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Abstract

Phenolic compounds are a group of natural products that play an important role in the
quality of wines. Most phenolic compounds present in wine are derived from those
contained in grapes and extracted from skins, seeds, and pulp during the initial steps
of winemaking. Among them, anthocyanins and flavonols are involved in the color of
red wines as pigments or copigments and also as precursors of polymeric pigments after
reaction with other phenols. Biosynthesis of those phenolics in grapes is regulated by
different genes; thus, each grape genotype presents a characteristic phenolic fingerprint,
which is modulated by different environmental conditions. In this chapter, the anthocy-
anins and flavonols composition of different genotypes of wild grapes preserved at El
Encin Germplasm Bank has been examined in detail. Wild grapevines are a remarkable
genetic resource that may be used in breeding programs to improve the phenolic com-
position of cultivated grapes and, hence, the quality of red wines.
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1. Introduction

Anthocyanins and flavonols are two families of phenolic compounds that play important roles in

Enology. Free anthocyanins are the pigments responsible for the coloration of young red wines

and take part in the reactions leading to the formation of stable polymeric pigments responsible

for the coloration of aged red wines [1]. On the other hand, flavonols are involved in copig-

mentation of the flavylium form of anthocyanins in young red wines [2]. Moreover, flavonols

present antioxidant properties that pose positive effects on human health [3]. The pathways

involved in the biosynthesis of these molecules are well-known, and the core structural genes of

those pathways, leading to the formation of primitive anthocyanins (delphinidin-3-O-glucoside
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and cyanidin-3-O-glucoside) and flavonol aglycones, like myricetin and quercetin, have been

cloned and characterized [4, 5]. Moreover, several O-methyltransferases involved in the methyl-

ation of anthocyanins and flavonol glycosides have been identified [6, 7]; it has been demon-

strated that the color exhibited by different grape cultivars may be associated with the VvmybA1

and VvmybA2 regulatory genes [8–10] that activate the expression of structural genes involved in

the late steps of the anthocyanins biosynthetic pathway.

Anthocyanins are red pigments accumulated in skins during grape maturation (and also in

pulp in teinturier cultivars), and their content has been related to several agroecological factors

[11, 12], especially light and temperature, light being indispensable for anthocyanin biosynthe-

sis and accumulation in the skins of berries and for phenylalanine ammonia lyase activity.

Thus, their concentration is quite variable, even if the same cultivar or the same clone grown in

a given location has been examined in several consecutive years [13, 14]. Nevertheless, the

proportion of different anthocyanins, or anthocyanin fingerprint, is quite similar in the late

stages of grape maturation of a cultivar grown in a given location from year to year [14]. On

the other hand, the accumulation of flavonols (that are yellow pigments predominantly syn-

thesized in grape skins [15]), is affected by shading treatments. The studies carried out in

Shiraz grapes suggest that the branch of flavonoid biosynthetic pathway leading to flavonol

biosynthesis is light-dependent, in contrast to anthocyanin and flavanol biosynthesis, which

are little affected by shading treatments [16].

Cultivated grapevines are thought to be domesticated from genotypes of Vitis vinifera L. ssp.

sylvestris (Gmelin) Hegi, which are present in small, isolated wild populations, located in

riverbanks from the Western Himalayas to Western Europe [17, 18]. The sanitary status of

those populations and their morphological and genetic characteristics have been recently

studied [19–22]. Mature fruits of wild grapevines usually show high acidity, low pH, and a

high intensity of color if compared with cultivated grapes [23, 24]; these features might be used

to adapt Viticulture to the new climatic conditions, mitigating the potential effects of global

warming on grape production.

The qualitative and quantitative anthocyanin composition of wild grape accessions preserved

at El Encin Germplasm Bank has been examined by our research group after 2006 [25, 26], as

well as their flavonol fingerprint [27–29]. Themain objective of this study is to evaluate whether

the anthocyanin and flavonol composition of wild grapes differs from that presented by culti-

vated grapes, and to determine whether some wild genotypes present some genetic characters

of interest related to anthocyanins and flavonols accumulation during grape maturation. For

this purpose, different female genotypes preserved at El Encin Germplasm Bank, that were

collected in various natural populations located in different Spanish regions, were sampled in

2008 and have been fully examined for anthocyanins and flavonols content by HPLC.

2. Sampling of grapes

Samples of 25 genotypes of wild grapevines from different Spanish natural populations pre-

served at El Encin Grapevine Germplasm Bank (IMIDRA, Alcalá de Henares, Spain), grafted
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on 110R and trained to cordon Royat, were collected in October 2008 at optimum stage of

maturation (between 200 and 240 g of glucose + fructose by kg of must). Each sample consisted

of four clusters, as only two plants of each genotype were available. Those genotypes, grown

in El Encin, were originally collected from natural populations located in different Spanish

regions (see Figure 1); 10 of them came from Northern Spain (Asturias, Cantabria, Castilla-

León, Basque Country, and Navarra), the other 15 from Southern Spain (Andalousie, Castilla-

La Mancha, and Extremadura). Every natural population was identified by two letters and by

one or two numbers, and each genotype was identified with the population code and an

additional number, as well as the suffix bis in some cases. Once in the laboratory, samples

were stored at �20�C until sample preparation.

3. Sample preparation

Fifty berries were randomly selected and weighed once berries were separated from clusters,

and grape skins were removed from pulps and seeds and stored at �20�C in methanol.

Afterward, grape skins were grinded in a Kinematica PCU-2 blender for 1 minute. Then, they

were sequentially extracted, using 25 mL of solvent for each extraction step: methanol for

16 hours at �25�C, 80% methanol for 4 hours at room temperature, 50% methanol for 4 hours

at room temperature, deionized water for 16 hours at �25�C, and 75% acetone for 1 hour at

Figure 1. Location of natural populations of wild grapes where genotypes under study were originally collected.
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room temperature [30]. At the end of each extraction step, the liquid was centrifugated at

3500 rpm for 20 minutes in a Rotofix 32A centrifuge, and the residue was submitted to

extraction again. The volume of the combined liquid extracts was raised between 125 and

200 mL with methanol. Then, the extracts were stored at �20�C prior to analysis.

Flavonols were isolated prior to HPLC analysis to avoid interferences caused by anthocyanins,

using solid-phase extraction on Oasis MCX cartridges (6 mL capacity) filled with 500 mg of an

adsorbent containing a mixture of reverse-phase and cationic-exchanger materials (Waters

Corp., Milford, MA), following a procedure described previously [31]. For this purpose, 3 mL

grape skins extract was dried in a rotary evaporator (40�C) and resolved in 0.1 M hydrochloric

acid (3 mL). Then, it passed through the MCX cartridges, previously conditioned with metha-

nol (5 mL) and water (5 mL). After washing with 0.1 M hydrochloric acid (5 mL) and water

(5 mL), the flavonol fraction was eluted with methanol (3 � 5 mL). This fraction also contained

other neutral or acidic polyphenols. Fixed anthocyanins were removed using 2% ammonia in

80% methanol (3 � 5 mL). Finally, the cationic-exchanger material was regenerated with

0.52 M hydrochloric acid in 80% methanol (3 � 5 mL). Subsequent conditioning of the car-

tridge with methanol and water allows its reuse at least four or five more times. The eluate

containing flavonols was dried in a rotary evaporator (30�C) and resolved in 1 mL of methanol.

4. Analytical procedures

The anthocyanin and flavonol fingerprints of skin extracts were obtained with HPLC-DAD

[27], using a Waters Corp. liquid chromatograph consisting of a 600 quaternary pump, a 717

automatic injector, a TC2 controller for a column oven, a 996 photodiode array detector, and a

Millennium 32 workstation. The separations were performed using a Waters Nova-Pak C18

steel cartridge (3.9 � 250 mm), filled with 5-μm particles, and furnished with a Waters Sentry

Nova-Pack C18 guard cartridge (20 � 3.9 mm), both thermostated at 55�C. Water/acetonitrile

(95:5) adjusted to pH 1.3 with trifluoroacetic acid (solvent A), and water/acetonitrile (50:50)

adjusted to pH 1.3 with trifluoroacetic acid (solvent B) were used as mobile phases. Elution

was performed at a 0.8 mL/min flow rate. For anthocyanins, a linear gradient from 15% B to

35% B in 20 min, from 35% B to 50% B in 10 min, 50% B for 6 min, from 50% B to 100% B in

5 min, 100% B for 5 min, 100% B to 15% B in 1 min was used. A linear gradient from 10% B to

35% B in 30 min, from 35% B to 50% B in 6 min, from 50% B to 100% B in 8 min, 100% B for

3 min, and from 100% B to 10% B in 1 min was used for flavonols. Samples (20 μL) were

injected in triplicate. Spectra were recorded every second between 250 and 600 nm, with a

bandwidth of 1.2 nm. Samples, standard solutions, and mobile phases were filtered before

analysis through a 0.45-μm pore size membrane. The identity of the different anthocyanins

and flavonols was elucidated by HPLC-MS, using an 1100 HPLC system (Agilent Technolo-

gies, Santa Clara, CA) with a PDA UV–Vis detector coupled to a QTOF mass spectrometer (AB

SCiex, Framingham, MA). Chromatographic conditions were those used for the HPLC-DAD

analysis. The MS analysis was carried out in the ESI+ mode, scanning from m/z 50 to 2000,

with the following conditions: spray voltage, 5500 V; gas pressure, 80 psi; declustering poten-

tial, 50 V; focus potential, 210 V; CAD, 3 psi.
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Total anthocyanins were determined in grape skins extracts, using the procedure described by

Niketic-Aleksic and Hrzadina [32] using a BOECO S-22 UV–Vis spectrophotometer. Quantita-

tive analysis of flavonols was carried out by HPLC, considering the surface of the different

peaks, using standard solutions of quercetin-3-O-glucoside in the range of 20–100 mg/L.

5. Anthocyanin fingerprint of wild grapes

The HPLC analysis of anthocyanins extracted from wild grape skins permits the separation of

15 different anthocyanins. Table 1 shows name, abbreviation, and number of peaks for each

compound considered. The anthocyanin fingerprint of wild grapes revealed the presence of

three groups of wild grapes genotypes, as it has been previously reported [25, 26]. Figure 2

displays three typical chromatograms of those groups of genotypes.

The three groups of genotypes differ in different aspects linked to the pathways involved in

anthocyanin biosynthesis [33] that are shown in Figures 3 and 4. First, the presence or absence

of acylated anthocyanins, which implies important differences in the expression of genes

involved in acyltransferase activity. Second, the prevalence of anthocyanins derived from

delphinidin (Dp) or from cyanidin (Cy), which implies the differential expression of genes that

control flavonoid-30-hydroxylase and flavonoid-30,50-hydroxylase activities. Finally, the extent

of methylation of Dp-3-gl and Cy-3-gl, due to the differential expression of genes controlling

O-methyltransferase activity.

Anthocyanin Abbreviation Number of peaks

Delphinidin-3-O-glucoside Dp-3-gl 1

Cyanidin-3-O-glucoside Cy-3-gl 2

Petunidin-3-O-glucoside Pt-3-gl 3

Peonidin-3-glucoside Pn3-gl 4

Malvidin-3-glucoside Mv-3-gl 5

Delphinidin-3-acetyl-glucoside Dp-3-acgl 6

Cyanidin-3-acetylglucoside Cy-3-acgl 7

Petunidin-3-acetylglucoside Pt-3-acgl 8

Delphinidin-3-p-coumarylglucoside Mv-3-cmgl 9

Peonidin-3-acetylglucoside Pn-3-acgl 10

Malvidin-3-acetylglucoside Mv-3-acgl 11

Petunidin-3-p-coumarylglucoside Pt-3-cmgl 12

Malvidin-3-caffeoylglucoside Mv-3-cfgl 13

Peonidin-3-p-coumarylglucoside Pn-3-cmgl 14

Malvidin-3-p-coumarylglucoside Mv-3-cmgl 15

Table 1. Name, abbreviation, and number of peaks for the different anthocyanins analyzed by HPLC.
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Genotypes of group A (tree samples) did not contain acylated anthocyanins (Figure 2A). This

character is unusual in cultivated grapevines, occurring primarily in cv. Pinot Noir and its

colored mutants [34, 35]. In these genotypes, genes encoding or regulating acyltransferase

activity is neither presented nor expressed. To our knowledge, this type of anthocyanin finger-

print has not been described in grape cultivars usually considered of Spanish origin [35–37].

Table 2 displays the percentages of several groups of anthocyanins presented in these geno-

types. As can be observed, one genotype (BI-1.3bis) contained a remarkable amount of Cy-

derived anthocyanins, over 50%, and the extent of methylation was very high (over 60%) in

two genotypes (BI-1.3bis and LE-1.2). Similar trends were observed in several wild grapevine

accessions that do not contain acylated anthocyanins in a previous report [26].

Figure 2. Chromatograms registered at 520 nm for three grape skins extracts representative of phenotypic groups A, B,

and C. For key to peaks, see Table 1.

Grapes and Wines - Advances in Production, Processing, Analysis and Valorization28



Figure 3. Biosynthesis of Dp-3-gl and Cy-3-gl. CH3, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone-3-

hydroxylase; F30H, flavonoid-30-hydroxylase; F3050H, flavonoid-30,50-hydroxylase; DFR, dihydroflavonol-4-reductase;

ANS, anthocyanidin synthase; UFGT, UDP-Glc-flavonoid 3-O-glucosyltransferase. See full compound names in Table 1.

Figure 4. Biosynthesis of anthocyanins derived from Dp-3-gl and Cy-3-gl. MT, methyltransferase; AT, acyltransferase. See

full compound names in Table 1.
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Genotypes of group B (six samples) contained acylated anthocyanins and a high proportion

of Cy-derived anthocyanins (Figure 2B). This character is rare in cultivated grapevines, was

observed only in 12 cultivars among 64 studied by Mattivi et al. [34], and it has been

reported only in a cultivar considered of Spanish origin, cv. Brancellao [38]. Most cultivars

of this type are gray or rosé cultivars, or even mutants of white cultivars. Table 3 displays

the percentages of several groups of anthocyanins presented in these genotypes. The per-

centage of Cy-derived anthocyanins ranged between 37 and 68%, and usually the percentage

of methylated anthocyanins was up to 50%. Thus, Pn-3-gl usually was the major anthocya-

nin; the most remarkable exception was genotype SS-6.5bis. In this genotype, Cy-3-gl was

the major anthocyanin (40.82%), as methylation was not very intense. Acylation was quite

variable; it was too low in genotype CO-5.1, but considerably high in genotypes CA-13.3 and

H-6.1. Moreover, most acylated anthocyanins were p-coumarylated derivatives; this charac-

ter is quite common in red cultivars usually considered as Spanish, like Garnacha and

Tempranillo [35].

Genotypes of group C (16 samples) contained acylated anthocyanins and a high proportion of

delphinidin-derived anthocyanins (Figure 2C), as do most grapevine cultivars [33–37]; this

implies that the expression of genes controlling flavonoid-30,50-hydroxylase is too high if

compared with that of genes controlling flavonoid-30-hydroxylase. The percentages of several

groups of anthocyanins presented in these genotypes are displayed in Table 4. As can be

noted, these genotypes also presented a high extent of methylation; the percentage of methyl-

ated anthocyanins was higher than 60%, except in four genotypes (BA-1.1, NA-1.4bis, SE-3.4,

Genotype Dp-derived Cy-derived Methylated

BI-1.3bis 48.14 51.86 62.25

LE-1.2 80.61 19.39 82.14

SS-3.5bis 70.10 29.90 36.75

See full compound names in Table 1.

Table 2. Percentages of Dp-derived, Cy-derived, and methylated anthocyanins in genotypes of group A.

Genotype Dp-derived Cy-derived Methylated Acylated Acetylated p-Coumarylated

CA-6.1 32.98 67.02 91.26 4.84 1.58 2.83

CA-13.3 54.35 45.65 80.84 14.77 4.42 9.97

CO-5.1 48.04 51.96 55.07 1.78 0.63 1.06

H-6.1 62.83 37.17 54.62 17.41 9.05 8.29

SS-6.5bis 42.70 57.30 31.17 4.46 2.09 2.38

VI-2.1bis 58.34 41.66 52.55 6.63 2.96 3.58

See full compound names in Table 1.

Table 3. Percentages of Dp-derived, Cy-derived, methylated, acylated, acetylated, and p-coumarylated anthocyanins in

genotypes of group B.
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and SS-3.5). In these late genotypes, Dp-3-gl was the major anthocyanin, but in the other 11

genotypes, the major genotype was Mv-3-gl. Sometimes, its content was higher than 90%.

The extent of acylation among genotypes included in group C was quite variable and not

related to the extent of methylation. The percentage of acylated anthocyanins ranged from less

than 3% (NA-1.4bis, 2.82%) to nearly 35% (CA-11.3, 34.26%). In two genotypes with a high

extent of acylation (CA-11.3 and SS-3.5), acetylated anthocyanins were much more abundant

than p-coumarylated anthocyanins. This character is well-documented in several French culti-

vars (e.g., Cabernet Sauvignon and Merlot), but is rare in Spanish cultivars. Most genotypes

present less than 15% acylated anthocyanins, and percentages of acetylated and p-coum-

arylated anthocyanins were quite similar, as it has been observed in many grape cultivars

considered of Spanish origin [35].

Data reported in Table 5 point out that the total content of anthocyanins was quite variable,

ranging from 273 to 3534 mg/kg, but, there is a remarkable difference among genotypes

collected in populations located in Northern Spain and those from populations located in

Southern Spain. As can be noted, genotypes from Northern Spain contained a higher amount

of anthocyanins than those originated in Southern Spain (p < 0.05). As it is well-known, the

accumulation of anthocyanins in grapes, that take place after veraison, is affected, at a great

extent, by day-night thermal contrast [12], which can be considered neutral in our study, as all

Genotype Dp-derived Cy-derived Methylated Acylated Acetylated p-Coumarylated

BA-1.1 85.75 14.25 59.97 3.56 1.85 1.61

CA-4.1 82.69 17.31 71.97 14.70 4.76 9.01

CA-9.7 87.90 12.10 93.26 6.33 2.62 1.90

CA-11.3 83.92 16.08 65.99 34.26 27.74 6.06

CO-2.2 87.13 12.87 68.84 15.40 7.60 6.55

CO-3.7 81.95 18.05 73.27 16.32 8.00 7.08

CR-1.6 91.87 8.13 84.54 10.73 5.12 4.16

H-1.1 79.67 20.33 72.15 3.65 1.97 1.21

J-2.4 88.23 11.77 90.76 9.01 4.08 3.90

NA-1.4bis 73.82 26.18 43.96 2.82 1.26 1.56

O-1.5bis 80.48 19.52 62.43 6.64 3.26 3.15

S-1.3bis 88.95 11.05 66.03 16.43 7.42 8.10

S-1.9 90.97 9.03 65.99 8.84 4.37 4.11

SE-1.5 92.97 7.03 86.35 25.39 11.12 12.96

SE-3.4 84.65 15.35 58.70 16.42 6.52 9.59

SS-3.5 78.68 21.32 54.09 21.27 17.41 3.58

See full compound names in Table 1.

Table 4. Percentages of Dp-derived, Cy-derived, methylated, acylated, acetylated, and p-coumarylated anthocyanins in

genotypes of group C.
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genotypes grew in the same environment. Thus, differences observed in anthocyanin content

can be considered of genetic nature. The most probable explanation is that genotypes from

Northern Spain have evolved in oceanic climate environments, where veraison takes place at

the end of summer, and day-night thermal contrast is smaller than that in the Mediterranean

climate environments in which evolved those genotypes collected from Southern Spain. Thus,

it is probable that wild grapes in Northern Spain have evolved to accumulate enough antho-

cyanins capable of attracting birds and other animals to facilitate the dispersion of seeds,

despite the limiting weather conditions for anthocyanin accumulation. Thus, when genotypes

from Northern Spain grow in a warmer environment, like that of El Encin Germplasm Bank,

the accumulation of anthocyanins may be very high.

6. Flavonol fingerprint of wild grapes

Six different flavonols were fully identified by HPLC-MS: a myricetin derivative (3-O-gluco-

side, My-3-gl), three quercetin derivatives (3-O-glucoside, Qu-3-gl; 3-O-glucuronide, Qu-3-gr;

3-O-rhamnoside, Qu-3-rh), a laricitrin derivative (3-O-glucoside, La-3-gl), and a syringetin

derivative (3-O-glucoside, Sy-3-gl). All these flavonols have been identified in berries of several

red grapevine cultivars [31, 38], and their presence in wild grapes should be expected. The

flavonols tentatively identified were 3-O-galactosides of myricetin (My-3-gal) and quercetin

(Qu-3-gal), which have been previously detected in red grape skins [38].

Among those flavonols, the most abundant were My-3-gl (trihydroxysusbtituted in B-ring,

analogous to Dp-3-gl) and two quercetin derivatives (Qu-3-gl and Qu-3-gr, analogous to Cy-3-

gl because they are dihydroxysubstituted in B-ring). Other myricetin derivatives, like laricitrin

and syringetin derivatives (La-3-gl and Sy-3-gl), were minor components, and some of them

were absent in several samples. Figure 5 displays the chromatogram registered at 350 nm for

an extract of genotype H-6.1, with three major peaks, corresponding to My-3-gl, Qu-3-gr, and

Qu-3-gl.

Three phenotypic groups of wild grapes have been considered, taking into account the

amounts of My-3-gl, Qu-3-gl, and Qu-3-gr. Group 1 includes eight genotypes, which did not

contain My-3-gl (Table 6). This fact implies that, in these genotypes, dihydroxylation of

dihydrokaempferol by flavonoid-30,50-dihydroxylase is blocked (Figure 6). In these genotypes,

the major flavonol was Qu-3-gl or Qu-3-gr, and in some cases, contained very small amounts

of other flavonol; anyway, La-3-gl and Sy-3-gl were absent (Table 6). Group 2 is formed by

nine genotypes, which contain My-3-gl, but major flavonol was Qu-3-gl or Qu-3-gr (Table 7).

These genotypes usually contained several minor flavonoids, including La-3-gl and Sy-3-gl,

Range Mean value Standard deviation

Northern Spain 956–3078 2088 693

Southern Spain 273–3534 1697 797

Table 5. Range, mean value, and standard deviation for the content of total anthocyanins (mg/kg of grapes) in genotypes

originated in northern Spain and southern Spain.
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the exceptions being genotypes CA-11.3 and SE-3.4. In these two genotypes, methylation of

My-3-gl by action of a O-methyltransferase is blocked. Finally, group 3 includes eight geno-

types presenting My-3-gl as a major flavonol (Table 8). In most cases, these genotypes

contained several minor flavonoids, including La-3-gl and Sy-3-gl, the exceptions being geno-

types O-1.5bis and SS-3.5. Like in genotypes CA-11.3 and SE-3.4, methylation of My-3-gl by

action of a methyltransferase is blocked.

Data reported in Tables 6–8 point out that the total content of flavonols was quite variable,

ranging from 29 to 324 mg/kg. Nevertheless, there is a remarkable difference among genotypes

from populations located in Northern Spain and those from populations located in Southern

Spain (Table 9). As can be noted, genotypes from Northern Spain contained a lower amount of

flavonols than those originated in Southern Spain. The accumulation of flavonols in grapes

Genotype My-3-gl Qu-3-gr Qu-3-gl Other flavonols Total

CA-6.1 nd 27.0 60.8 14.0 101.9

CA-13.3 nd 11.5 47.7 9.0 68.2

H-6.1 nd 54.2 73.6 17.3 145.1

NA-1.4bis nd 18.0 10.7 0.0 28.7

S-1.3bis nd 10.0 6.8 12.5 29.4

SS-3.5bis nd 21.1 26.5 nd 47.6

SS-6.5bis nd 26.1 61.5 nd 87.5

VI-2.1bis nd 22.3 44.9 nd 67.2

nd: not detected. See full compound names in Figure 5.

Table 6. Content of flavonols (mg/kg of grapes) in genotypes that did not contain My-3-gl.

Figure 5. Chromatogram registered at 350 nm for a grape skin extract. My-3-gl, myricetin-3-O-glucoside; Qu-3-gr,

quercetin-3-O-glucuronide; Qu-3-gl, quercetin-3-O-glucoside.
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increases with sun exposure, as demonstrated by other authors [16]. This factor can be consid-

ered as neutral in our study because all genotypes grown in the same environment; thus,

differences observed in flavonols content can be considered of genetic nature. The most prob-

able explanation is that genotypes originally collected in Northern Spain have evolved in

Figure 6. Biosynthesis of flavonol aglicones. CH3, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone-3β-hydrox-

ylase; FLS, flavonol synthase; F30H, flavonoid-30-hydroxylase; F3050H, flavonoid-30,50-hydroxylase; MT, methyltransferase.

Genotype My-3-gl Qu-3-gr Qu-3-gl Other flavonols Total

BI-1.3bis 1.4 14.0 14.3 3.1 32.8

CA-9.7 2.9 13.8 9.4 13.7 39.8

CA-11.3 10.3 25.8 27.4 nd 63.4

CO-5.1 4.8 37.8 74.1 6.7 123.4

CR-1.6 6.3 31.4 20.3 25.2 83.2

J-2.4 8.1 14.4 7.8 14.2 44.5

LE-1.2 3.2 16.2 11.5 24.0 54.8

SE-1.5 80.8 106.1 71.4 46.2 304.4

SE-3.4 98.3 113.4 112.5 nd 324.1

nd: not detected. See full compound names in Figure 5.

Table 7. Content of flavonols (mg/kg of grapes) in genotypes that contained My-3-gl, being Qu-3-gl or Qu-3-gr the major

flavonol.
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oceanic climate environments, where sunlight exposure is lower than in the Mediterranean

climate environments in which evolved genotypes from Southern Spain.

7. Comparison between anthocyanin fingerprint and flavonol fingerprint

The anthocyanin and flavonol fingerprints of wild grape genotypes are quite different, taking

into account the pathways involved in their biosynthesis. Thus, in most genotypes B-ring

trisubstituted anthocyanins (Dp-derived) predominate, but B-ring disubstituted flavonols (Qu

derivatives) are more abundant than My derivatives (B-ring trisubstituted). Moreover, some

genotypes do not present B-ring trisubstituted flavonols (Table 7), but they always present Dp-

derived anthocyanins, sometimes in a high proportion (e.g., genotype S-1.3bis, see Table 4).

On the other hand, some genotypes presenting a very low amount of Cy-derived anthocyanins

(e.g., CR-1.6 and SE-1.5, see Table 4) contain a remarkable amount of Qu derivatives (Table 7).

These data suggest that flavonol synthase activities linked to the formation of Qu and My are

regulated in a different way than enzymatic activities linked to the formation of Dp-3-gl and

Cy-3-gl from the corresponding dihydroflavonols. Other relevant biosynthetic difference

among flavonols and anthocyanins is B-ring O-methylation. This reaction seems to be more

intense for anthocyanins than for flavonols; thus, in most genotypes, methylated anthocyanins

predominate. This fact suggests that primitive anthocyanins (Cy-3-gl and Dp-3-gl) are better

substrates for O-methyltransferases (OMT) than quercetin and myricietin, as pointed out

previously [34].

Genotype My-3-gl Qu-3-gr Qu-3-gl Other flavonols Total

BA-1.1 84.8 47.0 42.0 9.5 183.3

CA-4.1 22.7 15.2 15.2 1.3 54.4

CO-2.2 48.7 14.6 22.8 14.0 100.1

CO-3.7 26.8 24.9 9.8 23.5 84.9

H-1.1 40.4 11.1 18.0 25.2 94.7

O-1.5bis 77.7 35.1 59.2 nd 172.1

S-1.9 58.0 30.1 28.3 12.2 128.6

SS-3.5 22.9 11.2 14.0 nd 48.1

nd: not detected. See full compound names in Figure 5.

Table 8. Content of flavonols (mg/kg of grapes) in genotypes in which My-3-gl was the major flavonol.

Range Mean value Standard deviation

Northern Spain 28.7–172.1 69.7 47.3

Southern Spain 39.8–324.1 121.0 87.3

Table 9. Range, mean value, and standard deviation for the content of total flavonols (mg/kg of grapes) in genotypes

originated in northern Spain and southern Spain.
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In general, phenylpropanoid biosynthesis and subsequent flavonoid production are tightly

linked to primary metabolism through phenylalanine as a precursor of flavonoids. Catalyzing

the first committed step into the flavonoid biosynthetic pathway, chalcone synthase (CHS)

plays a pivotal role to provide a common chalcone precursor for the production of all interme-

diates and final products of the flavonoid biosynthetic pathway which are therefore biogenet-

ically and structurally related (Figures 3 and 6). In most plants, including grapevine, flavanones

are preferentially used as substrates for flavanone-3β-hydroxylase (F3H), which produces dihy-

droflavonols as an important branch point flavonoid and an essential substrate for all classes of

downstream compounds (Figures 3 and 6). The biosynthesis of flavonol aglycones through

flavonol synthase 1, FLS4 [39, 40]; as well as the biosynthesis of proanthocyanidins and antho-

cyanin precursors through dihydroflavonol 4-reductase (DFR) employs dihydroflavonols as

substrates thereby directly competing for the same substrate (Figures 3 and 6). DFR reshuffles

substrates away from flavonol biosynthesis and converts dihydroflavonols to leucoantho-

cyanidins, which are precursors for proanthocyanidin and anthocyanin biosynthesis [41]. While

DFR is specific for the anthocyanin/proanthocyanidin pathway, flavonoid-30-hydroxylase

(F30H) and flavonoid-30,50-hydroxylase (F3050H) gene products are necessary for the production

of all subclasses, namely flavonols, anthocyanins, and proanthocyanidins. In general, hydrox-

ylation of the B-ring of dihydroflavonols, flavanones, and flavones changes the color of the

resulting anthocyanin-derived pigment and increases dramatically the chemodiversity of flavo-

nols, proanthocyanidins, and anthocyanins [42].

The known biosynthetic pathway of flavonoids shares common enzymatic steps, whereas the

activities of enzymes specific for anthocyanins or flavonols lead exclusively to the biosynthesis

of the respective flavonoid by competing for common substrates (Figures 3 and 6). The

accumulation of flavonol compounds in the berry is mediated by an increase of transcripts

encoding FLS (VvFLS4 or VvFLS5) under the regulation of the transcriptional factor VvMYF

[40]. Later during veraison, the anthocyanins are synthesized through the flavonoid pathway

in grapevine cultivars that harbor the wild-type VvmybA1 transcription factor for the expres-

sion of UFGT [43]. The encoded enzyme UFGT catalyzes the glycosylation of unstable

anthocyanidin aglycones into pigmented anthocyanins (Figure 3). Two primitive anthocya-

nins (Cy-3-gl and Dp-3-gl) are synthesized in the cytosol of berry epidermal cells. The B-ring

of Cy-3-gl is dihydroxylated at the 30 and 40 positions, whereas Dp-3-gl has a tri-hydroxylated

B-ring because of an additional hydroxyl group at the 50 position. The 30 position of Cy-3-gl

and Dp-3-gl and sequentially the 50 position of Dp-3-gl can be methoxylated by O-

methyltransferase (VvOMT), generating Pn-3-gl, Pt-3-gl, and Mv-3-gl, respectively [44].

Anthocyanins can be further modified by acyltransferases, which produce 3-O-acetyl-, 3-O-

coumaroyl-, and 3-O-caffeoyl-monoglucosides by attaching acyl groups to the C600 position of

the glucose moiety [45].

Taking into consideration the regulations and biosynthesis pathway, we can suggest that the

differences in the anthocyanin and flavonol fingerprints of wild grapes are putative due to

the different expression level of the structural genes F3’H and F3’5’H, which are essential in the

breach point for the final anthocyanin and flavonol compounds and the transcriptional factor

involved in the pathway. Finally, the different level of methylation of Cy-3-gl and Dp-3-gl

could be due to different expression of OMT genes and the gene encoding an anthocyanin
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acyltransferase, anthocyanin-3-O-glucoside-600-O-acyltransferase (3), which is capable of pro-

ducing the common acylated anthocyanins found in grape berries [46].

8. Conclusions

The anthocyanin fingerprint of wild grapes skins, considering the relative amount of 15

anthocyanins, showed a considerable variability, being possible to distinguish three pheno-

typic groups. Differences into those groups are related with the predominance of delphinidin-

or cyanidin-derived anthocyanins and the expression of genes involved in acyltransferase

activities. Moreover, it has been possible to separate 12 flavonol glycosides, eight of them were

successfully identified. Major flavonols were Qu-3-gl, Qu-3-gr, and My-3-gl. The diversity and

number of flavonols differed for each genotype. In most genotypes, Qu-3-gl or Qu-3-gr was the

major flavonol, and My-3-gl was absent in some genotypes. Quantitative analysis of anthocy-

anins and flavonols revealed that genotypes collected in wild grapevine populations located in

Northern Spain were richer in anthocyanins and poorer in flavonols than those collected in

populations located in Southern Spain. This difference may be explained by the different

expression level of the structural genes and transcriptional factors in the biosynthesis pathway

in relation with the impact of climatic conditions on the evolution of wild grapes in different

environments.
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