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1. Introduction 
 

Nowadays, process control (or process monitoring) is becoming an essential task especially 
when dealing with complex manufacturing processes (like automatized processes 
containing a lot of sensors and actuators). In (Chiang et al., 2001), authors give two principal 
approaches to perform the process control, namely, data-driven techniques and analytical 
techniques. The analytical techniques are based on analytical (physical) models of the 
system and enable to simulate the system. Though, at each instant, the theoretical value of 
each sensor can be known for the normal operating state of the system. As a consequence, it 
is relatively easy to see if the real process values are similar to the theoretical values. But, the 
major drawback of this family of techniques is the fact that a detailed model of the process is 
required in order to control it efficiently. An effective detailed model can be very difficult, 
time consuming and expensive to obtain, particularly for large-scale systems with many 
variables. The data-driven approaches are a family of different techniques based on the 
analysis of the real data extracted from the process. These methods are based on rigorous 
statistical development of the process data (i.e. control charts, methods based on Principal 
Component Analysis, Projection to Latent Structure or Discriminant Analysis) (Chiang et al., 
2001). 
The process control can be viewed as a three-step procedure: the fault detection, the fault 
diagnosis and the process recovery. 
Many data-driven techniques for the fault detection can be found in the literature: 
univariate control charts (Shewhart charts) (Shewhart, 1931), multivariate control charts 

( T
2 , Q, MEWMA, MCUSUM charts) (Hotelling, 1947; Lowry et al., 1992; Pignatiello & 

Runger, 1990), and some PCA (Principal Component Analysis) based techniques (Jackson, 
1985), like Moving PCA (Bakshi, 1998). In (Kano et al., 2002), authors make comparisons 
between these different techniques. Other important approaches are PLS (Projection to 
Latent Structures) based approaches (MacGregor & Kourti, 1995). 
In order to accomplish the fault diagnosis, many approaches have been proposed (Kourti & 
MacGregor, 1995). The fault diagnosis procedure can also be considered as a classification 
task. Many classifiers have been developed (i.e. Fisher Discriminant Analysis (Duda et al., 
2001), Support Vector Machine (Vapnik, 1995), k-nearest neighborhood (Cover & Hart, 
1967), Artificial Neural Networks (Bishop, 2001) and bayesian classifiers (Friedman et al., 
1997)).  
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When dealing with a great number of variables and faults, the performances of these 
classifiers are diminished. To overcome the inconvenience, a feature selection is often 
performed before the classification task. By feature selection one means the identification of 
the key process variables allowing capturing the signature (identity) of the various faults 
affecting the process. 
In this article, we are presenting a new method for the detection and the diagnosis of faults 
in multivariate processes with bayesian networks. 
The chapter is structured as follows: the second section present the utilization of the 
multivariate control charts for fault detection; the third section highlights some aspects on 
bayesian networks and particularly on bayesian network classifiers; in the fourth section we 

are showing how to model some multivariate control charts ( T
2  and MEWMA), with a 

bayesian network. In the last section, we conclude on the proposed approach and give some 
outlooks. 

 
2. Detection and classification 
 

As the new method for the fault detection that we proposed is based on multivariate control 
charts and on discriminant analysis, we present this two techniques in this section. 
 

2.1 Multivariate control charts 

Hotelling (Hotelling, 1947) was the first to propose a control chart for the monitoring of 

multivariate processes: the T
2  control chart. (Hawkins, 1991) demonstrated that this chart 

represents the best statistical test for the detection of a change in the mean of a multivariate 

process. For a process with p  variables, we can write the T
2  statistics as the following: 

 

( ) ( )μxμx Σ −−= −12 T
T  (1) 

 
where: x  is the observation vector of size p×1 , μ  is the mean vector of size p×1 , Σ  is the 

variance-covariance matrix of size pp×  and the symbol T  represents the transpose of a 

vector or a matrix. 

For each instant sampling, the T
2  will be compared to an upper control limit CL   (lower 

control limit is fixed to 0) in order to conclude about the state of the process: if the value of 

T
2  is lower than the CL , then the process is "in control", either ( T

2 > CL ) the process is 

declared out of control signifying a fault has occurred in the process. The computation of the 
limit will depend of the estimation of the process parameters. Montgomery (Montgomery, 
1997) gives the different computations for this limit. 

The major drawback of the T
2  control chart is its moderate performances to detect small 

mean shifts. In order to solve this problem, other multivariate control charts have been 
proposed: MEWMA (Multivariate Exponentially Weighted Moving Average) (Lowry et al., 
1992) and MCUSUM (Multivariate CUmulative SUM) (Pignatiello & Runger, 1990). These 
charts are respectively the multivariate analogous of the EWMA and CUSUM control charts.  
The principle of the MEWMA control chart is to take into account the process evolution in 

weighting past observations extracted from the process. So, the MEWMA variable yt
 is 
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computed recursively, for each sample, by the equation (2) where the initialization is given 

by  μy =
0

. 

 

yΛIxΛy 1
)( −−+=

ttt
 (2) 

 
In equation (2), xt  is the observation vector at instant t , I  is the identity matrix and Λ  the 

weighting diagonal matrix which elements λλλ p,,, 21 L  are comprised between 0 and 1. 

( 10 ≤< iλ ). 

Lowry proposed to use λλ=i  for pi ,,2,1 L=  if there is no particular reason to differently 

weight the variables. In this case, the MEWMA control chart is considered “directionally 
invariant” because no direction in the multivariate space is advantaged. By choosing 

different iλ  in order to increase the detection performance in certain directions, one obtains 

a “directional” control chart which is quite more difficult to compute and to interpret.  So, in 

the rest of this chapter, we will consider the non-directional MEWMA control chart ( λλ=i  

for all i ). Thus, we can rewrite equation (2) as: 

 

yxy 1
)1( −−+=

ttt
λλ  (3) 

 
On the MEWMA control chart, we plot the following statistic: 
 

( ) ( )yΣy y tt

T
t

t
T

12 −=  (4) 

 
Where Σyt

 is the variance-covariance matrix of the variable y  at instant t . This matrix is 

defined as: 
 

( )[ ] ΣΣy

⎭
⎬
⎫

⎩
⎨
⎧

−
−−= λ
λλ

2
11

2t

t
 (5) 

 
But, if λ  is not too small ( 1.0>λ ), this matrix approaches rapidly (in 4 or 5 samples) his 

asymptotic value defined by: 
 

{ }ΣΣy λ
λ
−=

2
 (6) 

 
The process is declared out-of-control if T t

2  is greater than a control limit hM . This limit is 

function of p  and λ , in order to respect a given false alarm frequency (Lowry et al., 1992). 

We can precise that performances of the MEWMA control chart are function of λ . Indeed, a 

small λ  allows a performing detection of small magnitude shifts, but a higher λ  will be 

more adapted for large magnitude shifts. So, the choice of λ  will be function of the 
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magnitude shift that one wants to detect. A particular case of the MEWMA control chart is 

the case where 1=λ . In this case, the MEWMA chart is equivalent to the T
2  control chart. 

 
2.2 Discriminant analysis 

The discriminant analysis can be viewed as a statistical technique for supervised 

classification, based on the Bayes rule. Indeed, for a problem with k  classes, this technique 

allocates to a new observation x  the class Ci  having the maximal a posteriori probability 

( )( xCP i
): 

 

x  ∈  Ci , if   { })(maxarg
,,1

xCPi i
ki L=

=  (7) 

 
This rule is called "Bayes rule" because it allows obtaining the value of )( xCP i

 with the use 

of equation (8), where )(CP i  represents the a priori probability of the class Ci . 

 

)(

)()(
)(

x

x
x

P

CPCP
CP

ii
i =  (8) 

 
We can see that for each class, the denominator of equation (8) is the same and it will not 
interfere in the discriminant function. So, the equation (7) can be rewritten as: 
 

x  ∈  Ci , if   { })()(maxarg
,,1

CPCPi ii
ki

x
L=

=  (9) 

 
But, for more simplicity, we will write this decision rule under the form of a cost function K  
as given by: 
 

))()(log(2)( CPCPK iii xx −=  (10) 

 
Thus, the attribution rule of a new observation x  to a class Ci  can be written by the 

following equation: 
 

x  ∈  Ci , if   { })(minarg
,,1

xKi i
ki L=

=  (11) 

 
Generally, this rule is applied with parametric distribution laws; the most used is the 
multivariate normal (Gaussian) distribution. 
The multivariate Gaussian distribution is the generalization of the one-dimensional normal 

distribution to higher dimensions. The probability density function φ , conditionally to a 
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class Ci  is given in equation (12), where μi
 is the mean vector of the class Ci , and Σi  is the 

variance-covariance matrix of the class Ci . 

 

( ) ( )( )μxΣμx
Σ

x iii

T

i
piC −−−= −1

2/12/ 2
1exp

)2(

1)(
π

φ
 (12) 

 
As the exact values of ΣμΣμΣμ kk

,,,,,, 2211
L  are generally unknown, it is necessary to estimate 

them with data. In order to estimate these parameters, one can use MLE (Maximum 
Likelihood Estimation). An advantage of MLE is the fact that this estimator has good 
convergence propriety when the sample size is large enough. More, this is one of the 
simplest techniques for the estimation of law parameters. In the case of the multivariate 
Gaussian distribution, the MLE of the mean vector is: 
 

∑=
=

n

i
in 1

1ˆ xμ  (13) 

 
In the same way, an unbiased estimation of Σ  is: 
 

)ˆ()ˆ(
1

1ˆ
1

μxμxΣ −−∑−=
=

i

Tn

i
in  (14) 

 
For a more detailed justification of these estimators, see (Duda et al., 2001).  
The discriminant analysis rule (equation 10) applied in the case of the multivariate Gaussian 
distribution can be developed as: 
 

( ) ( ) )2log()log())(log(2)( 1 πpCPK iiiii

T
i ++−−−= − ΣμxΣμxx  (15) 

 
In the equation, we can see that the last term ( )2log( πp ) is constant for each K i  and we have 

not to take it into account for the discrimination. This rule is named “Quadratic 

Discriminant Analysis”. We can also remark that ( ) ( )μxΣμx
iii

T −− −1  is the T
2  of x  for the class 

Ci . If the assumption of independent variables is made, thus Σi  is a diagonal matrix (all the 

covariances are null). This decision rule is also known as the Bayes classifier or naïve 
bayesian network. The major problem of the quadratic discriminant analysis is that this 
technique requires an important amount of data for the correct estimation of all the 
parameters. In the case of non-sufficient data, we can use the linear discriminant analysis. 
The important assumption of the linear discriminant analysis, compared to the quadratic 
one, is the supposed equality of all variance-covariance matrices. So, for each class Ci , 

ΣΣ=i , with Σ  the pooled sample covariance matrix. This matrix is easily obtained with 
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equation (16) where ni  is the sample number of the class Ci  and where n  is the total 

number sample (so nnnn k+++= K21 ). 

 

kn
nnn kk

−
−++−+−= ΣΣΣΣ

)1()1()1( 2211 K
 (16) 

 
So, in this case, equation (15) becomes: 
 

( ) ( ) cstCPK iiii

T
i +−−−= − ))(log(2)( 1 μxΣμxx  (17) 

 
where cstp =+ )2log()log( πΣ . One can see in equation (17) that if the a priori probabilities 

( )(CP i ) of each class are equal, thus the decision rule comes to the computation of the T
2  for 

each class and the attribution of a new observation to the class with the lower T
2 . This cost 

function makes linear bound between the different classes. But, as for the case of quadratic 
discriminant analysis, we can do the assumption that Σ  is diagonal. The linear 

discriminant analysis is quite robust to the assumption of normality of each class and to 
assumption of equality of the different variance-covariance matrices. For these reasons, this 
technique is widely used and is considered as a reference method of supervised 
classification. 

 
3. Discriminant analysis and bayesian networks 
 

An interesting tool using statistics is bayesian network, an oriented probabilistic graphic 
model. Bayesian networks can be efficient supervised classifiers. So, after the general 
presentation of bayesian networks and especially bayesian classifiers, we will present how 
to make discriminant analysis with them. 
 

3.1 Bayesian networks 

A bayesian network (Pearl, 1988; Jensen, 1996) is a triplet {G, E, D} where: 
{G} is a directed acyclic graph, G=(V,A), where V is the set of nodes of G, and A is the set of 
edges of G, 
{E} is a finite probabilistic space (Ω, Z, P), where Ω is a non-empty space, Z is a collection of 
subspace of Ω, and P is a probability measure on Z with P(Ω)=1, 
{D}  is a set of random variables associated to the nodes of G and defined on E such as: 
 

))((),,,(
1

21 ii
n

i
n VCVPVVVP ∏=

=
K  (18) 

 
where C(Vi) is the set of parents of Vi in the graph G. 
Bayesian network classifiers are particular bayesian networks (Friedman et al., 1997). They 
always have a discrete node C coding the k different classes of the system. The remaining 
variables Xi represent the descriptors (variables) of the system. 

www.intechopen.com



Fault Detection with Bayesian Network 347 

A Naïve Bayesian Network (NBN) is a particular type of bayesian network classifiers 
(Langley et al., 1992). It is also known as the Bayes classifier. In a NBN, the class node is 
linked with all other variables of the system (descriptors) as indicated on the figure 1. 
 

C

X 1 X 4X 2 X 3
 

Fig. 1. Example of a Naïve Bayesian Network (NBN) 

 
The NBN is called naïve because it makes the naïve (but strong) assumption that all 
descriptors (variables of the system) are class conditional statistically independent (no 
correlation between each descriptor in each class). In (Inza et al., 1999), authors made a 
comparative study of classification algorithms used in artificial intelligence. NBN is 
compared with other methods like k-nearest neighborhood, C4.5, decision tree and so on. If 
the independence assumption of the descriptors is verified and that probabilities are 
estimated with enough precision the NBN is an optimal classifier in term of misclassification 
rate (Domingos & Pazzani, 1996). This optimality is obtained when continuous variables are 
discretized in such a way that every distribution can be well approximated by discretization. 
Of course, the discretization of variables is a loss of information because it is a reduction of 
the variables space. But, assuming that continuous variables follow normal probability 
density function, we can deal with them directly in the network. And, if this assumption is 
verified, we keep this optimality. But, in many systems, it is very frequent to have high 
correlations between variables, and a NBN will not take into account these correlations. 
Extensions of NBN have been developed in order to solve this problem. 
A first interesting extension is the TAN (Tree-Augmented bayesian Network) (Friedman et 
al., 1997). In a TAN, a maximum weighted spanning tree is constructed with the descriptors 
following the algorithm of (Chow & Liu, 1968). So, each descriptor will have at most one 
other descriptor as parent. After that, edges from the class node to each descriptor are added 
(like a NBN). An example of a TAN is given on the figure 2. 
 

C

X 1 X 4X 2 X 3

 
Fig. 2. Example of a Tree-Augmented bayesian Network (TAN) 

 
Another extension is the k-dependence bayesian classifier structure (kDB structure) 
(Sahami, 1996) that extends the TAN structure allowing a maximum of k predictor parents 
plus the class for each predictor variable (TAN structures are equivalent to kDB structures 
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with k = 1). Finally, the bayesian multinets (Geiger & Heckerman, 1996) introduce a 
different structure for each value of the class variable (a particular case is to take a different 
TAN for each value of the class). In (Friedman et al., 1997), authors show that these 
classifiers give a lower misclassification rate than the NBN. But, these classifiers do not take 
into account all the correlations between variables. 
An other extension to the NBN is the Condensed Semi Naïve Bayesian Network (CSNBN) 
(Kononenko, 1991). The principle of this classifier is to represent some variables in a joint 
node (i.e. some normally distributed variables can be modeled with a node representing a 
multivariate normal distribution). In this way, all correlations of the system will be taken 
into account. A CSNBN will be composed of two nodes: the class node and a multivariate 
node. An example of a CSNBN is given on the figure 3. 
 

X

C

 
Fig. 3. Example of a Condensed Semi Naïve Bayesian Network (CSNBN) 

 
3.2 Discriminant analysis as a bayesian network 

Discriminant analysis techniques can be easily transposed to a bayesian network. Indeed, 
inference in a bayesian network is based on the Bayes rule, like the discriminant analysis 
(see section 2.2). The structure of the network in order to make classical discriminant 
analysis (quadratic or linear) on a system with p variables and k classes can be modelized 
with two linked nodes. The first one (node C) is a discrete node (with k modalities) 
representing the classes of the system. The second one (node X) is a multivariate Gaussian 
node. We have previously presented this type of bayesian network: it is a CSNBN (figure 4). 
This network represents a multivariate normal law conditionally to the class, as the 
discriminant analysis. The choice between the different types of discriminant analysis 
(quadratic, linear, spherical, diagonal, etc) is made on the choice of the k variance-covariance 
matrices that will be attributed to X. It is also possible to make a quadratic discriminant 
analysis in viewing all the univariate variables Xi composing the multivariate variable X, 
and then, linking all them in order to take into account all possible relations between these 
univariate variables Xi. A four variable example of such structure is given on figure 4. 
 

C

X 1 X 4X 2 X 3

 
Fig. 4. Bayesian Network for Discriminant Analysis with incomplete observations 

www.intechopen.com



Fault Detection with Bayesian Network 349 

This figure 4 represents a succession of p-1 linear regressions. The interest of this type of 
structure is the fact that it can give response even if the values of some Xi are unknown. 
However, the estimation of all the regressions parameters and the inference time will be 
more consequent than for the CSNBN. So, in the basic case (complete data), we will prefer 
CSNBN. 

 
4. Multivariate control charts with a bayesian network 
 

The detection, as we previously said, consists in identifying the presence of faults in the 
process. The detection can be considered as a classification in two classes: no fault in the 
process, and fault in the process. For the detection, we suppose to have samples for the 
normal working state of the system (we will call this class “In Control” (IC) class), but 
having fault samples should not be necessary. This classification type is called one-class 
classification (Tax & Duin, 2001). In contrast with normal classification problems where one 
tries to distinguish between two (or more) classes of objects, one-class classification tries to 
describe one class of objects, and distinguish it from all other possible objects. A useful 
solution for this is to create at least a second class, a virtual class named “Out-of-Control” 
(OC) class. This virtual class represents the set of observation that cannot be attribute to the 
IC class. 

An example of one-class classification is the T
2  control chart (new observation is attributed 

to the IC class if his T
2  is lower than CL , and to the OC class if his T

2  is greater than CL ). 

In this case, it is evident that the decision boundary can be represented as the CL . For this 

control chart, it is possible to represent, for a bidimensional example, the decision boundary 

induced by CL . On the figure 5, we can see that this boundary is an ellipse rounding the 

normal working class of the process (IC class), and that each observation out of this ellipse is 
attributed to the fault class (OC class). 

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

Out-of-Control
“OC”

In Control 
“IC”

 Control Limit  CL 

 
Fig. 5. Decision boundary of the control chart for a bivariate system 
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On the figure 5, we can see that the classification technique producing this boundary cannot 
be linear. So, it will be impossible to make such boundary with linear discriminant analysis. 
But, this boundary shape is typical of quadratic discriminant analysis. 
In order to define the In Control class, we make the assumption that some samples of in 
control data are available. In the same way that for the control chart, these samples allow to 

estimate the mean vector μ  and the variance-covariance matrix Σ  of the process in normal 

working conditions. The major problem is the definition of the virtual class OC because no 
sample is available. In studying the figure 5, we can see that if we make the assumption that 
the mean of the OC class is the same that the mean of the IC class, the only difference 
between the two classes is the fact that the OC class has more variability that the IC class. So, 
we will define the virtual class as following: the mean vector of the OC class is equal to the 

mean vector of the IC class; the variance-covariance matrix of the OC class is equal to cΣ  

where Σ  is the variance-covariance matrix of the IC class, and where c is a coefficient 
strictly greater than 1. This coefficient c allows increasing the variability of the OC class in 
function of the variability of the IC class. The table 1 presents the parameters of each class. 
 

Class Distribution 

In Control (IC) ),(~ ΣμX N  

Out-of-Control (OC) ),(~ ΣμX ×cN  

Table 1. Classes parameters 

 
However, fixing the different distributions laws is not sufficient for taking decisions about 
the process state (in or out-of-control). Indeed, the definition of these parameters makes 
possible the application of a discriminant analysis in a bayesian network. So, when a new 
observation x  is injected in the bayesian network, we will obtain an a posteriori probability 

)( xICP  that this observation belongs to the IC class and an a posteriori probability 

)( xOCP that this observation belongs to the OC class (with )( xICP + )( xOCP =1). In order to 

decide about the state of the process, one has to fix a false alarm rate α  in addition to these 

two previous calculated probabilities. As in the case of multivariate control charts, we have 
to fix a false alarm rate. Moreover, the coefficient c will play an important role in the 
probabilities computations. In the next section, we will see how to set the different 
parameters to obtain the equivalency between the bayesian network and the multivariate 
control charts. 
 

4.1 Equivalency proof 

As in the case of the multivariate control charts ( T
2  or MEWMA), we will fix a threshold 

(limit) on the a posteriori probabilities allowing to take decisions on the process: if, for a 

given observation, the a posteriori probability to be out-of-control ( )( xOCP ) is greater than 

the a priori probability to be out-of-control ( )(OCP ), then this observation is out-of-control. 

This rule can be rewritten as: “process out-of-control if )()( OCPOCP >x ”, or equivalently 

“process in control if )()( ICPICP >x ”. The objective of the following developments is to 

define c in order to obtain the equivalency between the bayesian network and the 
multivariate control charts. 
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We want to keep the following decision rule: 
 

x  ∈  IC, if   CLT <2  (19) 

 
with this decision rule: 
 

x  ∈  IC, if   )()( ICPICP >x  (20) 

 
We develop the second decision rule: 
 

)()( ICPICP >x   

))()())((()( xxx OCPICPICPICP +>   

)())(()())(()( xxx OCPICPICPICPICP +>  (21) 

)(
)(1

)(
)( xx OCP

ICP
ICP

ICP ⎟
⎠
⎞

⎜
⎝
⎛
−>   

)(
)(
)(

)( xx OCP
OCP
ICP

ICP ⎟
⎠
⎞

⎜
⎝
⎛>   

 
But, the Bayes law gives: 
 

)(

)()(
)(

x

x
x

P

ICPICP
ICP =  (22) 

 
And  
 

)(

)()(
)(

x

x
x

P

OCPOCP
OCP =  (23) 

 
So, we obtain: 
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)()(
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ICP
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ICPICP
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⎝
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)(
)(
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OCP
OCP
ICP

ICP
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xx ⎟
⎠
⎞

⎜
⎝
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⎠
⎞

⎜
⎝
⎛

 (24) 

)()( OCPICP xx >   

 
In the case of a discriminant analysis with k  classes Ci , the conditional probabilities are 

computed with equation (25), where φ  represents the probability density function of the 

multivariate Gaussian distribution of the class. 
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∑
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=

k
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i

CCP
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)()(

)(
)(

x

x
x

φ

φ
 

(25) 

 
So, equation (24) can be written as: 
 

)()( OCIC xx φφ >  (26) 

 
We recall that the probability density function of a multivariate Gaussian distribution of 

dimension p, of parameters μ  and Σ , of an observation x  is given by: 

 

( ) ( )( )
Σ

μxΣμx
x

2/12/

1

)2(

2
1exp

)(
π

φ
p

T −−−
=

−

 (27) 

 
If the law parameters are μ  and Σ×c , then the density function becomes: 

 

( ) ( )( )
c

pp

T

c
2/2/12/

1

)2(

2
1exp

)(
Σ

μxΣμx
x

π
φ

−− −−
=  (28) 

 
In identifying the expression ( ) ( )μxΣμx −− −1T  as the T

2  of the observation x , we can write: 

 

)()( OCIC xx φφ >   

c

TT

ppp

c

2/2/12/

2

2/12/

2
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2
)ln(

22

22 cp
c

TT −−>−   

c

cp
T 11

)ln(2

−
<   

 
However, we search the value(s) of c allowing the equivalency with the control chart 

decision rule: x  ∈  IC, if  CLT <2 . So, we obtain the following equation for c: 
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CL

c

cp =
−11

)ln(  
(30) 

Or, equivalently: 
 

0)ln(1 =+− c
CL

pc
c  (31) 

 
Equation (31) admits two solutions: 1=c  (not acceptable) and a second solution (numerically 

computable) which depends of p and α . With the coefficient c correctly computed, we 

obtain the equivalence between the bayesian network and the multivariate control charts. 
We precise that, as univariate charts are simply a particular case of multivariate control 
chart, the proof given is also available for univariate control charts. In order to demonstrate 
the proposed approach, we illustrate it on a simple system with two variables. 

 
4.2 Detection with bayesian network 

We will study a T
2  control chart and a MEWMA control chart (with 1.0=λ ) modelized by 

bayesian networks. We choose a false alarm rate %1=α . When the system is in-control, it 

follows a multivariate Gaussian distribution with parameters μ  and Σ  such as: 

 

( )105=μ  (32) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

22.1

2.11
Σ  (33) 

 
In order to monitor this process, we apply the proposed method of detection with bayesian 

network. So, for a T
2  control chart, we obtain the bayesian network of the figure 6. We have 

also given the conditional probability table of each node, and where c is equal to 95.28 

(solution of equation (31) for %1=α  and 2=p ). 

 

Class C  

IC OC  

α−1  α   

   
   

   

C X  

IC ),(~ ΣμX N  X

C

 OC ),(~ ΣμX ×cN  

Fig. 6. Bayesian Network similar to T
2  control chart 
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In the same way, we can also monitor the process with a MEWMA control chart modelized 
by the bayesian network of the figure 7, where c is equal to 90.29 (solution of equation (31) 

for %1=α  and 2=p  in the MEWMA case). 

 

Class C  

IC OC  

α−1  α   

   
   

   

C Y  

IC ( ) )
2

,(~ ΣμY λ
λ
−N  Y

C

 OC ( ) )
2

,(~ ΣμY λ
λ
−×cN  

 
Fig. 7. Bayesian Network similar to MEWMA control chart 

 
We have simulated this system on 30 observations. But, a fault has been introduced from 
observation 6 to 30. This fault is a mean step of magnitude 0.5 on the first variable. The 

figure 8 represents the decision taken at each instant respectively for the T
2  chart (left 

graphs) and for the MEWMA chart (right graphs). On this figure, upper graphs represent 

the computation of the statistical distance associated with the control chart ( T
2  or T t

2 ). The 

lower graphs give the a posteriori probability to be in control. The control limit is given on 

each graph, so we can view the limit on the bayesian network fixed to %991 =−α . 

 

 
Fig. 8. Results of the T

2  and MEWMA chars, and their equivalency in Bayesian Network 
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On the figure 8, we can see that for each instant, the decision between a control chart and its 
modelization by bayesian network is equivalent.  
We demonstrated that it is possible to have detection of faults in multivariate processes with 
bayesian networks and we proved that we can easily modelize multivariate control charts 
with them. 

 
5. Conclusions and outlooks 
 

In this chapter, we show that a bayesian network can be an efficient way to diagnose a fault 

in multivariate processes. We have selected two statistical fault detection techniques (the T
2  

chart and the MEWMA chart) and we have demonstrated that these charts can be viewed as 
a discriminant analysis and so can be implemented in a simple bayesian network. 
As the efficiency of bayesian network for the diagnosis of systems has already been 
demonstrated (Verron et al., 2006; Verron et al., 2007), the evident outlook of this work is the 
full study of the use of bayesian network in order to monitor and control a multivariate 
process (detection and diagnosis in the same network). 
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