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1. Introduction 
 

1.1 Motivation 

A fundamental problem encountered in many fields is to model data to  given a discrete 

time-series data sequence ( )Too:y ,,L1= .  This problem is found in diverse fields, such as 

control systems, robotics, event detection (Motoi et al., 2007), handwriting recognition 
(Yasuda et al., 2000 ; Funada et al., 2005), and protein structure prediction (Krogh et al., 

2001 ; Tusnady & Simon, 1998 ; Kaburagi et al., 2007). The data to  can often be a multi-

dimensional variable exhibiting stochastic activity. A powerful tool for solving such 
problems is multi-dimensional discrete Hidden Markov Models (HMMs), and the 
effectiveness of this approach has been demonstrated in numerous studies (Motoi et al., 
2007 ; Yasuda et al., 2000 ; Funada et al., 2005 ; Kaburagi et al., 2007). The hidden states of 

the HMMs are treated as hidden factors for emission of the observed data to . However, if 

redundant components having low dependencies on the hidden states are contained in the 

data to , these components often have a negative impact on the HMM performance. 

Overcoming this problem requires a method of quantifying the redundancy (state 
independence) of these components and/or reducing their influence. 
In this chapter, we describe an extension of the HMM for these kinds of data sequences 
within the framework of a hierarchical Bayesian scheme. In this extended model, we 
introduce commonality hyperparameters to describe the degree of commonality of the emission 

probabilities among different hidden states (that is, hidden factors of the data to ). 

Additionally, there is a one-to-one relationship between each hyperparameter and a 

component of the data to . This allows us to identify low-dependency components and to 

minimize their negative impact. 
Like other Bayesian HMMs, the extended model requires complicated integrations in the 
learning and prediction processes, usually involving a posterior distribution. Analytic 
solutions of these integrations are often intractable or non-trivial due to their inherent 
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complexity. In this chapter, therefore, we also describe an implementation based on a 
Markov Chain Monte Carlo (MCMC) method (Scott, 2002). 

 
1.2 Related work 

In one detailed study, several feature selection methods were considered, such as 
discriminant feature analysis, principal component analysis, and the sequential search 
method (Nouza, 1996). In addition, that study also described a fast feature selection 
algorithm. Our approach described in this chapter may be regarded as a Bayesian feature 
selection scheme based on the dependencies of the hidden states. 
There have been a number of studies examining Bayesian HMMs and their implementations, 
such as (Funada et al., 2005 ; Motoi et al., 2007 ; Huo et al., 1995 ; MacKay, 1997 ; Scott, 2002). 
Reference (Huo et al., 1995) describes a Maximum A Posteriori (MAP) estimation for 
Bayesian HMMs, and reference (MacKay, 1997) describes a Variational Bayesian method 
(so-called ensemble learning). In addition, references (Funada et al., 2005 ; Motoi et al., 2007 ; 
Scott, 2002) discuss Bayesian HMMs using MCMC. The model that we describe here is an 
extension of such Bayesian HMMs for discrete multi-dimensional data containing 
redundant components. 
There is a well-known successful method to determine redundant components of multi-
dimensional (input) data in the field of Bayesian Neural Networks (BNNs), called 
Automatic Relevance Determination (ARD) (MacKay, 1992 ; Neal, 1996 ; Qi et al., 2004 ; 
Tipping, 2000 ; Matsumoto et al., 2001 ; Nakada et al., 2005). ARD was first described in 
(MacKay, 1992); that method used a Laplace approximation. Reference (Neal, 1996) 
described another ARD using MCMC, and reference (Qi et al., 2004) discusses a variant 
based on Expectation Propagation. Several studies have also described extensions of the 
BNN using the ARD method, including, for example, the Relevance Vector Machine 
(Tipping, 2000) and BNNs for nonlinear time-series data (Matsumoto et al., 2001 ; Nakada et 
al., 2005). The structure of the extended HMM is completely different from that of such 
BNNs;nevertheless, the fundamental hierarchical Bayesian concepts show a number of 
underlying similarities. 

 
2. Model specification 
 

In this section, we describe the extended Bayesian HMM. The setting of hyperparameters is 
the principal difference between our extended model and the conventional Bayesian HMMs 
(see Sec. 2.5). 
 

2.1 HMM Topology 

The HMM structure depends on the particular topology employed and the number of states 
N. Topologies commonly employed include “ergodic” and “left-to-right”. Here we describe 
only the ergodic topology, since we employed that topology in our experiments, described 
later. 

 
2.2 Data and hidden variables 

In the HMM framework, we must consider the time-series data sequence (observation data 

sequence) ( )Too:y ,,L1=  and the hidden variable sequence ( )Tqq:z ,,L1= . The terms to  and 
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tq  represent the time-series data and the hidden variable at time t, and T is the sequence 

length. The hidden variable tq  is a one-dimensional variable that takes finite values among 

the available N states (that is, { }N,,qt L1∈ ), whereas the data to  is a multi-dimensional 

discrete variable defined by ( )t,Dt,t o,,o:o L1= . Here, D represents the dimension of the data 

to , the variable t,ko  the k-th component of to , and kM  the number of symbols for t,ko  (in 

other words, { }kt,k M,,o L1∈ ). 

 
2.3 Observation model 

Consider the complete parameter set θ  of an HMM. The probability of the data ty  is 

 

( ) ( ) ( ) ( ),c,b,a:,c,a|zPb,z|yP:|yP
z

==∑ θθ �@                                            (1) 

 
Here, 
 

( ) ( )∏
=

=
T

t
tt ,b,q|oP:b,z|yP

1

                                                           (2) 

 

( ) ( ) ( ).a,q|qPc|qP:c,a|zP
T

t
tt∏

=
−=

2

11                                                    (3) 

 
The emission probability of the data to  in (2) is 

 

( ) ( ),b,q|oP:b,q|oP
D

k
ktt,ktt ∏

=

=
1

                                                       (4) 

 
where ( )Db,,b:b L1= . The probability ( )ktt,k b,q|oP  in Eqn. (4) represents the emission 

probability of the k-th component t,ko . It is defined as 

 

( ) ,b:b,iq|joP ij,kktt,k ===                                                          (5) 

 
where ( )N,k,kk b,,b:b L1= , ( )

kiM,ki,ki,k b,,b:b L1= , 1
1

=∑ =
kM

j ij,kb , and 10 ≤≤ ij,kb . 

 
The hidden variable transition probability and the initial hidden variable probability in Eqn. 
(3) are 
 

( ) ,t,a:a,iq|jqP ijtt 11 >=== − �@                                                       (6) 
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( ) ,c:c|iqP i==1                                                                  (7) 

 
Here, ( )Na,,a:a L1= , ( )iNii a,,a:a L1= , 1

1
=∑ =

N

j ija , 10 ≤≤ ija , ( )Nc,,c:c L1= , 1
1

=∑ =
N

i ic , and 

10 ≤≤ ic . 

 
2.4 Prior distribution for parameters 

Within a Bayesian framework, both the observation model (the likelihood function) and the 
prior distribution of the parameter set are defined. For the sake of simplicity, many Bayesian 
HMMs assume parameter independency in the prior distribution. That is to say: 
 

( ) ( ) ( ) ( ),|cP|bP|aP|P γβαφθ =                                                     (8) 

 

( ) ( ),|aP:|aP
N

i
ii∏

=

=
1

αα                                                             (9) 

 

( ) ( ),|bP|bP
D

k

N

i
i,ki,k∏∏

= =

=
1 1

ββ                                                      (10) 

 
where 

( ) ( )
( ) ( ).,,:,,,:

,,:,,,:

N,k,kkD

N

ββββββ
αααγβαφ
LL

L

11

1

==
==
�@

�@
 

 

The prior distributions of ia , i,kb  and c  in Eqns. (8)-(10) are also defined using the “natural 

conjugate” Dirichlet prior distribution: 
 

( ) ( ),;a:|aP iiii αα D=                                                         (11) 

 
( ) ( ),;b:|bP i,ki,ki,ki,k ββ D=                                                     (12) 

 
( ) ( ),;c:|cP γγ D=                                                           (13) 

 
where ( )χ;⋅D  is the Dirichlet distribution with the parameter vector χ, and ( )iNii ,,: ααα L1= , 

0>ijα , ( )iN,ki,ki,k ,,: βββ L1= , 0>ij,kβ , ( )N,,: γγγ L1= , 0>iγ . 

 
2.5 Settings for hyperparameter set 

As in a number of  conventional  Bayesian HMMs, for example,  (Funada et al., 2005 ; Huo et 
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al., 1995), all components of the hyperparameter vectors are fixed at 1.0, except for i,kβ  .1 

With our approach on the other hand, we consider a reparameterization of the 

hyperparameter vectors { }N

ii,k 1=
β , and the prior distribution of the reparameterized 

hyperparameters in order to identify components having low dependency on the states 
(redundant components). 
 

A. Reparameterization of i,kβ  

 

We define the hyperparameter vector i,kβ  as: 

 

,N,,i,: kki,k L1== �@ηλβ                                                      (14) 

 
where ( ) 0>∈Rkλ , ( )

kM,k,kk ,,: ηηη L1= , 10 << i,kη , and 1
1

=∑ =
kM

i i,kη . Here, kλ  is the 

commonality hyperparameter describing the degree of commonality for the emission 

probabilities of { }T
tt,ko

1=
: ( )ktt,k b,q|oP  among different hidden states.2 The hyperprameter 

kη  is a common shape hyperparameter that described the average shape of the emission 

probabilities ( )ktt,k b,q|oP  for different hidden states. 

Here, we examine the effect of the commonality hyperparameter kλ  on the emission 

probability i,kb . The shapes of the prior distribution (10) for various values of kλ  are shown 

in Figure 1. Fig. 1 (c) shows a case where kλ  is large. Here, the parameter vectors { }N

ii,kb
1=

, 

exhibit only small differences, i.e., kkM,k,k,k bbb η≈≈≈≈ L21 , meaning that there is low 

dependency of { }T
tt,ko

1=
 on the states. For smaller kλ  on the other hand (Fig. 1 (a) or (b)), the 

diversity of { }N

ii,kb
1=

 among each state is greater; in other words, the dependency of { }T
tt,ko

1=
 

on the states is not low. 
 

B. Prior distribution for kλ  and kη  

 

Here we describe the prior distribution of the hyperparameters kλ  and kη  used for learning 

these hyperparameters in a Bayesian learning method described later. 

The commonality hyperparameter kλ  has no well-known “ natural conjugate ”  prior 

distribution. Therefore, the prior distribution for kλ  is defined using only information in the 

                                                 
1 This basic setting of the Dirichlet prior distribution makes it equivalent to a non-
informative uniform prior distribution. 

2 The diversity of ( )ktt,k b,q|oP  among the states corresponds to that of { }N

ii,kb
1=

 because the 

emission probability of t,ko  : ( )ktt,k b,q|oP  is defined by using { }N

ii,kb
1=

, as shown in equation 

(5). 
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range ( )∞∈ ,k 0λ . Although there are a number of alternative prior distributions for a 

positive continuous variable (for example, the log-normal prior distribution), the prior 

distribution of kλ  is given by the following gamma prior distribution: 
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                 (a) kλ = 2.                                     (b) kλ = 6.                                  (c) kλ = 18. 

Fig. 1. Dirichlet prior distribution for i,kb , for various values of the commonality 

hyperparameter kλ . The parameters { }N

ii,kb
1=

 are 3D variables ( )321 i,ki,ki,ki,k b,b,bb = , and the 

common shape hyperparameter kη  is constant, ( )403030 .,.,.k =η . The component 3i,kb  is 

omitted because it can be determined from 213 1 i,ki,ki,k bbb −−= . This figure clearly shows 

that, for larger kλ , the parameters { }N

ii,kb
1=

 concentrate more around the average kη . 

 
( ) ( ),,;:P kk ωκλλ G=                                                          (15) 

 
where ( ),,; ωκ⋅G  is the gamma distribution having shape parameter κ  and scale parameter 

ω . 3  These hyperhyperparameters are set to 01.=κ  and 100=ω  in the experiments 

described in Sec. 4, which allows kλ  to be widely distributed within in its available range. 

There is also no known “natural conjugate” prior distribution for kη . However, there are a 

limited number of options for the prior distribution because of the constraints of kη , namely, 

1
1

=∑ =
kM

i i,kη  and 10 << i,kη . Therefore, we use the Dirichlet distribution as the prior 

distribution for kη : 

 

( ) ( ),;:P kk 0ηηη D=                                                           (16) 

 
where   0η   denotes  the  hyperhyperparameter  vector.  By  considering   a  non-informative 

                                                 

3The gamma distribution is defined as ( ) ( )
( )

,
xx

:,;x
φω
ωωκ κ

κ

Γ
−

=
−− 11exp

G  where ( )⋅Γ  is the gamma 

function. 
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setting for kη , the vector 0η  is set to ( )01010 .,,. L=η  in the experiments described later. 

 
Fig. 2 graphically summarizes the model specifications described in this section. 
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Fig. 2. Graphical representation of the model. The double circles are observable probabilistic 
variables, and the single circles are unobservable probabilistic variables. The squares are the 
fixed variables, the arrows probabilistic dependencies between variables, and the dashed 
lines groups of variables. Hyperhyperparameters and their dependencies are omitted for 
clarity. 

 
3. Bayesian learning for the model 
 

We define a training dataset Y as the set of time-series data sequences { }L
lly

1= , where L is the 

number of sequences and l is the index of the sequence. The goal of Bayesian learning is, 
given the training dataset Y and the above model, to evaluate the (joint) posterior 

distribution for θ  and φ : 

 

( ) ( ),Y|Z,,PY|,P
Z
∑= φθφθ                                                   (17) 

 
where 
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( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,
ddP|P|ZP,Z|YP

P|P|ZP,Z|YP

Y|Z,,P

Z∑ ∫∫

=

φθφφθθθ
φφθθθ

φθ

�@�@�@�@
                                    (18) 

 
and Z is the set of hidden variable sequences { }L

llz
1= , corresponding to the dataset Y . 

 

3.1 Implementation with MCMC 

The integrations in equation (18) have no closed-form analytical solution, because of their 
complexity. Monte Carlo methods can generate samples from the posterior distribution (17), 

and we therefore adopt this approach. 4Once the samples ( ){ }R

r
rr , 1
)()(

=φθ are generated, it is an 

easy matter to approximate the posterior distribution (17) with 
 

( ) ( ) ( )( ),,,
R

Y|,P
R

r

rr∑
=

−≈
1

)()(1 φθφθδφθ                                           (19) 

 
where ( )⋅δ  is the Dirac delta function, R is the number of samples, and r is the index of the 

sample. Fig. 3 summarizes the procedure used in our implementation. 

 
3.2 Model evaluation 

We introduce a fitness score as a metric to evaluate the degree of fitness between a set of test 

data sequences NEWY  and the trained model: 

 

( ) ( ),Y|YP:Y NEWNEW logScore =                                               (20) 

 
Here, ( )Y|YP NEW  is the (conditional) marginal likelihood, that is, the likelihood function 

( )θ|YP NEW  averaged over the posterior distribution ( )Y|,P φθ  : 

 

( ) ( ) ( )∫∫= .ddY|,P|YPY|YP NEWNEW φθφθθ                                    (21) 

 
Using the Monte Carlo approximation (19), we can approximate this marginal likelihood as 
 

( ) ( ).|YP
R

Y|YP
R

r

r
NEWNEW ∑

=
≈

1

)(1 θ                                              (22) 

                                                 
4 Specifically, we consider the joint posterior distribution (18) for generating the samples 
using an MCMC technique based on that in (Scott, 2002). By discarding samples of Z after 

taking the samples of ( )Z,,φθ  from the joint posterior distribution (18), it becomes relatively 

straightforward to obtain samples of θ and φ  from the posterior distribution (17). 
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Fig. 3. MCMC implementation.56 

 
4. Experiments 
 

4.1 Artificial dataset experiment 
We conducted an experiment using artificial datasets to evaluate our extended model. These 
datasets contain state-independent variables serving as redundant components. 
 
A. Target HMM 

In this experiment, we used multi-dimensional data sequences, each data component having 
5 symbols. We generated these sequences from a 5-state ergodic HMM in which the hidden 

variable transition parameter ∗a  and the initial hidden variable parameter ∗π  were 

retained: 

                                                 
5 In actual implementation, a well-known strategy to improve the acceptance rates is to 

apply the Metropolis-Hastings method separately to each hyperparameter kλ  and 

hyperparameter vector kη . We use proposal distributions designed on the basis of 

information from the model, because this approach also improves the efficiency of the 
Metropolis-Hastings method in many cases. 
We show details of the designed proposal distributions in the appendix. 
6 In the MCMC method, it is usually necessary to discard the initial samples. In the 
experiments described in Sec. 4, we generated 1000 samples in the MCMC step (b)  
(G = 1000), and we used the last 500 samples for the Monte Carlo approximation (R = 500). 

 
(a) Initialization step: 

      Initialize )(0θ  and )(0φ  by sampling. )(0ψ is generated from the prior dis-   

tribution, whereas )(0θ is generated uniformly within the range of θ . 

 
(b) MCMC step: 
     For g = 1 to G, repeat the following: 
     (i)  Generate the g-th sample of Z by with the forward-backward sam- 

pling method (Scott, 2002). 

     (ii)  Generate the g-th sample of θ  using the Gibbs sampling method 

(Scott, 2002 ; Geman & Geman, 1984). 

     (iii) Generate the g-th sample of φ  using the Metropolis-Hastings method  

            (Hastings, 1970). 5 

 
(c) Selection step: 

      For the Monte Carlo approximation (19), select the sample set { }R

r
r

1
)(

=θ  

from { }Ggg
1

)(
=θ .6 

Implementation using MCMC methods
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The column and row numbers of the matrix representing parameter ∗a  are the next and 

current values of the hidden variable. The column number in the matrix representing 

parameter ∗π  is equivalent to the index of the initial hidden variable. We explain the 

emission probabilities of the target HMM in detail in the following. 
 
B. State-dependent and state-independent components 

In this experiment, we considered the following two probability matrices, ∗
DEPb  and ∗

INDb , 

for the emission probability parameter of the k-th data component, ∗
kb : 

 

�,

.....

.....

.....

.....

.....

bDEP

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∗

500200050050200

200500200050050

050200500200050

050050200500200

200050050200500

                                        (23) 

 

�@.
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20.020.020.020.020.0

20.020.020.020.020.0

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∗
IND

b

                                        (24) 

 
Here, the column number represents the index of the hidden state, and the row number 

represents the index of the observable symbols. It should be noted that the matrix ∗
INDb  

contains identical probability vectors in each column (state); in other words, the components 

with ∗
INDb  state-independent, whereas the components with ∗

DEPb  are state-dependent. 

Using these matrices, we considered the following 5 cases with different numbers of 
components: 

(i)   ,bbb DEP
∗∗∗ == 21  

(ii)  ,bbbbb INDDEP
∗∗∗∗∗ === 321 �@�@and  

(iii) ,bbbbbb INDDEP
∗∗∗∗∗∗ ==== 4321 �@�@and  

(iv) ,bbbbbbb INDDEP
∗∗∗∗∗∗∗ ===== 54321 �@�@and  

(v)  .bbbbbb INDDEP
∗∗∗∗∗∗ ===== 6321 L�@�@and  

The first 2 components in each case are state-dependent. 
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C. Model settings 

In each of the cases described above, we trained and tested the extended model using 
various datasets containing 10 independent sequences (T = 100) generated from the target 
HMM. We also trained and tested a conventional Bayesian HMM with fixed 
hyperparameters with the same datasets for comparison.7  We trained the conventional 
model using an MCMC implementation based on (Scott, 2002). In our extended model and 
in the conventional model, we set the number of hidden states to N = 5, i.e. the same number 
of hidden states as that of the target HMM. 
 
D. Results 

Figure 4 shows the averaged differences between the fitness score (20) of the extended 
model and that of the conventional model. When all components were state-dependent (case 
(i)), the extended model performed slightly worse than the conventional model. When the 
training dataset contained state-independent components (cases (ii) to (v)), however, the 
extended model performed better than the conventional one, as indicated by the higher 
averaged score differences as the number of state-independent components increased. This 
result demonstrates that the extended model is robust against state-independent 
components. 
 

-5 0 5 10 15 20 25

All components

Without state-independent components

Average of difference between scores

C
a
se

(i)

(ii)

(iii)

(iv)

(v)

 
Fig. 4. The differences between scores (extended model score minus conventional model 
score) for all components of the test datasets. Differences based on the scores for the first 
two components (state-dependent components) of the test datasets are also shown. 
Differences of 10 independent trials were averaged. The error bars indicate the standard 
error. 

                                                 
7 Each component of the hyperparameters is fixed at 1.0. 
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4.2 Soccer dataset experiment 

We used real-world datasets with an additional irrelevant component to verify the 
performance of our extended model. This experiment was designed to demonstrate the 
ability of our model to discriminate the irrelevant component by Bayesian modeling with 

the commonality hyperparameter kλ . This hyperparameter is closely related to the 

redundancy (state-independency) of a particular data component t,ko . 

This is a preliminary experiment a project involving event detection of Bayesian modeling 
for soccer games (Motoi et al., 2007). 
 
A. Target data sequence 

In our previous work (Motoi et al., 2007), the original dataset consisted of data sequences for 
5 half-games of soccer. Each sequence was composed of 27-dimensional time-series data 
obtained from the position sequences of players. These positions were automatically 
extracted from video images by tracking the players using a method based on that in (Misu 
et al., 2005 ; Misu et al., 2002). 
We used the sequence for only 1 half-game (length T = 2390) for the sake of simplicity. This 
sequence contained only 6 selected components and 1 additional component. 
 
B. Selected and additional components 

We used the following 6 selected variables for modeling: (a) the center of all players in the x 
direction; (b) the center of all players in the y direction; (c) the center of the left team players 
in the x direction; (d) the center of the left team players in the y direction; (e) the center of 
the right team players in the x direction; and (f) the center of the right team players in the y 
direction. We also added another variable to the target data sequence as the irrelevant 
component: (g) the x center of all the players in another half-game. The x and y directions 
correspond to the long axis and short axis of the playing field, respectively. 
 
C. Model settings  
In modeling the target data, we discretized all components in the extended model into 10 

symbols (in other words, kM  = 10 for all components). We also set the number of hidden 

states to N = 10. Two examples of the discretized data components are shown in Figure 5. 
 
D. Results  
Boxplots of the commonality hyperparameter samples generated from the posterior 
distribution are shown in Figure 6 (18). The irrelevant component (g) has the largest 

hyperparameter kλ , suggesting the possibility of discriminating irrelevant components by 

using the hyperparameters { }kλ . 

 
5. Application to real event detection 
 

The results described in the previous section demonstrated the capability of our extended 
model in an event detection problem in soccer games (Motoi et al., 2007). In this section, we 
apply the extended model to event detection in sports videos. Our goal here is to detect 
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Fig. 5. Trajectories of the (discretized) variables (a) and (b), plotted in the range t = 1 to 1000 
for clarity. The solid line is (a), and the dotted line is (b). 
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Fig. 6. Boxplots of the commonality hyperparameters { }kλ  (500 samples) in Experiment 4.2. 

The smallest sample, lower quartile, median, upper quartile, and largest sample are shown 

for each kλ . 

 
target events from data sequences. Such events include kick offs, corner kicks, free kicks, 
throw ins, and goal kicks. Details of the data sequences are described in the following. 
 

5.1 Modeling with a given data sequence 

In this modeling, the raw dataset consisted of the positions of all players, which were 
automatically extracted from videos of 7 half games. Forty components associated with each 
target event were contained in the given data sequence.8 We trained both the conventional 
and extended HMMs using the sequences for the 40 associated component in all 7 half 
games. 
 

5.1.1 Demonstration 

In this section, we show the predicted results for a corner kick event in another half game. 
This half game was independent from the 7 half games used to train the HMMs. Examples 

                                                 
8First, 1065 candidate components were generated from players’ positions. We then selected 
the 40 associated components using standard information-based criteria showing the degree 
of the association with each event. 
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of the predicted results with our extended model and the conventional in (Motoi et al., 2007) 
are shown in Fig. 7. Actual events are indicated in gray. These results show that the 
conventional model gives more false alerts compared with the extended model, indicating 
the capability of the extended model to reduce the negative influence of redundant 
components in the 40 given components. 
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(a) Extended model. 
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(b) Conventional model. 

Fig. 7. Predicted results for corner kick event. The range t = 1250 to 1750 contains 3 of the 4 
target events in this half game. The regions of actual events are shown in gray. 

 
6. Conclusions 
In this chapter, we have described an extended Bayesian HMM for multidimensional 
discrete data sequences including redundant components. For the extended model, we also 
described an implementation of Bayesian learning based on a Markov chain Monte Carlo 
scheme. We evaluated the performance of the extended model with this implementation 
using two example datasets. We also demonstrated its application to an event detection 
problem with 40-dimensional data sequences extracted from videos of actual soccer games. 
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Our results showed that the extended Bayesian HMM has reasonable performance in the 
presence of redundant components in the data. 
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Appendix: Proposal distributions 

The proposal distribution can be any probability distribution so long as certain conditions 
are satisfied. The design of the proposal distribution, however, strongly affects the efficiency. 
When applying the Metropolis-Hastings method to each variable separately, a promising 
approach is to employ the full conditional (posterior) distribution as the proposal 

distribution ( )⋅Q . 9 However, it is difficult to use the full conditional distributions of kλ  and 

kη  as their proposal distributions in the model, because these distributions do not belong to 

any standard families of probability density functions having known direct sampling 
methods. Therefore, we use proposal distributions designed based on information from the 
full conditional distributions. 
 

A. Proposal distribution of kλ  

The full conditional distribution of kλ  is 

 

{ } { }( ) ( ).,b|P,,,Z,Y|P kkkkkkkk ηλληθλ =≠′′′                                     (25) 

 
Applying the log-normal distribution ( )⋅LN , the full conditional distribution (25) can be 

approximated by: 
 

( ) ( ) ( )( ).,;,b|P 1-g
k

1-g
kkkk

)()( λνλμληλ kLN≈                                       (26) 

 
Here, 
 

         ( ) ( ) ( ) ( ) ( ) 11 −− ′′=′′′+= λλνλλλλμ kkkkkkkk l:,ll: �@log  

         ( ) ( ) ( ) ,,b|P,b|P:l kkkkkkkkk ληληλλ loglogloglog +==  

 

( )⋅′kl  is the first-order derivative of ( )⋅kl , and ( )⋅′′kl  is its second-order derivative.  However, 

the approximation (26) is not valid when the previous sample )( 1-g
kλlog  is far from the peak 

                                                 
9 In this scenario, the Metropolis-Hastings algorithm is completely “rejection-less”; in other 
words, it is identical to Gibbs sampling. 
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of ( ) ( )kkkkkkk ,b|P,b|P ηλληλ =log . In a number of preliminary numerical experiments, this 

proposal distribution (26) showed low acceptance rate. Slightly expanding the logarithm 
variance of the proposal distribution is a simple way to improve the low acceptance rate in 
such cases. Thus 
 

( ) ( ) ( ) ( )( ),,;:; 1-g
k

1-g
kk

)()(
1 λνελμλλ +=⋅ kLNQ                                      (27) 

 
where ( )0≥ε  is a user-settable variable. In the experiments described in this chapter, we 

used the proposal distribution (27) with 20.=ε . This gave reasonable and stable 

performance in our preliminary experiments. 

 
B. Proposal distribution of kη  

The full conditional distribution of kη  is 

 

{ } { }( ) ( ).,b|P,,,Z,Y|P kkkkkkkk ληληθη =′≠′′ .                                    (28) 

 
It is difficult to approximate the distribution (28) itself with basic methods. Therefore, we 
consider only a rough approximation of the center of the distribution (28) in this study. 

When the parameter kb  is given, one of the simplest estimators for the common (average) 

shape of { }i,kb  is ( ) ∑ =
= N

i i,kkk b
N

b
1

1η . We assume that the center of the distribution (28) can 

be roughly approximated by this estimator ( )kk bη . In view of this assumption and the 

simplicity of the implementation, we use the Dirichlet proposal distribution centered on 

( )kk bη : 

 

( ) ( )( ).b;:; kkkk ηνηη D=⋅Q                                                    (29) 

 
Here, ( )0>ν  is a user-settable variable. In this study, we set 100=ν , which resulted in 

reasonable performance in a number of preliminary numerical experiments.  
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