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Abstract

Acute myeloid leukemia (AML) is an extremely heterogeneous and deadly hematological
cancer. Cytogenetic abnormalities and genetic mutations, though well recognized and
highly prognostic, do not fully capture the degree of heterogeneities manifested in AML
clinically. Additionally, current treatment of AML still largely depends on chemotherapy
and allogeneic stem cell transplantation, with few options for personalized and molecu-
larly targeted therapies. Proteomics holds promise for unraveling biological heterogene-
ities in AML beyond the scope of cytogenetics and genomics. In recent years, proteomics
has emerged as an important tool for discovering new diagnostic biomarkers, enabling
more prognostic patient classifications, and identifying novel therapeutic targets. In this
chapter, we review recent advances in proteomic studies of AML, including an overview
of AML pathology, popular proteomic techniques, various applications of proteomics in
AML from biomarker discovery to target identification, challenges and future directions in
this field.
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1. Introduction

Acute myeloid leukemia (AML) is a hematological cancer characterized by rapid proliferation

and accumulation of immature, abnormally differentiated clonal hematopoietic cells in the bone

marrow and blood [1]. The American Cancer Society estimates about 21,380 new cases of AML

and about 10,590 deaths from AML occurring in the United States in 2017. Known as an age-

associated disease, the average age of AML patients is 67 years old, and almost all deaths from

AML are in adults. Increasing age is also a prognostic factor in AML. The disease has a much

lower cure rate in older patients (5–15% over 60 years old) compared to younger patients (35–40%

under 60 years old) [2], in part because the elderly are unable to tolerate intensive chemotherapy.

In contrast to breakthroughsmade in treating other cancers, the progress of treatment in AMLhas

been slow overall. The main challenge is that the biology of AML is enormously heterogeneous.
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This is especially the case in adult AML compared to pediatric AML, as somatic gene mutations

accumulateover time and therefore increase the complexityofdisease classificationand treatment.

AML is currently classified into subtypes based on cellular lineage andmorphology, cell-surface or

cytoplasmic marker expression, chromosome abnormalities, and gene mutations, using the

French-American-British (FAB) classification system [3] or the World Health Organization

(WHO) classification system [4].

The identification of chromosome abnormalities by cytogenetic tests remains the most effective

tool to classify patients into prognostic categories and guide therapy in clinic. The greatest

contribution of cytogenetic abnormalities to guide the treatment of AML is in the case of acute

promyelocytic leukemia (APL), M3 subtype of AML. APL is characterized by the t(15;17)q

(22;12) cytogenetic abnormality, which gives rise to the promyelocytic leukemia-retinoic acid

receptor alpha (PML-RARA) fusion protein [5]. The disease was found to respond to all-trans-

retinoic acid (ATRA) and arsenic trioxide (ATO) [6, 7]: ATRA enables leukemic promyelocytes

to differentiate into mature cells, and ATO accelerates the degradation of PML-RARA. This

discovery improved the cure rate in APL from 30% to over 90%, and it marked the first

molecularly targeted therapy and one of the greatest breakthroughs in AML therapeutic

history [8].

AML patients can be categorized into three risk groups based on cytogenetics: (1) a favor-

able risk group with relatively good outcomes with chemotherapy; (2) an unfavorable risk

group with much worse outcomes, who are usually considered for allogeneic stem cell

transplantation; and (3) an intermediate risk group consisting of patients not in the favor-

able and unfavorable categories. While the favorable and unfavorable risk groups are well

defined based on specific cytogenetic alterations, the definition of the intermediate risk

group is sometimes unclear and discordant across the medical establishment. The United

Kingdom Medical Research Council (MRC-C) prognostic classification system defines the

intermediate risk group as a group of patients without identifiable cytogenetic abnormali-

ties of favorable or unfavorable groups [9], whereas the European Leukemia Net (ELN-C)

system incorporates common genetic mutation information (NPM1 and FLT3 ITD) to fur-

ther stratify the intermediate group into intermediate-1 and intermediate-2 groups with

higher and lower risks, respectively [2]. The fact that about 50% of AML patients are under

the intermediate risk groups indicates the limitations of classifying AML based on cytoge-

netic alterations alone [10].

It has long been hoped that genetic mutations in AML can provide critical prognostic informa-

tion to complement cytogenetics and help direct individualized therapy. Indeed, recurrent

mutations of genes (e.g. FLT3, NPM1, CEBPA, KIT, DNMT3A, IDH1/2 and TET2) have been

identified in AML, some of which were found to associate with patient outcome, and identifi-

cation of these mutations has already been incorporated into the standard-of-care testing and

classification system [11, 12]. Our understanding of the genomic and epigenomic landscape in

AML has also been greatly improved in the last decade thanks to the development of next-

generation sequencing techniques. In a recent study by the Cancer Genome Atlas Research

Network [13], whole-genome (50 cases) and whole-exome sequencing (150 cases), along with

RNA and microRNA sequencing and DNA-methylation analysis, were used to analyze the
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genomes of 200 adult AML patients. The study revealed that AML genomes on average only

have 13 mutations, which is fewer compared to other cancers. Furthermore, 5 of these 13

mutations are recurrent. The limited number of genetic mutations in contrast to the degree of

heterogeneity observed clinically indicates the existence and importance of AML heterogeneity

beyond genes.

Despite the extensive adoption of genomic approaches in cancer research, it is widely recog-

nized that genomics alone is insufficient to provide an accurate picture of all cellular changes

and dynamic states [14]. First, the same mRNA transcript often does not correspond to a

single protein but to multiple protein counterparts, thanks to alternative splicing, protein

cleavages, and post-translational modifications (PTM). In particular, PTMs (e.g. phosphoryla-

tion, acetylation, methylation, glycosylation, ubiquitination) play important roles in cellular

processes by affecting the folding, location, and function of proteins. Proteins from the same

mRNA transcript can have opposite effects on cellular processes with different PTMs, and it

is currently not possible to predict the fate of PTMs from the protein sequence. Second, most

cellular processes are executed and regulated by interactions between proteins and interactions

between proteins and DNAs. An understanding of these interactions, which is unattainable

via genomic approaches, is crucial for predicting cell behavior and discovering new drug

targets. Moreover, the discovery of genetic mutations and abnormal gene expressions often

does not offer an immediate therapeutic solution, as most drugs target proteins instead of

genes.

Though nascent and over-shadowed by genomics in the research community, proteomics can

complement the limitations of genomic approaches and advance the discovery of biomarkers

and personalized treatments for AML. As the workhorses in cells, proteins can more accurately

reflect the real dynamic changes in cellular processes, and offer insights into a heightened level

of disease heterogeneity beyond the scope of genomics. In an analogy to screenwriting, geno-

mics is a copy of a script, whereas proteomics is a movie produced from the script. With the

same script, different actors, actresses and directors, stage settings and lighting effects will

result in different productions. It is also extremely hard to judge whether the show will be a

success based on the script alone, because execution matters and one can only be sure after

seeing it in action. Therefore, proteomics can capture the real action in cells (e.g. the effects

from cellular environment and the response by the cell) that are unforeseen by genomics.

The application potential of proteomics in AML is plenty. First, proteomics can be used to

either establish new patient classification systems by itself or improve the current risk stratifi-

cation system by complementing cytogenetics and genomics. Not all genetic mutations are

equally important in driving the disease or in determining a patient’s response to therapy.

Some genetic mutations might not make a difference at the proteomic level, whereas some

proteomic patterns and cell signaling behaviors might not manifest at the genetic level. The

combination of proteomic and genomic approaches would be particularly beneficial for sub-

classifying patients that are currently lumped together in the intermediate risk group. Second,

proteomics can be used as biomarkers to guide therapy. Certain protein expression and PTM

levels could be effective indicators of whether a patient will develop chemoresistance and

hence whether the patient should be referred to allogeneic stem cell transplantation. Moreover,
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abnormal expression of proteins can potentially be molecularly targeted, creating more per-

sonalized therapy options for AML patients.

The workflow of a typical proteomic project in AML is shown in Figure 1. In this chapter, we

focus on reviewing the main proteomic techniques and the various applications of proteomics

in AML research, the topics of the next two sections. In the last section, we will discuss the

main challenges and issues in AML proteomic research by covering topics related to sample

collection considerations and proteomic data analysis techniques.

Figure 1. Typical workflow of a proteomic project in AML with methodology choices for each step.
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2. Overview of proteomic techniques

The development of proteomic techniques in the past 20 years has enabled many research

studies to identify the roles of proteins and PTMs in biology and human diseases at a large

scale. It has also inspired the Human Proteome Project [15], a global effort that aims to

“generate the map of protein based molecular architecture of the human body and become a

resource to help elucidate biological and molecular function and advance diagnosis and

treatment of diseases”. Current proteomic approaches can be divided into two sub-categories:

mass spectrometry (MS)-based, and antibody-based. Here, we describe the fundamentals of

each technique and their recent applications in AML.

2.1. MS-based methods

One intuitive way to identify a protein is by measuring its mass directly. MS is a widely-used

analytical technique that ionizes a sample (solid, liquid, or gas) and measures the mass based

on the mass-to-charge ratios of the ions. The ionization causes the molecules to break into

charged fragments, which pass through an electric (e.g. time-of-flight (TOF)) or magnetic field

that sorts ions by their mass-to-charge ratios. The relative abundance of ions detected as a

function of the mass-to-charge ratio is usually presented in a mass spectrum for deciphering

the identity of the molecule. MS is often used in tandem with liquid chromatography (termed

LC-MS or LC/MS) which separates the liquid compounds chromatographically before passing

them through the mass spectrometer.

When applying MS to detect proteins, one can take either a “top-down” or a “bottom-up”

approach [16–18]. The “top-down” approach ionizes the intact protein directly, and is usually

limited to low-throughput single protein studies. On the other hand, the “bottom-up”

approach first digests the protein into peptides using enzymes such as trypsin, and then

analyzes the peptides using tandem mass spectrometry. The “bottom-up” approaches using

LC-MS are also referred to as “shotgun proteomics” [19]. The “bottom-up” approach is more

widely adopted compared to the “top-down” approach in proteomic studies because it is

much easier to handle small tryptic peptides and determine their masses with high accuracy

than handling intact protein ions. However, the limited protein sequence coverage by pep-

tides, loss of PTM information and redundant peptides of ambiguous origin are some of the

disadvantages of “bottom-up” approaches. Notably, an intermediate approach, “middle-

down”, was proposed to break proteins into proteolytic peptides (size of 2–20 kDa) instead of

small tryptic peptides (which is ~8–25 residues long) using proteases such as OmpT [20]. This

hybrid approach potentially combines the benefits from the “top-down” and “bottom-up”

approaches and overcomes their drawbacks.

Electrospray ionization (ESI) [21] and matrix-assisted laser desorption/ionization (MALDI) [22]

are two primary methods for ionizing proteins and peptides. ESI generates ionized molecules by

applying a high electric field and dispersing the liquid sample into an aerosol. In contrast, MALDI

ionizes the sample by firing laser pulses at the sample mixed with an energy absorbing matrix.

Both methods are considered to be “soft” ways of obtaining ions of large molecules with low

fragmentation. The main advantage of ESI is that it produces multiply charged ions, extending
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the mass detection range of the analyzer. MALDI, on the other hand, is advantageous for its

robustness and high speed. ESI is frequently coupled with LC, whereas MALDI is most often

used with TOF. A more recent method, Surface-enhanced laser desorption/ionization (SELDI)

[23], was proposed as an alternative to MALDI. SELDI is similar to MALDI with the exception

that the sample is bound to a surface in SELDI instead of being mixed with a matrix material. The

SELDI surface allows for more retention of analytes and therefore is more suitable for detecting

proteins in lower concentrations. SELDI is usually coupled with TOF, and it was shown that

SELDI-TOF-MS can detect proteins from as little as 1 μL of serum or as few as 25–50 cells [24],

which can be very beneficial when studying clinical samples.

To quantify the protein levels (or termed “quantitative proteomics”), there are three major groups

of labeling methods that can be used in the proteomic workflow: label-free, stable isotope

labeling, and multiple reaction monitoring [25]. By its name, label-free methods (e.g. spectral

counting and peptide peak intensity measurement) do not use any isotope containing compound

to bind to and label proteins [26]. Though easy to perform, inexpensive, high throughput and

with a wider dynamic range, label-free methods are in general less accurate [27]. Stable isotope

labeling approaches use differential stable isotopes to label and distinguish samples via either

metabolic labeling or chemical labeling. One example of metabolic labeling approach is stable

isotope labeling by amino acids (SILAC) [28], which feeds cells from different samples with

heavy and light forms of arginine or lysine through the growth medium. SILAC generates

precise quantitation of proteins, but can only be applied to living or metabolically active samples.

An alternative method, “super-SILAC”, was developed to extend SILAC to human tissue sam-

ples by using a mixture of SILAC-labeled cell lines as the internal standard [29]. A super-SILAC

mix based on five AML cell lines (Molm-13, NB4, MV4-11, THP-1, and OCI-AML3) was recently

established for quantifying patient AML cells [30].

While most MS-based methods profile proteins from cell lysates, mass cytometry is a fusion

technology of MS and flow cytometry that can be used to measure protein levels in single cells

[31]. Mass cytometry is also referred to as cytometry by time-of-flight (CyTOF), which is the

current commercialized implementation. Mass cytometry overcomes the spectral overlap in

flow cytometry by conjugating probes (often antibodies) with heavy-metal isotopes as expres-

sion reporters instead of fluorophores. The metal-conjugated antibodies, ionized and detected

using the TOF mass spectrometer, greatly increase the number of parameters measureable in

single cells due to their little signal overlap. Currently, mass cytometry can be used to detect up

to 40 parameters per cell (up to 100 parameters theoretically), including protein levels, PTMs

and proteolysis products. Mass cytometry was recently used in pediatric AML to profile both

the surface markers and intracellular signaling proteins in single cells [32]. Notably, the study

discovered that the surface phenotypes and their regulatory intracellular signaling phenotypes

are decoupled in AML, rendering the surface markers unreliable for reporting signaling states.

The study also identified a gene signature associated with the primitive signaling phenotype

that is predictive of survival.

2.2. Antibody-based methods

The other group of methods for detecting and quantifying proteins is based on the use of

antibodies. Antibodies can be engineered to specifically recognize not only proteins but also
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their PTMs, which is very favorable for profiling kinases and signaling activities. Commonly

used techniques such as western blot and enzyme-linked immunosorbent assay (ELISA) already

use antibodies to measure protein expressions. However, these methods are low-throughput,

and they are therefore unsuitable to profile a large number of proteins or samples in a timely

fashion. Using microarray technologies, multiple types of high-throughput antibody-based

methods were developed to enable profiling proteins at a much larger scale, including tissue

microarrays (TMA) and protein microarrays. TMA is a proteomic technique in application to

tissue samples [33]. TMA assembles up to 1000 tissue samples into one paraffin block to enable

simultaneous evaluation of biomarkers. Since tissue samples are of more importance in solid

tumors than in leukemia, we will focus the discussion on protein microarrays.

Based on the application purpose, protein microarrays can be divided into two categories:

analytical protein arrays and functional protein arrays [34]. Functional protein arrays print a

large number of individually purified proteins on an array to investigate their biochemical

activities. The use of functional arrays is mostly in basic research, including identifying inter-

actions between protein-protein, protein-DNA, protein-antibody, protein-lipid, protein-RNA,

or protein-small molecules, and identifying substrates or enzymes for protein modifications.

On the other hand, analytical protein arrays use well-characterized antibodies to measure the

amounts of specific proteins in a large scale. These arrays are widely used in clinical research

for biomarker discovery and protein expression profiling, and can be applied in disease diag-

nosis in clinic.

There are two types of analytical protein arrays: forward-phase protein array (FPPA) and

reverse-phase protein array (RPPA) [35]. The major difference between FPPA and RPPA is

whether antibodies or samples are immobilized. In FPPA, various antibodies are printed on a

slide as bait molecules, where each spot on the array is one type of antibody. Each slide is then

exposed to a single protein lysate (sample), and multiple protein expression levels are mea-

sured. The main advantage of FPPA is that a single slide can provide measurements of many

proteins simultaneously. However, FPPA needs two highly specific antibodies (similar to

“sandwich ELISA”) for assaying each protein, and it also requires a higher amount of the

protein lysate sample (which is often a luxury in clinical research). In contrast, RPPA immobi-

lizes protein lysates, where each spot on the slide is a sample from a different source or

condition. Each slide is then probed with one type of antibody and provides a read-out of the

corresponding protein level across all printed samples, allowing for a direct comparison

between samples. To profile multiple proteins, one can prepare a batch of identical slides

printed with the same samples (which is straightforward to do), and process them in parallel,

each slide with a unique type of antibody. RPPA is known to be highly sensitive and robust,

and it is particularly advantageous for clinical applications because it requires lower amounts

of samples. In the past decade, RPPA was used in multiple research studies to generate protein

profiles and identify biomarkers in AML [36–41].

Compared to MS-based methods, antibody-based methods are less of a de novo discovery

approach, and provides less coverage of the proteome. This is mainly because antibody-based

methods only profile proteins that are known ahead of the experiment, and the coverage of

these methods depend on the availability of specific antibodies. It is still an ongoing effort to

generate antibodies that specifically recognize all protein isoforms present in the human
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proteome. The Human Protein Atlas project, started in 2003, maps the expression and location

of proteins in cells, normal tissues and cancers using an antibody-based approach. Its latest

version (16th release) now includes more than 25,000 antibodies that about 86% of all human

protein-coding genes [42, 43]. In addition, the quality of antibodies is key to the success of any

antibody-based methods. Before printing an array, antibodies need to be validated to ensure

that they are highly specific and do not cross-react with other proteins in the lysate. Otherwise,

the accuracy of the profiling will be compromised by false signals. Antibodypedia (https://

www.antibodypedia.com/), a public database containing validation data of more than one

million antibodies, is a useful resource for antibody-based research [44].

3. Applications of proteomics in AML

3.1. Discovery of diagnostic biomarkers

One application of proteomics in AML is diagnostic marker discovery. Comparing the

proteomes between AML and healthy samples or between AML and other leukemic subtypes

can shed light on the unique diseasemechanisms present in AML. Differential protein expression

levels can potentially serve as biomarkers for the early detection of the disease and for assisting

the current diagnostic system to distinguish AML patients from other leukemic subtypes (for

example, acute lymphocytic leukemia (ALL) or myelodysplastic syndromes (MDS)) as well as to

classify patients within AML. The identification of these differentially expressed proteins specific

to AML or specific to certain AML subtype will provide a deeper understanding of its heteroge-

neous disease mechanism and facilitate development of personalized therapy.

Multiple studies have compared the proteomes between AML and normal healthy samples to

look for AML-specific protein signatures. Using two-dimensional electrophoresis (2-DE) and

MS, Kwak et al. identified 8 proteins that were differentially expressed between 12 AML

patients and 12 healthy subjects, in which 5 proteins (α-2-HS-glycoprotein, complement-

associated protein SP-40, RBP4 gene product, lipoprotein C-III, and an unknown protein) were

down-regulated and 3 proteins (immunoglobulin heavy-chain variant, proteosome 26S

ATPase subunit 1, and haptoglobin-1) were up-regulated in AML [45]. In another study using

2-DE and MALDI-TOF peptide mass fingerprinting analysis [46], seven proteins (alpha-

enolase, RhoGDI2, annexin A10, catalase, peroxiredoxin 2, tromomyosin 3, and lipocortin 1

(annexin 1)) were found to have significantly altered expression in AML blast cells compared

to normal mononuclear blood cells. Comparing the proteome of AML against that of normal

white blood cells, 31 proteins (including myeloid-related protein 8 and 14, myosin light chain 2

and 3) with significant altered expression were identified [47].

Proteomic comparisons between AML and other leukemia-related diseases may reveal bio-

markers to distinguish AML from similar diseases in clinic. Cui et al. identified 27 proteins with

differential expression between AML and ALL, including myeloperoxidase [47]. Aiming to char-

acterize the proteomic mechanism underlying MDS progression to AML, Braoudaki et al. identi-

fied MOES, ZRI and AIFM1 as potential biomarkers for AML using 2-DE and MALDI-TOF, since

these proteins were found to be up-regulated in AML [48]. Foss et al. demonstrated that the use of

Myeloid Leukemia50



alignment-based label-free quantitation approaches in LC-MS/MS to distinguish AML from ALL

and CD34+ cells from healthy donors [49]. Based on the same data generated in Foss et al.’s study,

Elo et al. used a more advanced statistical method (reproducibility optimized test statistics

(ROTS)) to identify biomarkers from the proteomic data and from the transcriptomic data. They

found that the alignment-based proteomic method was able to generate novel and significant

biomarkers that were not detected by the transcriptomic assay [50]. From the proteomic profiles of

151 AML bone marrow samples generated by SELDI-TOF-MS, Xu et al. developed a proteomic-

based decision tree model to classify patients into APL, AML-granulocytic, AML-monocytic,

ALL, and control (healthy volunteers) [51].

AML subtypes display unique proteomic patterns, which may present therapeutic opportuni-

ties for each of these subtypes. In a study of 38 AML-M1/M2 patients and 17 healthy volun-

teers [52], Luczak et al. demonstrated the use of 2-DE-MS to distinguish between M1 and M2

patients. They identified five proteins that were differentially accumulated between M1 and

M2, in which Annexin III, L-plastin and 6-phosphogluconate dehydrogenase were found

exclusively in M2. Comparing the protein expression levels across AML FAB classes, Cui

et al. identified 23 proteins differentially expressed between the granulocytic lineage (M1, M2,

M3) and monocytic lineage (M5), where they found 7 proteins up-regulated in both M2 and

M3, and 15 proteins tightly associated with M3 (e.g. cathepsin G) [47]. In an RPPA study of 256

newly diagnosed AML patients [36], 24 proteins were found to significantly differ in expres-

sion between FAB subtypes out of 51 proteins that were tested. The proteins were found to

belong to three clusters: (1) total and phosphorylated signal transduction proteins (KCA,

PKCA.p, ERK2, AKT.p308, P38.p P70S6K, P70S6K.p, and Src.p527), with lower expression in

myeloid subtypes (M0, M1, and M2); (2) PTEN and PTEN.p, with lower expression in M6 and

M7; (3) apoptosis, cell cycle or differentiation regulating proteins and activated STAT proteins

that have higher expression in myeloid subtypes.

Differences in proteomics (expression patterns, protein interaction pathways, and PTMs) were

also found between cytogenetic abnormalities. In a study of 42 AML patients study using 2-DE

MALDI-TOF-MS [53], Balkhi et al. showed that there were significant differences of protein

expression levels, protein interaction networks and PTMs between cytogenetic groups. PTMs

specific to cytogenetic abnormalities were identified, including a b-O-linked N-acetyl glucos-

amine (O-GlcNAc) of hnRNPH1 in patients with 11q23 translocation, an acetylation of

calreticulin in patients with t(8;21), and methylation of hnRNPA2/B1 in patients with t(8;21)

and inv(16). In an RPPA study, increased MET phosphorylation levels were found to associate

with t(15;17) and t(8;21) cytogenetic subtypes [54].

Proteomic comparisons of relapsed against newly diagnosed patients or patients in remission

can reveal biomarkers for early detection of relapse and non-invasive monitoring of minimal

residual disease (MRD). Using MALDI-TOF-MS and high performance LC (HPLC)-ESI-MS/MS

[55], Bai et al. identified 47 peptides that were differentially expressed between AML and healthy

controls. In specific, they built a quality classifier model based on three peptides (ubiquitin-like

modifier activating enzyme 1 (UBA1), isoform 1 of fibrinogen alpha chain precursor and platelet

factor 4 (PF4)). UBA1 was up-regulated in newly diagnosed AML, decreased to normal level

after complete remission, and then elevated again in relapse, whereas the other two peptides had
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the opposite response. The three proteins were shown to correlate with patient outcome and can

serve as biomarkers for monitoring MRD and detecting relapse. In another study, Pierce et al.

performed RPPA on 511 AML patient samples, and found that the expression of protein

transglutaminase 2 was higher at relapse compared to diagnosis [41].

Leukemic stem-like cells (LSC) are believed to play critical roles in patient chemoresistance,

refractory and relapse. To investigate the biological differences between leukemic stem-like

cells (LSC) and common myeloid progenitors (CMP), Kornblau et al. profiled the expression of

121 proteins in Bulk (CD3/CD19 depleted), CD34�, CD34+ (CMP), CD34+CD38+ and CD34

+CD38� (LSC) in AML patients using RPPA [40]. Significant differences in protein expression

and protein network patterns were found between LSC and the rest of the cells, indicating

unique AML biology existing in LSC. The differentially expressed proteins in LSC (e.g. Mcl1,

cIAP, Survivin, and Bcl2) may present as therapeutic targets for selectively targeting LSC.

3.2. Discovery of prognostic factors

Proteomics enables discovery of abnormal expressions of proteins or PTMs that are predictive

of patient outcome. Profiling protein expressions in 511 AML patients using RPPA [37],

Kornblau et al. found that patients with high levels of FOXO3A phosphorylation have higher

rates of primary resistance and shorter remission durations. The prognostic value of highly

phosphorylated FOXO3A is independent of cytogenetics, since FOXO3A phosphorylation

levels were not found to associate with karyotypes. In another study of the same patient

cohort, the overexpression of FLI1 protein was identified as another adverse prognostic factor

in AML [38]. In the study by Cui et al. [47], NM23-H1 was identified as a prognostic factor,

since it is up-regulated in all FAB subtypes except M3a, a favorable prognosis subtype.

The prognostic protein signatures can potentially complement cytogenetics and genomics to

build better classification systems. In a study of 54 AML samples using SELDI-TOF [56],

Nicolas et al. showed that proteomic signatures can stratify patient outcome and complement

cytogenetic classifications. Based on the proteomic profile, they grouped patients into two

clusters and found significant differences in overall and event-free survival between the two

clusters. The proteomic-defined clusters were also able to stratify the overall and event-free

survival in specific cytogenetic categories: the intermediate risk group was divided into a

group of patients with similar outcome to the favorable and a group with similar outcome to

the unfavorable; the unfavorable group was divided into a group with similar outcome to the

intermediate and a group of similar outcome to the unfavorable. In addition, they isolated a

biomarker, S100A8, the expression of which is a predictor of poor survival.

The mutation of p53, resulting in p53 stabilization, is associated with adverse survival, though

the mutation is observed in only 5–8% of newly diagnosed AML patients. A recent RPPA

study showed that p53 stabilization also occurs in a significant portion of wild-type p53

patients, where the expression of the p53 negative regulator Mdm2 is elevated [39]. Further-

more, patients with overexpressed Mdm2 are subject to poor outcomes similar to patients with

p53 mutants. This finding has significant clinical implications as it unveils the p53 dysfunction

in wild-type p53 patients who are previously assumed to have intact p53 functions, and it

highlights the value of proteomics to complement genetic testing for classifying patients and

guiding treatments.
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Recently, as part of the Dialog for Reverse Engineering Assessment and Methods (DREAM), a

crowdsourcing effort was launched to build, compare and assess prediction algorithms for AML

prognosis (DREAM 9 AML Outcome Prediction Challenge) [57]. Based on the data consisting of

40 clinical attributes and 231 RPPA measurements in 191 AML patients (the released training

data), participants were asked to buildmodels that predict response to therapy (sub-challenge 1),

remission duration (such-challenge 2) and overall survival time (sub-challenge 3) in 100 AML

patients (withheld as test data for model evaluation). As one of the conclusions, the study

showed that the RPPA data substantially improved the top performing models’ performance in

predicting response to therapy in AML, illustrating the prognostic and predictive value of

proteomics and the potential of combining proteomics with current prognostic factors for more

accurate outcome assessment. In addition, the expression of PI3KCA was identified as a highly

informative protein biomarker for predicting patient response to therapy.

3.3. Identification of target proteins

Proteomics can provide insights into the effects and mechanisms of genetic mutations and help

identify novel drug targets associated with specific mutations. Transcription factor CCAAT

enhancer binding protein α (C/EBPα) is an important regulator of the myeloid differentiation.

Its mutant form, C/EBPα-p30, is present in about 9% of AML patients. Using 2-DE MALDI-

TOF-MS, Geletu et al. identified Ubc9 (an E2-conjugating enzyme) as a target protein for C/

EBPα-p30 [58]. The expression of Ubc9 was found to increase when inducing C/EBPα-p30, and

the overexpression of Ubc9 was also observed in patients with C/EBPα-p30. In another study

using 2-DE-MS proteomic screening, Pulikkan et al. uncovered the association of PIN1

overexpression with C/EBPα-p30 [59]. They then demonstrated that the elevated levels of

PIN1 block granulocyte differentiation via c-Jun, and that the inhibition of PIN1 restores

myeloid differentiation in primary AML blasts with C/EBPαmutation. This discovery suggests

a potential treatment strategy of inhibiting PIN1 for AML patients with C/EBPαmutation.

As another example, RAS mutations occur in 10–25% of AML patients, however the mutation

is not known to be prognostic. An RPPA study of 609 patients (11% with RAS mutation)

showed that the RAS-Raf-MAP kinase and PI3K signaling pathways are up-regulated in

patients with RAS mutation, which indicates RAS and PI3K signaling pathways as potential

inhibitory targets for treating patients with RAS mutations [60].

3.4. Proteomics in AML cell lines

Due to the limited availability and difficult culturing conditions of primary patient cells, AML

cell lines are often used to study disease mechanisms and biomarker discoveries. In these well-

controlled and less heterogeneous experimental environment, one can compare the proteomic

profiles between AML cell lines derived from different sources and with different mutations or

cytogenetic abnormalities, and then extrapolate findings to the patient category of the cell

line’s origin. Cell lines are also easier to manipulate (for example, by up or down regulating

certain proteins and by introducing mutations), and are therefore a great platform for studying

the signaling networks and discovering target proteins.

Recently, Matondo et al. used large-scale quantitative SILAC-MS to identify proteins regulated

by proteasome inhibition in two AML cell lines of different maturation stages: KG1a cells
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(immature) and U937 cells (mature) [61]. From over 7000 proteins quantified in the two cell lines,

the study identified novel regulation targets of the proteasome inhibition, including IL-32,

apoptosis inducing factor SIVA, MORF family mortality factors, in addition to known regulation

targets such as heat shock and cell cycle proteins. Using 2D-DIGE MALDI-TOF/MS, Hu et al.

compared the proteomic profiles between leukemia cell lines, HL-60 (drug-sensitive) and HL-60/

ADR (adriamycin-resistant) [62]. Sixteen differentially expressed proteins were identified, among

which the up-regulation of nucleophosmin/B23 (NPM B23) and nucleolin C23 were validated in

AML patient samples and may be indicators of drug resistance and predictors of prognosis. To

investigate how AML exosomes affect the function of hematopoietic stem and progenitor cells

(HSPC), Huan et al. compared proteomes of HSPCs treated with exosomes from AML cell line

Molm-14 against proteomes of HSPCs treated with media (control) [63]. They identified 282

proteins that were differentially expressed between the two conditions, and the functional

annotation of these proteins pinpointed candidate pathways that are involved in the exosome-

mediated modulation of HSPC function.

Proteomics were used in multiple studies to investigate the effects and mechanisms of drugs in

cell line models. Using SILAC-MS, Weber et al. quantified 10,975 distinct phosphorylation sites

to characterize the phosphoproteomic changes in AML cell line KG1 upon pharmacological

intervention from erlotinib and gefitinib [64]. They found that the cellular perturbation by the

two drugs is rather specific, with fewer than 50 phosphorylation sites significantly changed

upon treatment. Most of these phosphorylation changes occur in a network of tyrosine phos-

phorylated proteins, suggesting that the drugs interfere with leukemic activities by inhibiting

signal transduction via Src family kinases and tyrosine kinases Btk and Syk. Proteomics can

also be used to compare the mechanisms of two drugs. In a study using 2-DE MALDI-TOF/-

TOF-MS, Buchi et al. quantified the protein expression levels in AML1/ETO positive leukemic

cells under the treatment of azacitidine and under the treatment of decitabine [65]. The identi-

fication of differentially expressed proteins in both conditions as well as differentially

expressed proteins exclusive to each condition provides insights into the biological effects of

these DNMT inhibitors and the mechanism differences between them.

To develop drugs that specifically target leukemic cells, an understanding of the surface

proteomes in cell lines is crucial. Using MALDI-TOF/TOF, Strassberger et al. generated surface

proteomes for four AML cell lines (HL60, NB4, PLB985, THP1) [66]. Comparing the AML

surface proteomes to that of granulocytes from normal human peripheral blood, they identi-

fied multiple proteins that were up-regulated in AML cell lines, including CD33, CD166,

integrin alpha-4. An antibody-drug conjugate was then developed using a human monoclonal

antibody targeting CD166 and a duocarmycin derivative as the cytotoxic agent, which was

shown to be able to kill AML cells in vitro. The study serves as a good example and a basis for

developing anti-AML therapeutic strategies using knowledge from cell surface proteomes.

4. Challenges and future directions

Though proteomic technologies are advancing rapidly, a few challenges and issues remain.

Therefore, it is worth discussing these challenges as well as the future directions to solve them.
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One issue is the choice of control samples. There lacks a consensus as to what samples should

serve as the control for AML samples to be compared to. Often, samples from healthy subjects

are used as control to represent the normal biology in hematopoiesis, yet samples from

patients under complete remission could also make meaningful controls. Another question to

ask is what specific samples from healthy subjects should be used: for example, should the

samples be derived from healthy bone marrows or peripheral blood; should the samples come

from cryopreserved cells or fresh lysates. Though most studies found similar protein expres-

sion patterns between bone marrow derived and blood derived samples in AML [36, 48], a

comprehensive comparison is yet to be done in a large cohort of healthy subjects. Recently, the

influence of freezing on proteomes in AML cells was reported [67], underscoring the impor-

tance of establishing more standard sample collection and preservation procedures. In addi-

tion, the number of control samples included in the studies is usually small, which makes it

hard to deduce statistically valid claims and does not account for the full degree of heteroge-

neity in healthy individuals.

One challenge facing clinical research is the scarcity of primary patient samples. Most

studies profiled proteomes in fewer than a hundred patients, and in some cases fewer than

five patients were used. Considering the extreme heterogeneous biology present in AML, the

proteomic patterns and biomarkers discovered in a small group of patients may not gener-

alize to the whole AML population. Due to this incomprehensive representation of the AML

population, the classification and prognostic power of proteomics will also be limited by

drawing conclusions from few clinical samples. Given access to a large cohort of patients,

one potential solution is to use peripheral blood samples instead of bone marrow samples.

The proteome of blood samples was found to be similar to the proteome of bone marrow

samples in multiple studies [36, 48], indicating that blood samples may be a substitute for

bone marrow samples in proteomic research. Since obtaining blood samples is less invasive

and much more convenient than obtaining bone marrow aspirates, the use of blood samples

may grant researchers access to proteomic profiles at more time points (e.g. at diagnosis,

through treatment and remission). For this approach to work, more comprehensive compar-

isons of the proteomes between blood and bone marrow in both AML and healthy subjects

need to be carried out. Another potential remedy for the sample availability problem is to

openly share data sets generated from quantitative proteomics through common platforms.

More statistical power can be achieved when merging findings from multiple datasets of

different sources for example using meta-analysis. This approach will greatly benefit from

standardizing the choice of control samples and data processing procedures across different

studies.

Due to its convenience and almost unlimited supply, cell lines are commonly used as a

substitute for primary patient samples for discovering new biomarkers and therapeutic tar-

gets, screening for new drugs and investigating therapeutic effects and resistance. However,

cell lines may not provide a truthful representation of the biology in AML patients, as cell lines

adapt to the culture conditions and selection pressure. The validity of the cell line model is

further compromised by the heterogeneity of AML biology. Even if a cell line does preserve the

biology of its origin (which is unlikely), a cell line at most represents a tiny fraction of the AML

population. To make cell lines more relevant, comprehensive proteomic profiles of cell lines
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and primary patients are needed to investigate the degree of biological changes present in cell

lines and to match cell lines to specific patient subpopulations. The hope is that cell lines may

preserve the biology of their origins in some pathways, and by matching cell lines to specific

patient categories we can utilize cell lines to personize treatments for their corresponding

patient subpopulations.

To realize the full potential of proteomics in both research and clinic, more advanced

computational techniques should be adopted or developed in AML proteomics research.

When analyzing proteomic profiles, most studies use standard statistical tests to compile a

list of differentially expressed proteins, and some would carry out tests to correlate the

protein expression patterns with other clinical attributes and genetic mutations. While these

tests are necessary, few studies take the leap to generate pathway level insights by examining

the protein expressions in the context of protein interactions. Network-based approaches can be

very useful in this regard to organize and visualize protein expressions in protein networks

[39], using protein interaction information from public databases (e.g. string [68]) or from

graphical reconstruction models. Insights into abnormal pathway regulation beyond the identi-

fication of abnormal expression in single proteins can open the door for new drug targets.

Another challenge on the computational side is the increasing dimensionality of proteomic data

thanks to the improvements in throughput and coverage of proteomic experimental techniques.

In this case, more powerful clustering [69, 70] and dimension reduction techniques [71], as well

as interactive visualization tools [72], can help researchers to best benefit from this increase in

data size and empower then to make data-driven hypotheses and discoveries. Crowdsourcing

competitions have also proved to be an effective way to encourage innovative solutions for

these challenging computational issues [57, 73].

In summary, proteomics in AML is enabling the identification of new biomarkers and improv-

ing the classification of patients. Moreover, new experimental protocols and data analysis

methods and tools are emerging to capitalize on the richness of the personalized data from

the proteomic screens. Together these technological advances can provide new insight into the

heterogeneities and hallmarks of AML.
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