow the planner to know which interpreter should call to execute the
functions as it is the case for functions written in Java or if the functions are directly
executable as for functions written in C or in C++.

www.intechopen.com

Frontiers in Robotics, Automation and Control

406

3.3 Planning problem definition

A planning problem is defined as P=<S, A, sI, G>:
1. A nonempty state space S, which is a finite or countable infinite set of states.

2. For each state s ∈ S, a finite set of applicable actions A(s). A state transition

function t produces a state s’ = t(s, A) ∈ S, for every s ∈ S and applicable actions
A(s).

3. An initial state sI ∈ S, where sI is made by initially true logical propositions and
initial values of numeric variables.

4. A set of goal conditions G that should be satisfied at a state sG ∈ S.

The set of goal conditions G = GP ∪ GN, where GP defined over P are propositional
goal conditions and GN are numeric goal conditions that should be satisfied at a
goal state sG.

Note that: ∀ l ∈ GN ⇒ l = (n θ c), where n ∈ N, θ ∈ {<, ≤, =, >, ≥} and c is a constant
numeric value, an external function or an arithmetic expression.

4. Graphplan extension

Graphplan (Blum & Furst, 1995) was the subject of many extensions (Smith and Weld, 1999;
Do & Kambhampati, 2000; Cayrol et al., 2000) in which researchers have tried to adapt the
Graphplan to solve more expressive planning problems than those that can be expressed in
pure propositional STRIPS language (Fikes & Nilsson, 1971). The adaptation that we
propose to the Graphplan allows its structure to handle the execution of external functions.
This type of functions allows Graphplan to handle uncertainty and to integrate temporal
and numerical knowledge. Before introducing our extension the the Graphplan and to its
planning graph structure we briefly overview the Graphplan algorithm.

4.1 Graphplan overview

Graphplan solves problems represented in STRIPS language. An action in STRIPS has a
name and a parameter list and it is specified in terms of preconditions and effects.
Preconditions are conjunctions of positive literals and effects are conjunctions of positive
and negative literals that are respectively stored into two separated lists the ADD list and
the DEL list.
Graphplan alternates between two phases: graph construction and solution extraction. In
the graph construction phase Graphplan expands a planning graph in forward chaining
until either a solution is found or it is sure that no solution exists. Then, in solution
extraction phase Graphplan searches for a solution into the planning graph in backward
chaining, if no solution is found then Graphplan will continue by expanding one more level
until a solution is found or until a sufficient condition indicates that there is no solution to
the problem.
A planning graph consists of a sequence of levels, where level0 corresponds to the initial
state. Each level contains a set of literals and a set of actions. The actions of a level are those
that have their preconditions reachable (satisfied and mutually consistent) by the literals of
the same level. The literals of a next leveli+1 are the effects of the applicable actions of
previous leveli. The literals that satisfy the preconditions of action instances at the same level
are connected with these actions via direct edges. Also, the action instances are connected
via direct edges with their literals effects at the next level. ADD edges connect the action to

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

407

its next level added literals and DEL edges relate the action to its next level deleted literals.
To maintain the existence of literals from one level to its successor level Graphplan uses the
“no-op” actions. A “no-op” action is an action that “does nothing”, its only role is to allow

every literal that appears at leveli to also reappear at leveli + 1.
To speed up its solution extraction Graphplan uses binary mutex relations for both actions
and literals during graph expansion.
A mutex relation holds between two actions at a given level if there is:
- Inconsistent effects: one action negates an effect of the other.
- Interference: one literal effect of one action is the negation of a precondition of the other.
- Competing needs: a literal precondition of one action is mutually exclusive with a literal

precondition of the other.
Two literals are mutually exclusive if one is the negation of the other or if each possible pair
of actions that could achieve the two literals has a mutex relation.
Graphplan expands the planning graph up to a level in which all the literals of the goal are
present without mutex relation between any pair of them. Then, it starts the solution
extraction phase in a way that for each sub-goal at the last leveln, it tries to find an action
instance at leveln-1 that has this sub-goal as an add effect and that is not mutually exclusive
with another action instance that is already selected. The preconditions of the selected action
instances become the new set of sub-goals at leveln-1 and so on until reaching the initial state
(level0). If Graphplan fails to find an action that can achieve a sub-goal, it backtracks and tries
to find another path within the planning graph by trying other action instances. Graphplan
uses the ‘memoization’ concept which allows it memorizing its trace to ease the
backtracking process. Therefore, if Graphplan fails to find a set of consistent action instances
at a certain level and backtracking becomes useless, then Graphplan expands an additional
planning graph level and restarts its search until finding a solution or until reaching a
saturated graph that can not be expanded any more.

4.2 Graphplan adaptation for integrating external functions

In algorithm-1 we present the adaptation of the Graphplan algorithm to support the
handling of numeric variables and the execution of external functions. In our
implementation the adapted Graphplan consists of 2 types of levels fact levels and action
levels. Compared to the original Graphplan implementation a fact level is a combination of
propositional and numeric facts, instead of being only propositional. An action level
supports the execution of external functions and the evaluation of arithmetic expressions in
addition to its capability of adding negative and positive propositional effects. Each
numeric variable that belong to a fact level is represented as a multi-valued attribute in the
planning graph structure. When an action updates a numeric variable using an external
function or an arithmetic expression, we add this updated value as a new value to the multi-
valued concerned attributed. In this way, we consider that the old value is deleted and a
new value is added to the multi-valued attribute. This approach allows us to maintain the
addition and deletion edges of actions for numeric values. An action that updates a numeric
variable is related by an ADD edge to its new returned value and by a DEL edge to its
previous value in the multi-valued attribute.
Numeric domains can be infinite and thus, instantiating actions for all possible values
become impossible. For this reason, we propose an incremental instantiation of actions for
numeric values. To allow incremental instantiation, we introduce the concepts of implicit

www.intechopen.com

Frontiers in Robotics, Automation and Control

408

parameters and implicit conditions in order to maintain the precondition edges of the
actions that relate them to numeric facts.

Definition-3: A numeric variable that belongs to arguments of an external function is an implicit

precondition action parameter.

Definition-4: A numeric variable affected by an update function application or assigned to an

arithmetic expression is an implicit precondition action parameter.
Definition-5: An implicit precondition action parameter is related by a precondition edge to its
action.
This incremental instantiation is done by replacing the numeric variables by their
corresponding values from the current fact level, which avoids the flood of numeric values
and can be used for discrete and continuous numeric values. Only the variables that are
parameters of external functions and the right hand side numeric variables of expressions
are instantiated from the current fact level. All these incrementally instantiated variables are
added implicitly to the action preconditions by direct edges. These edges to implicit
preconditions will allow us to follow the trace of the functions application within the
planning graph during the extraction process. Therefore, we run through the planning
graph during the extraction of a plan without making difference between implicit and
explicit preconditions. This technique allows us to use black-box functions, because we will
be only concerned by the parameters and the returned value of a function to be able to
follow its trace through edges during the extraction process.
Algorithm-1 (see Fig. 3) starts by calling an initialization subroutine (see. Fig.2) in which the
construction of the planning graph begins by setting the first fact level to the initial state of
the planning problem, then by testing if the goal conditions are satisfied at the initial state to
return an empty plan, otherwise the algorithm instantiates the propositional variables of all
the actions of the planning domain.

initialization()/* subroutine to initialize the adapted Graphplan algorithm (Fig-2)*/
begin/*initialisation*/

Stop:= false; /*condition to stop the graph expansion */
i:=0; /*the planning graph level number*/
Facti := S0; /*the initial planning graph fact level*/
Facts := {Facti}; /*the collection of all the planning graph fact levels*/
Actions := {}; /*the collection of all the planning graph action levels*/
MutF := {}; /*the set of mutual exclusions between facts*/
MutA := {}; /*the set of mutual exclusions between actions */

Plan := ∅;
A :={}; /* the set of ground actions */
/*test if the goal is satisfied in the initial state*/
Stop=testForSolution(Facts, Actions, MutF, MutA, G, Plan);
/*instantiate propositional action variables*/

for all a ∈ Act do
 Instantiate a over P;

if conP(a) = true then A:= A ∪ {a};
end for

end

Fig. 2. Adapted Graphplan initialization subroutine

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

409

Algorithm-1: Adapted Graphplan with external function application
Input: S0: initial state, G: Goal conditions, Act: Set of actions
Output: Plan: sequence of ground actions
begin
 call initialization(); /* a subroutine that initializes variables*/

/*planning graph construction iterations*/
while (not Stop) do

 Actioni:={};

 for all a ∈ A do
 InstNumeric(preN(a), Facti);
 if conN(a) = true in Facti then

 if preP (a) ⊆ Facti and preN (a) are all true in Facti then
 InstNumeric(effN (a), Facti);

 Actioni:=Actioni ∪ a ;
 PointPreconditions(a, Facti);
 end if
 end if
 end for

Actions := Actions ∪ Actioni;
/*Add the facts of previous level with their “no-op” actions”*/
i := i+1;
Facti := Facti-1;

for each f ∈ Facti-1 do

 Actioni-1:=Actioni-1 ∪ “no-op”;
end for
/*Apply the applicable instantiated actions*/

for all a ∈ Actioni-1 and a ≠ “no-op” do

 Facti:=Facti ∪ effp+ - effp- ;

 for each e ∈ effN such that e = (n := g) do
 if g is an external function then
 call the function g;
 else
 evaluate the expression g;
 end if

 n=n ∪ g; /*add a new value to the muli-valued attribute n*/
 end for
 Connect a to its added or deleted effects;
 /* an updated numeric value is considered as being deleted than added*/
end for

Facts := Facts ∪ Facti;
calculate the mutex relations for Actioni−1 and add them to MutA;
calculate the mutex relations for Facti and add them to MutF;
nonStop=testForSolution(Facts, Actions, MutF, MutA, G, Plan);

end while
end

Fig. 3. The adapted Graphplan algorithm to support the application of external functions

www.intechopen.com

Frontiers in Robotics, Automation and Control

410

Propositional instantiation is done once before the graph expansion by substituting the
propositional variables by all the possible combinations of the propositional problem objects
and by keeping only the instantiated actions that respect the validity of the list of
propositional constraints (conP list). We call these actions initially instantiated for their
propositional objects the partially instantiated actions. We note that, none of the numeric
variables are substituted before the planning graph expansion process.
Returning back to algorithm-1 (in Fig. 3) after initialization, now at each iteration i of the
planning graph expansion, the algorithm instantiates the numerical variables of the partially
instantiated actions for the actions that respect the validity of the list of numeric constraints
(conN list) and keeps only the actions that have their preconditions (propositional and
numeric) satisfied at the fact level i-1. The obtained actions form the set of applicable actions
at level i-1. The algorithm copies all the facts of level i-1 to the fact level i and adds their
corresponding “no-op” actions to the action level i-1 (one “no-op” for each fact). Each non-
“no-op” action of the applicable actions of level i-1 is applied at the iteration i, negative and
positive propositional effects are simply added to fact level i, and the numeric effects are
evaluated by interpreting their arithmetic expressions or by executing their external
functions, and then by assigning their returned values to the corresponding numeric
variables. After this step, the mutual exclusions between actions of level i-1 and between
actions of level i are calculated in the same manner as it is done in the original Graphplan
algorithm. At the end of the iteration i, the algorithm tests if the goal conditions are satisfied
at facts level i and there are no mutual exclusions between the facts satisfying the goal,
otherwise the algorithm expands a new graph level until finding a valid plan or a sufficient
condition (i.e. when the algorithms starts generating duplicated levels in the graph) that
indicates that there is no solution to the problem.

In the following we detail the processing of the main functions used by algorithms-1 (Fig. 3):

� boolean testForSolution(Facts: the set of all fact levels, Actions: the set of action levels,

MutF: the set of fact mutexes, MutA: the set of action mutexes,
G: the set of goal conditions, Plan: ordered set of actions to be returned){

/*this function tests if G is satisfied in Facts and if a valid plan can be found*/
if G is satisfied in Facts then
 if Actions = {} then
 Plan:={};
 return true;
 elseif the graph is saturated then
 Plan:={’failure’};
 return true;
 else // search for a valid plan
 return ExtractPLAN (Facts, Actions, MutF, MutA, G, Plan)
 end if
end if
return false;

}

� boolean ExtractPLAN(Facts: the set of all fact levels, Actions: the set of action levels,

MutF: the set of fact mutexes, MutA: the set of action mutexes,

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

411

G: the set of goal conditions, , Plan: ordered set of actions to be returned){

In backward-chaining start by the set of goals at the last level n, find a set
of actions (“no-op”s included) at level n-1 that add these goal facts. The
preconditions to these actions form a set of subgoals at level n− 1. Find the
actions at level n-2 that add these subgoals and so forth until reaching the
first level 0. If at a certain level the subgoals can not be reached then try to
find a different set of actions that add these subgoals and continue.
If level 0 is reached then

 Plan:= ∪0, n Set of actions that add subgoals;
 return true;
end if
//more levels have to be expanded
return false;

}

� InstNumeric(N: numeric variables set, Fact: fact level){
Instantiate the parameters of the external functions and the numeric variables of
the expressions in N (e.g. numerical effects of actions) by values from Fact
(e.g. Numerical fact level items)

}

� PointPreconditions(a: instantiated action, Fact: fact level){

Add as preconditions pointers to a all the facts from Fact that appear in preP(a) as
well as in preN(a) and in effN(a);
/*A numeric state variable is added implicitly as a precondition to a ground action if it is
assigned to an external function or if it appears in an expression or if it is a parameter of an
external function of this ground action*/

}

In figure 4 (see Fig. 4) we show the structure of the planning graph that handles multi-
valued numeric variables. The fact level 0 represents the initial state. It contains two
propositional facts “proposition1” and “proposition2” and three numeric variables “n1”,
”n2”, ”n3” that have respectively “v10“, “v20“, “v30“ as single values. We note that, at initial
state each numeric variable has a single value. At action level 0, “Action1” and “Action2” are
considered as having their preconditions satisfied at fact level 0. “Action1” has 2 satisfied
numeric preconditions “n1= v10” and”n2=v20”. “Action2” has one satisfied numeric
precondition ”n2=v20” and one satisfied propositional precondition “proposition2” which is
true at the current fact level.
Applying the two actions at level 0, “Action1” is considered to update the values of numeric
variables “n1” and ”n2” respectively to “v11“ and “v21“ each of which is the result of a
function application or an arithmetic expression evaluation. As “Action1” modifies the value
of “n1= v10” to “n1= v11” (respectively the value of “n2= v20” to “n2= v21”) then it is
considered as adding “n1= v11” (respectively “n2= v21”) and deleting “n1= v10” (respectively
“n2= v20”). “Action2” is considered as adding “proposition3” and deleting “proposition2”.

www.intechopen.com

Frontiers in Robotics, Automation and Control

412

All facts that are pre-existed in the previous fact level (level 0) are connected as being added
from this level by “no-op” actions to the next level (level 1).

Fig. 4. Adapted Graphplan construction with multi-valued numeric variables

We remark in this figure that, propositional facts are growing horizontally (by line) from
level to level and numeric facts are growing vertically (by column). Therefore, the number of
numeric variables will not vary during the graph expansion and will stay the same at the
last fact level. However, the number of values of each numeric variable can increase with
each new expanded fact level.

5. Heuristic search

Solving domain independent planning problems is PSPACE-complete (Bylander, 1994). To
reduce this complexity a heuristic function can be used to guide the search for a plan in the
search space instead of using a blind search strategy.

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

413

The idea of deriving a heuristic function consists of formulating a simplified version of the
planning problem by relaxing some constraints of the problem. The relaxed problem can be
solved easily and quickly compared to the original problem. The solution of the relaxed
problem can then be used as a heuristic function that estimates the distance to the goal in the
original problem.
The most common relaxation method used for propositional planning is to ignore the
negative effects of actions. This method was originally proposed in (McDermott, 1996) and
(Bonet et al., 1997) and then used by the most of propositional heuristic planners (Bonet &
Geffner, 2001; Hoffman, 2001; Refanidis & Vlahavas, 2001).
With the arising of planners that solve problems with numerical knowledge such as metric
resources and time, a new relaxation method has been proposed to simplify the numerical
part of the problem. As proposed in Metric-FF (Hoffmann, 2002) and SAPA (Do &
Kambhampati, 2001), relaxing numerical state variables can be achieved by ignoring the
decreasing effects of actions. This numerical relaxation has been presented as an extension
to the propositional relaxation to solve planning problems that contain propositional and
numeric knowledge.
Knowing that, some planning problems contains actions that strictly increase or decrease
numeric variables without alternation, other problems uses numeric variables to represent
real world objects that have to be handled according to their quantity (Zalaket & Camilleri,
2004a) and thus applying the above proposed numerical relaxation method can be
inadmissible to solve this kind of problems. In this section, we start by explaining the
relaxed propositional task as it was proposed for STRIPS problems (McDermott, 1996), we
introduce a new relaxation method for numerical tasks in which we relax the numeric action
effects by ignoring the effects that move away numeric variable values from their goal
values, then we present the calculation of a heuristic function using a relaxed planning
graph over which we apply the above relaxation methods, and finally we present the use of
the obtained heuristic to guide the search for a plan in a variation of hill-climbing algorithm.

5.1 Propositional task relaxation

Relaxing a propositional planning task can be obtained by ignoring the negative effects of
actions.
Definition-6: Given a propositional planning task P=<S, A, sI, G>, the relaxed task P’ of P is

defined as P’=<S, A’, sI, G>, such that: ∀ a ∈ A and effP (a) = effP+ (a) ∪ effP- (a) ⇒ ∃ a’ ∈ A’ / effP

(a’)= effP+ (a)(which means effP (a’)= effP (a) - effP- (a)).

And thus, A’ = { conP(a), PreP(a), effP+ (a) , ∀ a ∈ A }.
The relaxed plan can be solved in polynomial time as it is proven by bylander (Bylander,
1994).

5.2 Numerical task relaxation

Relaxing a numerical planning task can be obtained by ignoring the negative effects of
actions that move away numeric values from the goal values.
Definition-7: Given a numerical planning task V=<S, A, sI, G>, the relaxed task V’ of V is defined

as V’=<S, A’, sI, G>, such that: ∀ a ∈ A and effN (a) = effN+ (a) ∪ effN- (a), such that:

∀ (n:=v) ∈ effN (a), where n is a numeric variable and v is a constant numeric value that can be the
result of an arithmetic expression or an executed external function.
Positive numeric effects effN+ (a) and negative numeric effects effN- (a) are defined as follows:

www.intechopen.com

Frontiers in Robotics, Automation and Control

414

∀ (n=vI) ∈ sI, where vI is a constant numeric value that represents the initial value of n.
if

(n θ vG) ∈ G, where θ ∈ {<, ≤, =, >, ≥} and vG is a constant numeric or the result of an
arithmetic expression or an executed external function.
if

distance (v, vG,) ≤ distance (vI, vG) and distance (vI, v) ≤ distance (vI, vG)
(the current value v of the numeric variable n is closer to the goal value vG of n
than the initial value vI from the initial value side.)

then

(n:=v) ∈ effN
+ (a)

else

(n:=v) ∈ effN
- (a)

 endif
 else

 (n:=v) ∈ effN
+ (a) / /(n does not appear in the goal state)

 end if
Example of the distance calculation:
Assume that:

- We have a numeric variable n which is equal to 0 at the initial state (vI=0) and is
equal to 5 in the goal state (vG=5).

- We have an action a, which assigns to n respectively the values v1=-3, v2=-1, v3=1,
v4=5, v5=7, v6=11.

In this case the distance can be calculated as: distance (vj, vi)=|vj - vi|
By testing for relaxed action effects:
distance(vI, vG)= |vG – vI|=5

- v1=-3: distance(v1, vG)=|vG – v1|=8 > distance(vI, vG) ⇒ (v1=-3) ∈ effN- (a)

⇒ v1=-3 is ignored in the relaxed task.

- v2=-1: distance(v2, vG)=|vG – v2|=6 > distance(vI, vG) ⇒ (v2=-1) ∈ effN- (a)

⇒ v2=-1 is ignored in the relaxed task.
- v3=1: distance(v3, vG)=|vG – v3|=4 ≤ distance(vI, vG) and distance(vI, v3)=|v3 – vI|=1≤

distance(vI, vG) ⇒ (v3= 1) ∈ effN+ (a) ⇒ v3=1 is held in the relaxed task.
- v4=5: distance(v4, vG)=|vG – v4|=0 ≤ distance(vI, vG) and distance(vI, v4)=|v4 – vI|=5≤

distance(vI, vG)⇒ (v4= 4) ∈ effN+ (a) ⇒ v4=4 is held in the relaxed task.
- v5=7: distance(v5, vG)=|v5 - vG |=2 ≤ distance(vI, vG), but distance(vI, v5)=|v5 – vI|=7 >

distance(vI, vG)⇒ (v5= 7) ∈ effN- (a) ⇒ v5=7 is ignored in the relaxed task.

- v6=11: distance(v6, vG)=|v6 - vG |=6 > distance(vI, vG) ⇒ (v6= 11) ∈ effN- (a)

⇒ v6=11 is ignored in the relaxed task.
Remarks:

The distance formula can vary according to the comparison operator used in the goal
state, but it is the same for all numeric values used in the initial and the goal state.
Each numeric variable that appears in the initial state and doesn’t appear in the goal
conditions is automatically added to the positive numeric effects, because the values of
these variables are often used as preconditions for actions and thus, they can not be
ignored.

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

415

Figure 5 (see Fig. 5) shows (in red) how negative numeric effects of an action that updates a
numeric variable n are considered. It also shows (in blue) the positive numeric effects of the
action which are considered according to the initial and the goal values of the variable n.
Note that, exchanging the values of n between initial and goal states will not affect the
ranges of selected positive and negative numeric effects.

Fig. 5. Choosing negative and positive numeric action effects

Fig. 6. Numeric relaxed action effects variation according to goal comparison operators.

Figure 6 (see Fig. 6) shows how the selection of negative (in red) and positive (in blue)
numeric effects depends on the comparison operator used for comparing the numeric
variable n in the goal conditions. Therefore, the distance formula is calculated according to
the operator used irrespective of the values of n in initial and goal states. As can be observed
in this figure, a tighter range of positive numeric effects can be obtained when the equal

www.intechopen.com

Frontiers in Robotics, Automation and Control

416

operator is used to compare the value of n in the goal conditions, and consequently a
smaller search space will be generated for the relaxed problem, which accelerates the
process of search for a plan for that problem.

5.3 Mixed planning problem relaxation
Definition-8: Given a mixed propositional and numerical planning problem P=<S, A, sI, G>, the

relaxed problem P’ of P is defined as P’=<S, A’, sI, G>, such that: ∀ a ∈ A and eff(a)= effP(a) ∪

effN(a) and effP (a) = effP+ (a) ∪ effP- (a) and effN (a) = effN+ (a) ∪ effN- (a)⇒ ∃ a’ ∈ A’ / eff (a’)=

effP+(a) ∪ effN+(a).

And thus, A’ = { conP(a), Pre (a), eff + (a) =effP+ (a) ∪ effN+ (a), ∀ a ∈ A }.
Definition-9: A sequence of applicable actions {a1, a2, …, an} is a relaxed plan for the planning
problem P=<S, A, sI, G> if {a’1, a’2, …, a’n} is a plan of its relaxed problem P’=<S, A’, sI, G>.

6. Relaxed planning graph with functions application

Like the planning graph structure used in the adapted Graphplan algorithm, the relaxed
planning graph consists of 2 types of levels fact levels and action levels. Algorithm-2 (see
Fig. 7) shows how the relaxed planning graph is expanded until reaching a fact level that
satisfied the goal conditions or until obtaining consecutive duplicated fact levels. This test is
done by using the function testForSolution(Facts, Actions, G, Plan), which will be modified
compared to the one used in the adapted Graphplan implementation (Fig. 3).
Compared to algorithm-1 (Fig. 3), algorithm-2 (Fig. 7) applies only the positive propositional
and numeric effects of actions for generating the next fact level, as discussed in sextion-5. An
additional relaxation is added to the planning graph construction in algorithm-2, which
consists of ignoring the mutual exclusion between facts and between actions. Therefore, the
initialization subroutine for algorithm-2 will be the same as in Fig. 2 but without the mutual
exclusion lists. This latter relaxation allows the relaxed planning graph to apply conflicting
actions in parallel, and thus to reach the goal state faster in polynomial time.
The test for solution
� boolean testForSolution(Facts: the set of all fact levels, Actions: the set of action levels,

G: set of goal conditions, Plan: ordered set of the actions to be returned){
/*this function tests if G is satisfied in Facts and if a relaxed plan can be found*/
if G is satisfied in Facts then
 if Actions = {} then
 Plan:={};

return true;
 elseif the graph is saturated then
 Plan:={’failure’};

return true;
 elseif G is satisfied at Facts[final_level] then

// extract a relaxed plan see algorithm-3
 ExtractRelaxedPLAN (Facts, Actions, G, Plan)
 end if
end if
return false;

 }

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

417

Algorithm-2: Relaxed planning graph with external function application
Input: S0: initial state, G: Goal conditions, Act: Set of actions

Output: Plan: sequence of ground actions

begin

 call initialization(); /* a subroutine that initializes variables*/
 /*relaxed planning graph construction iterations*/

while (not Stop) do

Actioni:={};

for all a ∈ A do
InstNumeric(preN(a), Facti);
if conN(a) = true in Facti then

if preP (a) ⊆ Facti and preN (a) are all true in Facti then
InstNumeric(effN (a), Facti);

Actioni:=Actioni ∪ a ;
PointPreconditions(a, Facti);

end if
end if

end for

Actions := Actions ∪ Actioni;
/*Add the facts of previous level with their “no-op” actions”*/
i := i+1;
Facti := Facti-1;

for each f ∈ Facti-1 do

Actioni-1:=Actioni-1 ∪ “no-op”;
end for
/*Apply the applicable positive instantiated actions*/

for all a ∈ Actioni-1 and a ≠ “no-op” do

Facti:=Facti ∪ effp+

for each e ∈ effN+ do
if g is an external function then

call the function g;
else

evaluate the expression g;
end if
/*add a new value to the muli-valued attribute n*/

n=n ∪ g;
end for
Connect a to its added effects;

end for

Facts := Facts ∪ Facti;
nonStop=testForSolution(Facts, Actions, G, Plan);

end while
end

Fig. 7. The relaxed planning graph construction algorithm

www.intechopen.com

Frontiers in Robotics, Automation and Control

418

6.1 Relaxed plan extraction

Once the relaxed planning graph is constructed using the algorithm-2 (Fig. 7) up to a level
that satisfies the goals, the extraction process can be applied in backward chaining as shown
in algorithm-3 (Fig. 8) which details the ExtractRelaxedPLAN function called by the
testForSolution function of in algorithm-2 as detailed in section-6:

Algorithm-3: Extract plan in backward chaining from the relaxed planning graph
Name: ExtractRelaxedPlan

Input: Facts: Set of fact levels, G: Goal conditions, Actins: Set of action levels

Output: Plan: sequence of ground actions
begin
 Plan:={};

 Gfinal_level:= { g ∈ Facts[final_level] / g satisfies G};
 for i = final_level to 1 do

 Gi-1:={};

 for each g ∈ Gi do
 acts:= {actions at level final_level-1 that add g};
 selAct:= get_first_element_of(acts);
 if act ≠ “no-op” then

 for act ∈ acts do
 if act= ‘no-op’ then
 selAct:=act;
 break;
 end if
 // Select the action that has the minimum number of preconditions
 if nb_preconditions_of(act)< nb_preconditions_of (selAct) then
 selAct:=act;
 end if
 end for
 end if

 plan:=plan ∪ selAct;

 Gi-1:= Gi-1 ∪ { f ∈ Facts[i-1] s.t. f is a precondition of selAct};
 end for

end for
end

Fig. 8. Plan extraction from a relaxed planning graph

Each sub-goal in the final fact level (the level that satisfies the goal conditions), is replaced
by the preconditions and by the implicit preconditions (definitions 3 and 4) of the action that
adds it and the action is added to the list of relaxed plan. Normally, a “no-op” action will be
preferred if it adds a sub-goal. If there is not a “no-op” action that adds the sub-goal and
there is more than one action that add it, then we choose the action that has the minimum
number of preconditions and implicit preconditions from these latter. We replace the sub-
goal fact by the facts that serve as preconditions and implicit preconditions to the chosen

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

419

action. We can backtrack in the graph to choose another action adding the sub-goal if a
selected action doesn’t lead to a solution. Once all goals of the final level are replaced by the
sub-goals of previous level, this previous level becomes the final level and the sub-goals
become the new goals. This process is repeated until reaching the first fact level. The
resulting heuristic is considered as the distance to the goal and it is calculated by counting
the number of actions of the relaxed plan.

∑
−

=

=
1_

0

i |a|
levelfinal

i

h , where [a0, a1,, afinal_level-1] is the relaxed plan.

Note that, during the backward plan extraction, we don’t make any difference between
numeric and propositional facts as all facts even that are results of applied functions are
accessed via action edges that are stored in the planning graph structure.

6.2 Heuristic planner running over the effects of applied functions

The main search algorithm that we use to find a plan in the original problem is a variation of
hill-climbing search guided by the heuristic h detailed in section-6.1. The heuristic is
calculated for each state s in the search space. At each step we select the child having the
lowest heuristic value compared to other children of the same parent to be the next state
step, and so on until we reach a state with a heuristic equal to zero. If at some step,
algorithm-2 doesn’t find a relaxed plan that leads a state s to the goal state then the heuristic
h will be considered as infinite at this step.
Each time a state is selected (except of the initial state) the action which leads to this selected
state is added to the plan list. The variation of hill-climbing is when a child having the
lowest heuristic is selected, if its heuristic value is greater than the parent state heuristic then
the child can be accepted to be the next state step as long as the total number of children
exceeding the parent heuristic value is less than a given threshold number. Another
variation of hill climbing is: The number of consecutive plateaus (where the calculated
heuristic value stays invariable) is accepted up to a prefixed constant. After that a worst-case
scenario is launched. This scenario consists of selecting the child who has the lowest
heuristic greater than the current state heuristic (invariable), and then to continue the search
from this children state by trying to escape the plateau. This scenario can also be repeated
up to a prefixed threshold.
In all the above cases, if hill-climbing exceeds one of the quoted thresholds or when the
search fails to find a plan the hill-climbing is considered as unable to find a solution and an
A* search begins. As HSP and FF, we have added to hill climbing search and to A* search a
list of visited states to avoid calculating a heuristic more than once for the same state. At
each step a generated state is checked to see if it exists in the list of visited states in order cut
it off to avoid cycles. According to our tests, we have noticed that most of the problems can
be solved with hill-climbing algorithm. Only some tested domain problems (like ferry with
capacity domain) have failed with hill-climbing search so early. But, the solution has been
found later with the A* search.

7. Empirical results

We have implemented as prototypes all the above algorithms in Java language. We have run
these algorithms over multiple foremost numeric domains that necessitate non classical

www.intechopen.com

Frontiers in Robotics, Automation and Control

420

handling such as the water jugs domain, the manufacturing domain, the army deployment
domain and the numeric ferry domain as introduced in (Zalaket & Camilleri 2004a). We
note that, some of these domains such as manufacturing and army deployment are usually
expressed and solved with scheduling or with mathematical approach.
Our tests can be summarized in three phases: In the first phase, we have started by running
a blind forward planning algorithm that supports the execution of external functions. Our
objective at this phase was only to study the feasibility and the effectiveness of integrating
such functions written in a host programming language to planning in order to accomplish
some complex computation. In the second phase, we have run the adapted Graphplan
algorithm with which we have obtained optimal plans for all the problems, but it was not
able to solve large problems. In the third phase, we have run the heuristic planner over all
the above cited domains. Larger problems are solved with this planner, but the generated
plans were not always optimal as it was the case in the second phase.
We have made minor efforts for optimizing our implementation in the one or the other of
the above phases. Even though, we can conclude that the heuristic algorithm is the most
promising one despite its non-optimal plans. We think that some additional constraints can
be added to this algorithm to allow it generating better plans quality. We also remark that
some planning domains can be modelled numerically instead of symbolically to obtain
extremely better results. For example, in the numeric ferry domain the heuristic algorithm
was able to solve problems that move hundreds of cars instead of tenth with classical
propositional planners.

8. Conclusion

In this chapter, we have presented multiple extensions for classical planning algorithms in
order to allow them to solve more realistic problems. This kind of problems can contain any
type of knowledge and can require complex handling which is not yet supported by the
existing planning algorithms. Some complicated problems can be expressed with the recent
extensions to PDDL language, but the main lack remains especially because of the
incapacity of the current planners. We have suggested and tested the integration to planning
of external functions written in host programming languages. These functions are useful to
handle complicated tasks that require complex numeric computation and conditional
behaviour. We have extended the Graphplan algorithm to support the execution of these
functions. In this extension to GraphPlan, we have suggested the instantiation of numeric
variables of actions incrementally during the expansion of the planning graph. This can
restrict the number of ground actions by using for numeric instantiation only the problem
instances of the numeric variables instead of using all the instances of the numeric variable
domain which can be huge or even infinite. We have also proposed a new approach to relax
the numeric effects of actions by ignoring the effects that move away the values of numeric
variables from their goal values. We have then used this relaxation method to extract a
heuristic which we have used it later in a heuristic planner.
According to our tests on domains like the manufacturing one, we conclude that scheduling
problems can be totally integrated into AI planning and solved using our extensions. As
future work, we will attempt to test and maybe customize our algorithms to run over some
domains adapted from the motion planning, in order to extend the AI planning to also cover

www.intechopen.com

Extending AI Planning to Solve more Realistic Problems

421

the motion planning and other robotic problems currently solved using mathematical
approaches.

9. References

Bacchus, F. & Ady, M. (2001). Planning with resources and concurrency a forward chaining
approach. Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI-01), August, 2001, Seattle, Washington, USA

Bak, M.; Poulsen, N. & Ravn, O. (2000). Path following mobile robot in the presence of
velocity constraints. Technical report, Technical University of Denmark, 2000,
Kongens Lyngby, Denmark

Blum, L. & Furst, L. (1995). Fast planning through planning graph analysis. Proceedingsof the
14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1636–1642,
August, 1995, Montreal, Quebec, Canada

Bonet, B. & Geffner, H. (2001). Planning as heuristic search. Journal of Artificial Intelligence,
129:5–33,2001

Bonet, B.; Loerincs, G. & Geffner, H.(1997). A robust and fast action selection mechanism for
planning. Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI-97), pages 714–719, July, 1997, convention center in Providence, Rhode
Island

Bresina, L. J.; Dearden, R.; Meuleau, N; Smith, E. D. & Washington, R. (2002) Planning
Under Continuous Time and Resource Uncertainty: A Challenge for AI. Proceedings
of the AIPS Workshop on Planning for Temporal Domains, pages 91–97, April, 2002,
Toulouse, France

Bylander, T. (1994). The computational complexity of propositional strips planning. Journal
of Artificial Intelligence, 69:165–204, 1994

Cayrol, M. ; Régnier, P. & Vidal, V. (2000). New results about LCGP, a least committed
graphplan. Proceedings of the 5th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-2000),pages 273–282, 2000, Breckenridge, CO, USA

Do, B. & Kambhampati, S. (2000). Solving planning graph by compiling it into a CSP.
Proceedings of the 5th International Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2000), 2000, Breckenridge, CO, USA

Do, B. & Kambhampati, S. (2001). Sapa: A domain-independent heuristic metric temporal
planner. Proceedings of the 6th European Conference on Planning (ECP 2001),
September, 2001, Toledo, Spain

Edelkamp (2002). Mixed propositional and numerical planning in the model checking
integrated planning system. Proceedings of the AIPS Workshop on Planning for
Temporal Domains, April, 2002, Toulouse, France

Fikes, R.E. & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Journal of Artificial Intelligence, 2:189–208, 1971.

Fox, M. & Long, D. (2002). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Proceedings of the 7th International Conference on Artificial
Intelligence Planning and Scheduling (AIPS- 2002), April, 2002, Toulouse, France

Geffner, H. (1999). Functional strips: A more flexible language for planning and problem
solving. Logicbased AI Workshop, June, 1999, Washington D.C.

www.intechopen.com

Frontiers in Robotics, Automation and Control

422

Gerevini, A. & Long, D. (2005). Plan constraints and preferences for PDDL3. Technical Report
Technical report, R.T. 2005-08-07, Dept. of Electronics for Automation, 2005,
University of Brescia, Brescia, Italy

Ghallab, M.; Howe, A.; Knoblock, G.; McDermott, D.; Ram, A.; Veloso, M.; Weld, D. &
Wilkins, D. (1998). PDDL : The planning domain definition language, version 1.2.
Technical Report CVC TR-98 003/DCS TR-1165. Yale Center for Computational Vision
and Control, October, 1998, Yale, USA

Hoffman, J. (2001) FF: The fast-forward planning system. AI Magazine, 22:57 – 62, 2001.
Hoffmann, J. (2002). Extending FF to numerical state variables. Proceedings of the 15th

European Conference on Artificial Intelligence (ECAI2002), pages : 571-575, July, 2002,
Lyon, France

 Hoffmann, J.; Kautz, H.; Gomes, C. & Selman B. (2007). SAT encodings of state-space
reachability problems in numeric domains. Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07), pages 1918– 1923, January, 2007,
Hyderabad, India

McDermott, D. (1996). A heuristic estimator for means ends analysis in planning.
Proceedings of the 3rd International Conference on Artificial Intelligence Planning Systems.
May, 1996, Edinburgh, UK.

Refanidis, I. & Vlahavas, I. (2001). The GRT planning system: Backward heuristic
construction in forward state-space planning. Journal of Artificial Intelligence
Research, 15:115–161, 2001.

Samson, C. & Micaelli, A. (1993). Trajectory tracking for unicycle-type and Two steering-
wheels mobile robots. Technical report, Institut National de Recherche en
Automatique, 1993, Sophia-Anitpolis, France

Schmid, U.; Müller, M. & Wysotzki, F. (2002). Integrating function application in state based
planning. Proceedings of the 25th Annual German Conference on AI: Advances in
Artificial Intelligence, pages 144 – 162, September 2002, Aachen, Germany.

Smith, D. & Weld, D. (1999). Temporal planning with mutual exclusion reasoning.
Proceedings of 16th InternationalJoint Conference on Artificial Intelligence (IJCAI-99),
August, 1999, Stockholm, Sweden

Zalaket, J. & Camilleri, G. (2004a). FHP : Functional heuristic planning. Proceedings of the 8th
International Conference on Knowledge-Based Intelligent Information and Engineering
Systems (KES 2004), pages 9–16, September, 2004, Wellington, New Zealand

Zalaket, J. & Camilleri, G. (2004b). NGP: Numerical graph planning. proceedings of the 16th
European Conference on Artificial Intelligence (ECAI 2004), pages 1115–1116, August,
2004, Valencia, Spain.

www.intechopen.com

Frontiers in Robotics, Automation and Control

Edited by Alexander Zemliak

ISBN 978-953-7619-17-6

Hard cover, 450 pages

Publisher InTech

Published online 01, October, 2008

Published in print edition October, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book includes 23 chapters introducing basic research, advanced developments and applications. The

book covers topics such us modeling and practical realization of robotic control for different applications,

researching of the problems of stability and robustness, automation in algorithm and program developments

with application in speech signal processing and linguistic research, system's applied control, computations,

and control theory application in mechanics and electronics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Joseph Zalaket (2008). Extending AI Planning to Solve more Realistic Problems, Frontiers in Robotics,

Automation and Control, Alexander Zemliak (Ed.), ISBN: 978-953-7619-17-6, InTech, Available from:

http://www.intechopen.com/books/frontiers_in_robotics_automation_and_control/extending_ai_planning_to_so

lve_more_realistic_problems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

