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Abstract

During the last decade, our groups have performed systematic experimental studies
on the characterization of plasma plumes generated by laser ablation in various tempo-
ral regimes (ns, ps, fs) on materials ranging from simple metals (Al, Cu, Mn, Ni, In,
W, …) to more complex compounds (ceramics, chalcogenide glasses, ferrites). Optical
(fast imaging and space- and time-resolved emission spectroscopy) and electrical
(mainly Langmuir probe) methods have been applied to experimentally investigate the
dynamics of the plasma plume and its constituents. Influence of the target physical
(thermodynamic and electrical) parameters on the plasma dynamics has been studied.
A mathematical correlation between the local and global plasma parameters and the
physical properties of the target was proposed for the first time. Peculiar behaviors like
plume splitting or plasma oscillations have been evidenced for high laser fluence abla-
tion in vacuum. Along with results from the literature, our findings provide convincing
arguments for the existence of multiple double-layers in the laser ablation plasma
plume, in a scenario including two-temperature electrons. New fractal-based theoretical
approaches have been developed to qualitatively and quantitatively account for the
observed phenomena. The space and time evolution of expansion velocity, particle
number, current density and plasma temperature were theoretically investigated.

Keywords: laser ablation, transient plasma dynamics, plasma oscillations, Langmuir
probe, optical emission spectroscopy, plasma simulation, fractal, hydrodynamics
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1. Introduction

Despite its widespread use in a large number of applications (e.g. pulsed laser deposition [1],

generation of nanoparticles [2, 3], chemical analysis [4, 5] or cleaning of delicate artwork [6]), a

comprehensive picture of laser ablation remains a challenge for both experimentalists and

theoreticians. The difficulty arises from the multi-physics nature of the ablation process, cou-

pling optics and electrodynamics (absorption of light by the target material), thermodynamics

(heating, phase transitions, cooling), gas dynamics (expansion of ablation plume into vacuum

or background gas), plasma physics (collisions, electric interactions) and laser-plume interac-

tion (plasma heating by absorption of laser photons, inverse Bremsstrahlung, multi-photon

ionization), some of these evolving on very short time scales, which can make it challenging to

find the adequate resolving probe. Moreover, the fundamental mechanisms involved in the

ablation process and the properties and dynamics of the subsequent laser-produced plasmas

depend strongly on the laser beam parameters (pulse duration, fluence, wavelength or beam

profile) and also on the properties of the irradiated material (thermal/electrical conductivity,

reflectivity, heat of vaporization, binding energy, etc.).

Fundamental differences can be revealed when investigating the role of the laser pulse dura-

tion with respect to the specific timescales of the irradiated material response [7]. For instance,

in nanosecond ablation regime, the laser pulse is significantly longer than the usual electron

cooling time (�10 fs) and the lattice heating time (�ps). In this case, the energy absorbed by the

electrons has enough time to be transferred to the lattice. The electrons and the lattice can

further reach thermal equilibrium, and the main energy loss is the heat conduction into the

solid target. Consequently, the mechanisms involved in this ablation regime are mainly ther-

mal (e.g. phase explosion, normal vaporization, etc.) [8, 9]. Most notably, the subsequent

plasma generated in this ablation regime absorbs a significant percentage of the beam energy

(pulse “tail”, during several nanoseconds), leading to an important heating of the plume. In

the case of ultra-fast laser ablation (�fs), when the laser pulse duration is shorter than (or on

the same scale as) the electron cooling time, the electrons in the surface layer suffer cooling by

heat diffusion and by heat transfer to the lattice ions. This stage continues for several picosec-

onds. The picture changes in the case of a semiconductor target which is heated by an ultra-

short pulse. In the latter case, laser energy is transferred into the solid by creating a “bath” of

hot electrons and holes [10]. Hot carriers subsequently transfer energy to the lattice by creating

optical and acoustic phonons. In the case of both metals and semiconductors, the thermaliza-

tion of laser energy in the hot carrier bath takes place within a few femtoseconds, while the

typical time-scale for lattice heating falls within the 1–10 ps range, where thermal conduction is

negligible [11]. For low fluence fs-laser irradiation, the Coulomb explosion [12] is the dominant

ejection mechanism, while at sufficiently high laser intensities the phase explosion is followed

by non-thermal vaporization of the bulk material and becomes the main mechanism for

material removal [13]. A particular case of ultra-fast laser ablation is represented by ps-laser

ablation. This temporal regime acts like a bridge between the previous cases manifesting

characteristics from both regimes. The pulse duration is long enough so that some thermal

damage occurs due to the heating of the lattice. If the laser pulse width is in the 1–10 ps range,

the particle ejection is still dominated by the Coulomb explosion with minimal contribution

Laser Ablation - From Fundamentals to Applications4



from the thermal mechanism and no interaction between the plasma plume and the incoming

laser beam. For longer pulse durations (�100 ps) the balance is “tipped” in favor of thermal

mechanisms coupled with a brief absorption of the laser beam by the ejected cloud [7].

Extensive efforts have been fostered by many research groups in the last decades for unveiling

this complexity. Most of them were dedicated to characterizing the laser-produced plasma

dynamics and to establishing a link between the local/global plasma parameters and the

fundamental ablation mechanisms, some also addressed the link with the physical properties

of the irradiated material (see, e.g., [14–48]). In order to draw a comprehensive picture of the

laser-produced transient plasma evolution, one needs detailed space- and time-resolved infor-

mation on the chemical and electrical composition of the expanding plume (ions, electrons,

neutral atoms, molecules, clusters, with associated number densities, ionization stages, etc.),

the plasma dynamics—expansion regime (plasma as a whole), kinetic energies (of every

individual species), etc. Optical (fast photography, shadowgraphy, interferometry, optical

emission and absorption spectroscopies, laser-induced fluorescence, resonant ionization spec-

troscopy, Thomson scattering) and electrical (Langmuir probes (LP), Faraday cups, electro-

static analyzers, mass spectrometry) methods [49, 50] are available for undertaking this

complex investigation. The difficulty in getting a complete description of the laser ablation

plasma plume arises mostly from its transient character, with a lifetime typically on the 10 μs

scale, but with inner rapid phenomena (e.g. oscillations) which can exhibit sub-nanosecond

timescales. Consequently, extreme care must be taken for the specific application of well-

known steady state plasma characterization tools (e.g. Langmuir probes) to this transient case.

Moreover, not all of the above-mentioned techniques can be applied for probing the great

variety of laser ablation plasmas (nor even one given plasma plume along its spatial and

temporal evolution). For instance, higher electron number densities are needed to get an

effective response when using interferometry or Thomson scattering than when Langmuir

probes are used. Typical irradiation conditions (in the range of GW/cm2) will result in laser

ablation plasmas which can be considered as cold (electron temperature in the eV range,

number densities roughly in the 1013–1018 cm�3 range). Higher irradiation values (exceeding

1 PW/cm2) can lead to hot plasmas with higher electron temperature and number densities,

usually studied in a laser inertial confinement nuclear fusion context [51].

During the last decade, our groups have performed systematic experimental and theoretical

studies on the fundamental characterization and applications (mainly pulsed laser deposition

of thin films) of plasma plumes generated by laser ablation in various temporal regimes (ns, ps,

fs) on materials ranging from simple metals (Al, Cu, Mn, Ni, In, W, etc.) to more complex

compounds (ceramics, chalcogenide glasses, ferrites) [52–79]. Optical (fast gate Intensified

Charge Coupled Device (ICCD) camera imaging and space- and time-resolved emission spec-

troscopy) and electrical (mainly Langmuir probe) methods have been applied to experimen-

tally investigate the dynamics of the plasma plume and its constituents. The analysis of probe

current-voltage characteristics at various delays after the laser pulse gave access to the tempo-

ral evolution of ion density, electron temperature and plasma potential. The recording time-

scales are analyzed by coupling the distribution functions of electrons and ions through an

effective mass. The space and time evolution of expansion velocity, particle current density and

plasma temperature were theoretically investigated by a fractal hydrodynamic model. We
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present here a short overview of these experimental and theoretical studies, with a special

focus on the characterization of transient laser-produced plasmas by electrical methods and on

recent developments of the fractal hydrodynamic model.

2. Experimental details

A schematic view of the experimental set-up often used in our studies is given in Figure 1. The

solid targets (usually 20 mm diameter, 1 mm thick disks) of various chemical composition

were placed on a translation-rotation stage in vacuum or controlled atmosphere and irradiated

by ns, ps or fs laser pulses at various wavelengths (usually 532 nm Nd:YAG and 800 nm Ti:Sa,

Quantel, Continuum, Spectra Physics). We used laser fluences spanning the 10�1–103 J/cm2

range, corresponding to irradiances in the 106–1014 W/cm2 limits for laser spot dimensions on

the target in the range 0.1–1 mm and laser pulse durations in the range 40 fs–10 ns.

Figure 1. Schematic view of the experimental set-up at the University of Lille.
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The electric diagnostics mainly used were Langmuir probes immersed at various positions in

the plasma plume to record the ionic or electronic currents, depending on the probe biasing

voltage (VP) [52, 53, 55, 58, 60, 77, 79]. Using bunches of Langmuir probes we obtained the

angular distribution of charge carriers at various distances from the target [52]. The Langmuir

probes were 0.8 mm diameter, 5 mm length stainless steel wires. When using metallic

targets, they were also biased to observe the influence on the probe current, and to correlate it

with the transitory electrical signal recorded from the target [65]. The transitory signals were

registered by digital oscilloscopes with 0.5–2 GHz bandwidth (LeCroy) using 50 Ω or 1 MΩ

impedances.

To record the plasma optical emission, three configurations have been often used: plasma

plume imaging (ICCD fast photography), space- and time-resolved optical emission spectros-

copy (OES) and temporal evolution of a given spectral line intensity [54–57, 62, 64, 66–68, 73,

75]. For the imaging experiments, ICCD gate widths of 5 ns were usually employed in order to

catch as much as possible sharp temporal snapshots in the space-time evolution of the plume.

For space-resolved OES, a 1 mm � 5 mm translating slit was placed in the vacuum chamber, at

40 mm from the normal to the target, to observe plasma plume “slices” of 1 mm width [57].

Finally, the temporal evolution of a given spectral line intensity was recorded with a fast (sub-ns

rise-time) photomultiplier tube (PMT, Hamamatsu) placed on the second output port of the

monochromator (Acton Princeton Instruments), once the spectral line has been selected and

isolated with appropriate entrance and exit slit widths and diffraction grating positions [54, 57].

3. Experimental results

Both our optical and electrical investigations on the dynamics of the transient plasmas pro-

duced by laser ablation in vacuum revealed some peculiar phenomena as the plume splitting

in (at least) two components or the occurrence of oscillations in the currents recorded by the

Langmuir probe or on the irradiated target. We have recently presented an overview of these

peculiar findings, along with similar results from the literature, in a review paper [78]. We will

therefore orient the presentation below more on the extraction of significant plasma parame-

ters (to be compared with the theoretical model predictions) from the time-of-flight profiles of

the currents recorded by the LP.

The typical time-evolution of the ion current recorded by the probe placed at various distances

(axial, radial) with respect to the center of the laser irradiation spot shows that it extends in the

μs range and it generally consists in a fast part having an oscillatory behavior, and a slower tail

which arrives at longer times (see some examples in Figure 2, for ns-ablation and VP= � 30 V

probe biasing). As it was expected, the time at which the first current maximum is recorded

(tmax) significantly increases with the distance from the target (z), while it is only slightly

increasing with the radial distance (r). Moreover, for r > 1 cm and z > 3 cm the oscillations

disappear. In a simple estimation, the z-tmax dependence, displaying a linear evolution, gives

an axial expansion velocity vz = 1.25 � 105 m/s. Also, a decrease of tmax when increasing the

laser pulse energy was evidenced in our previous work [55], as a consequence of the higher

expansion velocity. For comparison, from the time-evolution of the optical maximum signals

Experimental and Theoretical Studies on the Dynamics of Transient Plasmas Generated by Laser Ablation…
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recorded by ICCD imaging, one can derive the center-of-mass velocities of the plasma struc-

tures [55,56,62]. In all our studies, we found values in the range of 104 m/s for the first (fast)

structure and of 103 m/s for the second (slow) one, in agreement with experimental results

given in the literature [80–82] and rough calculations performed in simple thermodynamic

framework [58, 59]. As an example, for the experimental conditions in which the data from

Figure 2 were registered [55], we have obtained vfast = 4.66 � 104 m/s which is half of the

previous value, as consequence of ion acceleration/oscillation in the probe electric field. More-

over, by smoothing the probe signal to remove the oscillations, the temporal trace is well

described by a shifted Maxwellian velocity distribution function [83, 84], with center-of-mass

(or “drift”) velocity in the range of 104 m/s [77].

The currents induced in the target by the ablation process (displayed in Figure 3a for various

laser energies/pulse) can be correlated with the probe signal, as the positive charging arises

Figure 2. Typical time-dependence of the ionic current recorded by the Langmuir probe (biased at VP = �30 V) placed at

various axial (a) and radial (b) distances from the center of the laser irradiation spot (Al target, ns ablation [55]).

Figure 3. Currents induced in the ns-irradiated target (Al) for (a) various laser beam energies (VT = 0 V) and (b) target

biases (EL = 60 mJ/pulse).
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through the electrons escaping from the expanding plasma to the grounded chamber, while the

negative charging is given by the ions escaping from the target. The asymmetry of the laser

intensity distribution and non-uniform target absorptivity can also lead to the generation of

considerable currents along a conductive target [85]. Experiments revealed two possible mech-

anisms: induction due to the magnetic dipole moment of the plasma and a second mechanism

resulting from the phenomena at the plasma-target interface [85–87]. From these experimental

results, we observed that the amplitudes of the fast peak increase rapidly with the laser energy

and the fast electron contribution becomes dominant above EL = 16 mJ/pulse (�20 J/cm2

fluence) [65]. Biasing the target (VT) by an external voltage stabilized source, the negative part

of the target current, which is given by the ion contribution, acquires an oscillatory behavior of

the same frequency as previously recorded for the Langmuir probe current (Figure 3b). We

therefore deduced that such periodic fluctuations were induced by the probe/target electric

field, with a target bias threshold for their occurrence.

When extracting the oscillatory part from the original signal (Figure 2), that is, subtracting the

smoothed temporal trace, the resulted time-dependence revealed a good fitting with a usual

damp oscillator [48, 60]. Thus, one can assume that in the electric field near the probe

the ion equation of motion is €x þ νei _x þ ω
2
pix ¼ 0, where the dissipative term is given by

the electron-ion collision frequency, νeih i � 1:5� 10�6 z2ne lnΛ=T
3=2
e Hz½ �, and f pi ¼ ωpi=2π ¼

210z
ffiffiffiffiffiffiffiffiffiffi

ni=A
p

Hz½ � is the plasma ion frequency [49, 60]. We applied this procedure also for

studying the LP current oscillations in the case of fs-laser ablation of Al. In a more detailed

analysis, we observed that biasing the target can influence the oscillation frequency, two

regimes being observed, corresponding to the fast and slow components, respectively. For

example, in Figure 4a and b we observed good fitting for VT = +1.6 V and VT = +35 V, resulting

in oscillation frequencies υ = 8.37 MHz and υ
0 = 6.46 MHz. For an intermediate value,

VT = +19.5 V, we distinguished two parts: (i) at short recording times (<400 ns), a fast plasma

structure oscillating with a frequency of υ = 8.93 MHz, which is similar with the previous value

for VT = +1.6 V; (ii) a slow structure for longer times (>400 ns), oscillating with a frequency of

υ
0 = 6.74 MHz, which is similar with the previous value for VT = +35 V. This is in good

agreement with the existence of two types of particles, that is, plasma structures, which are

formed during the initial expansion process: a fast (hot) one consisting in highly charged

particles promptly ejected in an expansion process characterized by the acceleration through

the electric field given by initial charge separation (ambipolar diffusion); and a slow (cold) tail

consisting in thermalized particles with low average charge state. Such double-structures are

often reported in the literature for both fs- and ns-laser ablation, being observed for plume

propagating in an ambient gas [14, 15, 20, 88] and in vacuum for high-fluence irradiation [56,

57, 67, 75]. Reports from literature usually present a difference of one order of magnitude

between the expansion velocities of the two plasma components. The Fourier transform of the

probe current (Figure 4c) confirms the existence of two oscillatory regimes, through the

existence of two peaks which are evidenced differently at various target voltages. Their fre-

quencies are plotted in Figure 4d vs. VT as obtained from the above-mentioned sine damp

fitting and from the Fourier transform, respectively. Let us observe that both methods gave

similar results, two groups being computed with average values υ = 8.5 MHz and υ
0 = 6.5 MHz.

Experimental and Theoretical Studies on the Dynamics of Transient Plasmas Generated by Laser Ablation…
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There is no clear dependence of the oscillation frequencies on the probe biasing, their varia-

tions being in the limits of the determination error bars. A similar behavior was observed when

using a Cu target: at short recording times, the probe current oscillates with a frequency of

υ = 10.5 MHz, while it shifts later to υ
0 = 6.4 MHz, the values being averaged over the various

target biases. Moreover, both oscillating regimes are observed in the probe current regardless

of probe biasing, the behavior being slightly different when compared with the case of Al

target, where they occurred only for intermediate values VT = +(19–35) V.

During these measurements, a discussion has arisen on the use of low or high oscilloscope

impedance for recording the transient signals. Both configurations have advantages and dis-

advantages. Using low impedance ensures good temporal resolution, while using a high input

impedance has the advantage of improving the signal amplitude, although the temporal trace

i(t) is artificially extended through its convolution with the apparatus function,

iC tð Þ ¼

ð∞

�∞

i τð Þh t� τð Þdτ (1)

where t is the time and h(t) the convolution function, which for our experiments was of

exponential decay type, h(t) = exp(�t/τ0), with τ0 = 16� 10�6 s, the time constant deduced from

Figure 4. Typical temporal evolution of the current recorded by the negatively biased probe, VP = �35 V (a), oscillatory

part obtained by smoothing the temporal trace and subtracting from the original one (b), its Fourier transform (c) and

frequencies obtained for various target biasing VT (d), for Al fs-laser-produced plasma.
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the electrical circuit parameters. In such experimental conditions, the probe current is given in

Figure 5a, where we can observe that the oscillations are preserved at short recording times,

since the convolution of a periodic function is also periodic. However, through the inverse

mathematical procedure, the numerical deconvoluted signals fit well with the probe current

recorded using a low oscilloscope input impedance. For example, in Figure 5b such compari-

son is made for Al targets and VT = 0, VP= � 30 V. We therefore used one or the other config-

uration, with easy conversion between them through convolution/deconvolution procedures.

The consequence of applying a positive voltage on the metallic target, VT = + 35 V, is the

appearance of an initial hump at short recording times (see Figure 6a). Such biasing is

influencing the plasma expansion at the initial stages by accelerating the ions and retarding

the electrons. Therefore, an excess of fast positive electric charges results, in the form of a

residual ionic current. The fast plasma structure acceleration is given by the ambipolar electric

field within a thin layer in the plume periphery, where quasi-neutrality of the plasma is broken

[34], and the resulting double layer is influenced by the target biasing, at the early stages of

Figure 5. Typical temporal profiles of the current recorded by the LP probe at 3.5 mm from the target and various values

of the probe biasing voltages: Al target, fs-laser ablation, high input impedance (a) and numerically deconvoluted signal

compared to the current recorded using a low oscilloscope input impedance (b).

Figure 6. LP current temporal profile for positive target biasing, VT = + 35 V, at various probe biasing voltages (a) and

total collected charge versus probe potential in linear and semi-logarithmic coordinates (b): Al target, fs-laser ablation,

high input impedance.
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expansion. The time-extension of the initial hump is longer in the case of higher atomic mass

targets and it indicates a dependence on the inertial properties, the light ions being faster

repelled by the positively biased target. These measurements can be successfully used to

calculate the global temperature and average charge state for the fast plasma structure, by

time-integration of probe current intensity to obtain the total collected charge dependence

versus probe potential (Figure 6b). It was observed that for both electronic and ionic branches,

corresponding to positive or negative LP biasing, for small values of the probe potential

(|VP | < 10 V), the dependence is of
ffiffiffiffiffiffiffiffiffi

VPj j
p

type. This is given by the repelling/attracting of

charges from the cold (slow) structure, and it shows a saturation trend as the potential

increases because the slow structure center-of-mass velocity is easily influenced by the probe

field. Between �10 and �35 V, an exponential dependence results, the collected charge is

mainly influenced by the behavior of the hot (fast) plasma structure and a semi-logarithmic

plot (Figure 6b) shows a linear dependence. The positive exponential branch corresponding to

the fast electrons allows the computing of electron temperatures from the slope of the semi-

logarithmic representation, the resulting values being time-averaged. Moreover, in the

assumption of an isothermal plasma, taking also into account the ionic branch, the average

ion charge state can be derived as the ratio of the two regions slopes. The results are given in

Table 1 for various metallic targets. We observed that a high positive correlation exists

between the deduced average charge states and the plasma temperatures. This result is in

agreement with plasma standard theoretical models, for example, local thermodynamic equi-

librium or collisional radiative [89], where average charge state or ion fractional populations

can be easily computed in the case of a homogenous plasma, for given electron temperature

and atom density (e.g. see Figure 5 of [90]).

Another approach used by our group is based on the treatment of the current-voltage charac-

teristics (I-V plots) derived from the time-of-flight current profiles recorded at various probe

biases and sampled at specific delays after the laser pulse [77]. In principle, this “classical”

method [40, 91–93] considers only the thermal movement of the particles (without streaming)

and a Maxwellian distribution function. Space-time evolution of electronic temperature, ther-

mal velocity, plasma potential and particle density can be derived from the I-V characteristic

based on the results of the “classical” LP theory. In the framework of the LP method, all main

plasma parameters are derived from the electronic part of the I-V characteristic:

Target Atomic weight Te (eV) Average charge state (z)

Al 27 14.21 � 2.15 2.63 � 0.74

Mn 55 8.15 � 0.79 1.08 � 0.42

Ni 59 6.72 � 1.03 1.29 � 0.37

Cu 64 6.54 � 0.45 1.59 � 0.23

In 115 8.66 � 1.29 2.23 � 0.94

Te 128 8.04 � 0.84 1.44 � 0.24

W 184 5.29 � 0.53 0.92 � 0.17

Table 1. Plasma temperature for various metallic targets.
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IProbe ¼ Ie0exp �e VPlasma � VProbeð Þ=kBTe½ � � Ii0, VProbe < VPlasma (2)

where IProbe is the probe current, Ie0 and Ii0 are the electron and ion saturation currents, Vprobe is

the bias applied on the probe, VPlasma is the plasma potential, e is the electron charge, kB is the

Boltzmann constant, Te is the electron temperature.

The electron temperature (Te) can be further determined from the slope of the semi-logarithmic

plot of the probe current from the saturation region (Ie) versus probe bias (Vp), the plasma

potential (VPlasma) representing the inflection point separating the linear increase from the satu-

ration region, while the ion density and thermal velocity are given by the following equations:

Ii0 ¼
1

4
eAni

ffiffiffiffiffiffiffiffiffiffiffiffi

8kBTi

πmi

s

(3)

vthermal ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffi

8kBTi

πmi

s

(4)

where A is the probe collecting area, ni is the ionic density, mi is the mass of the particle and Ti
the ion temperature which is considered to be equal to the electron temperature, assuming the

local thermodynamic equilibrium (LTE) hypothesis.

We applied this particular method to study the dynamics of the plume at relatively long delays

(>1 μs) after the laser pulse. Based on our previous ICCD fast camera imaging and space- and

time-resolved optical emission spectroscopy measurements, we know that these times are

characteristic for the observation of the slow plasma component [55, 56, 67]. As expected, it

resulted that all studied parameters have a significant space-time decrease, due to the cooling

process and rarefaction during expansion (Figure 7). Comparing the values for the electron

temperatures determined using time-sampling methods with the ones given by the previous

method, some notable differences occur. The time-resolved method only captures the cold tail

arriving at the probe surface as the sampling is done after 1 μs, and thus the values of the

Figure 7. Te, Vplasma, ni and vthermal dependence on (a) time at a fixed distance (d = 5) and (b) space for a fixed moment in

time (t = 1 μs), derived for an Al plasma generated by ns laser ablation.
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electron temperatures are considerably lower than the ones derived from the total collected

charge versus probe potential representation.

The same technique has been implemented for the study of transient plasmas generated by

laser ablation in three different temporal regimes (ns, ps, fs) on a series of six metallic targets

(Al, Ti, Mn, Ni, Cu, Zn). Figure 8a shows the decrease of the saturation ion density (recorded

at 5 mm from the target and after 1 μs with respect to the laser pulse) with the melting point of

the target material. Other groups have reported similar evolutions for ns-laser-produced

plasmas. A significant decrease of the ablation efficiency (estimated as a function of the ablated

crater depth) with the increase of the melting point was reported in [94]. A similar influence of

the melting point on the ablation yield was found by Schou et al. [29, 95], who discussed the

decrease in the ablation yield as a consequence of the target cohesive energy increase. Both

melting point and cohesive energy are considered as a measure of the degree of volatility. The

same dependence proposed by previously mentioned authors was also found by our group for

fs-laser ablation of various metallic targets (W, Te, In, Cu, Ni, Mn, Al) [77]. The decrease of the

ionic density with the increase of the melting point (or cohesive energy) appears to be a general

characteristic of the laser-produced plasmas as it is confirmed by our current systematic study

on the ns, fs and ps ablation for a wide range of metallic targets.

Figure 8b displays the evolution of the electronic temperature with the target electrical con-

ductivity for the three ablation regimes. The values derived at t = 1 μs and d = 5 mm present a

steep increase for low conductivity elements reaching a quasi-saturation regime after 10 MS/m.

The experimental data were fitted with the same function [77] for the three ablation regimes:

T σð Þ ¼ cT � bT

σþaT
where aT, bT, cT are constants, characteristic for each ablation regime. Consid-

ering the wide range of target conductivities, spanning approximately two orders of magni-

tude from 0.62 MS/m for Mn to 59 MS/m for Cu, and the values of the electronic temperature

(1–9 eV, commonly encountered for plasmas generated by laser ablation at low-moderate

fluence), a generalization is somehow appealing. However, we note that these particular

values characterize only a particular plasma volume investigated at a specific moment in time

Figure 8. (a) Ion density dependence on the target melting point for three ablation regimes (ns, ps and fs) and (b) the

electronic temperature dependence on the electrical conductivity of the metallic targets.
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(1 μs delay and a distance of 5 mm from the target) and further investigations are thus required

to establish the universality of the proposed dependence.

Let us note that in the results presented above only single-element targets were used to better

understand the fundamental processes involved in laser-target interaction and subsequent

plasma evolution. When using complex (multi-component) targets, the interpretation of the

LP temporal profiles is more difficult. For example, we present in Figure 9 the results for laser

ablation of a chalcogenide glass (Ge9.5Sb28.6Se61.9) [75], where three plasma structures are

recorded, each of them oscillating with a specific frequency. These structures are also present

in ICCD images (see the inset of Figure 9), displaying various expansion velocities.

An extensive investigation of plasmas generated by ns laser ablation of chalcogenide targets

was presented in [75]. We reported there a strong evolution of the global expansion velocity of

all three plasma components (derived from ICCD fast camera imaging) and of the excitation

temperatures (determined through optical emission spectroscopy) with the thermal and elec-

trical properties of the complex chalcogenide target. More precisely, the increase of the Sb2Se3
content led to a quasilinear increase of the expansion velocities and average plasma tempera-

ture. The results were interpreted in the frame of the target structural changes. Previous

reports on the properties of similar systems revealed that the addition of Sb leads to the

decrease of the bandgap energy [96], the increase of the glass transition temperature and

Figure 9. LP current for fs-laser-produced plasma using a chalcogenide glass target and ICCD image (inset) showing the

occurrence of three plasma structures.
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consequently the increase of the weak bonds concentration [97]. The increase in the weak

bonds concentration leads to increase in the thermal and electrical conductivity of the glass.

This is in good agreement with our reported results on pure metallic targets [77], where the

increase in the electrical/thermal conductivity of the materials led to the increase of electron

temperatures and ion drift velocities.

4. Theoretical investigations

Continuing our previous work [55, 58, 59, 63] on the fractal hydrodynamic model for laser

ablation plasma dynamics, we recently proposed a compact version for the analysis of the spatial

and temporal evolution of some plasma dynamic variables [76]. This version of our model was

obtained by using normalized variables of the particle density, velocities, current density, etc.,

and by choosing adequate scale resolutions. In our initial model describing the evolution of the

fractal fluid [59, 63, 98], we took into account a high number of factors (experimental ones by

means of the width of the laser pulse Gaussian distribution, probe or target bias, etc., and

theoretical ones by means of the fractal-non-fractal transition coefficient, resolution scale, fractal

dimension of the movement curves, etc.), which increased the difficulty in performing a com-

plete analysis of the plume dynamics. Through a viable choice of normalized dynamic variables

with respect to the previous factors, we simplified the interpretation of the plume dynamics.

In the frame of fractal hydrodynamics with an arbitrary fractal dimension of the motion

curves, DF, we obtained for the one-dimensional case in absence of an external potential the

specific momentum and density conservation laws [59, 63, 98]:

∂tvþ v∂xv ¼ �2λ2
dtð Þ

4
DF

� �

�2
∂x ρ

�1
2 ∂xxρ

�1
2

� �

(4a)

∂tvþ ∂x ρv
� �

¼ 0 (4b)

with v the velocity, ρ the density, dt the scale resolution and λ a fractal-non-fractal transition

coefficient. Using themethod presented in [59, 63], the analytical solutions for Eqs. (4a) and (4b) are

v x; tð Þ ¼

cα2 þ 2λ dtð Þ 2=DFð Þ�1

α

� �2

xt

α2 þ 2λ dtð Þ 2=DFð Þ�1

α

� �2

t2

(5)

for the velocity field and

ρ x; tð Þ ¼
π�1=2

α2 þ 2λ dtð Þ 2=DFð Þ�1

α

� �2

t2

( )1=2
� exp

� x� ctð Þ2

α2 þ 2λ dtð Þ 2=DFð Þ�1

α

� �2

t2

8

>
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>

>
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;

(6)
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for the particular initial and boundary conditions given by:

v x; t ¼ 0ð Þ ¼ c, ρ x; t ¼ 0ð Þ ¼ ρ0e
�x=αð Þ2 (7)

v x ¼ ct; tð Þ ¼ c, ρ x ¼ �∞; tð Þ ¼ ρ x ¼ ∞; tð Þ ¼ 0 (8)

Thus, we assumed that at t = 0 the center of the initial Gaussian distribution ρ is located at x

(t = 0) > 0 and has the velocity v(t = 0) > c. This is supported by the fact that the laser beam

temporal profile is usually of Gaussian type, and consequently we can consider a similar

distribution of the plasma plume along the expansion direction. Moreover, if the plasma

parameters are investigated at time scales longer than the laser pulse width, one can also

assume that the particles are ejected with a constant expansion velocity. In this approximation,

a correlation could be established between the density distribution of the ejected particles and

the laser pulse temporal distribution [55] (in the hypothesis of total laser energy absorption by

the plasma plume). A similar outcome is obtained for <x> = ct. From such a perspective, with

respect to the movement plane of any particle (<x> = ct) of the ablation plasma at any time 6¼ 0,

the velocities of the ejected particles are constant during expansion (Eq. (8)) and the density

becomes null at large distances from the target. By means of the conditions:

t≫
α2

2λ dtð Þ
2
DF

� �

�1

(9a)

x≪
cα2

2λ dtð Þ
2
DF

� �

�1

(9b)

the current density takes the approximate form:

j x; tð Þ ¼ v x; tð Þ x; tð Þ ¼ π�1 c

α
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2λ dtð Þ
2
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;

(10)

which is similar with a shifted Maxwellian distribution [99, 100], often used for treating the

temporal trace of the LP current:

j tð Þ
1

t3
exp

�m

2kBTionic

d

t
� vdrift

	 
2
" #

(11)

through the following identities:

x � d, vdrift � c,
m

2kBTion
�
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2λ dtð Þ
2
DF
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(12)
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Given the dependences of the multiple dynamic variables (ρ, v, j, etc.) on the external factors

(ex : α,λ, dtð Þ

�

2
DF

�

�1
, etc.), we choose an adequate normalization that will allow us to obtain

more compact and simplified dependences. Basically, we want to reduce the explicit depen-

dences on the external factors. Thus, by means of the condition 2λ =αc, we will choose the

normalization:

ξ !
x

α
, (13a)

τ !
tc

α
, (13b)

μ ! dtð Þ 4=DFð Þ�2 (13c)

This allows us to re-write the dependencies of the plasma dynamic variables on the external

factors as follows [76]:

Normalized velocity:

V ξ; τ;μ
� �

¼
1þ μξτ

1þ μτ2
(14)

Normalized particle density:

N ξ; τ;μ
� �

¼ 1þ μτ2
� ��1=2

� exp
� ξ� τð Þ2

1þ μτ2

" #

(15)

Normalized current density:

J ξ; τ;μ
� �

¼
1þ μξτ

1þ μτ2
� �3=2

� exp
� ξ� τð Þ2

1þ μτ2

" #

(16)

Let us analyze the influence of the μ parameter (named fractalization degree) which contains

the contribution of all external factors, by means of the fractal-non-fractal transition coefficient,

λ, and scale resolution, dt and fractal dimension, DF, of the movement curves. From a physical

perspective, fractalization implies different statistics (from Levy-type movements to Brownian

movements, either by means of non-Markovian processes or Markovian ones [63, 98]) that are

imposed by the fundamental processes involved in the plasma formation and expansion. In

such context, we assumed that generally for laser ablation there are two main mechanisms

responsible for the formation and expansion of two plasma structures [15, 16, 56, 67, 73, 80–82],

which were previously experimentally evidenced. Thus, the first structure is a result of the

electrostatic interactions, at very short time scale, the positive charge left on the target surface

by electron laser excitation and detachment would accelerate the positive ions outwards the

surface (Coulomb mechanism [13]). The second plasma structure that requires more time to

form and expand is generated through thermal mechanisms (evaporation, phase explosion

Laser Ablation - From Fundamentals to Applications18



[101]). Each mechanism is characterized in our model by a specific scale resolution, that is, an

adequate choice of the fractalization degree, μ.

In this context, in Figure 10a and b the current densities given by Eq. (16) are plotted versus

time (τ) for various normalized distances (ξ) and fractalization degrees: μ = 0.3 (a) and μ = 7 (b).

Such distinct evolutions are associated with the two plasma structures, while their overlapping

fits well the experimental LP temporal trace given in Figure 2, except the current oscillations

which should be treated separately. The space-time evolution of the variables describing the

plasma is in agreement with other theoretical models [102, 103]. Moreover, having in view the

normalization used in our model, it is possible to control some dynamics of the plasma plume

by means of the fractalization degree μ.

The validation of our model comes from the comparison with the time-dependence of plasma

parameters obtained from LP measurements. In Figure 11a one observes that the time-

decrease of the ion density is well fitted by the dependence (15), with the parameters

Figure 10. Current densities given by Eq. (16) dependence versus time (τ) for various normalized distances (ξ) and

fractalization degrees: μ = 0.3 (a) and μ = 7 (b) and their overlapping (c).

Figure 11. Experimental (squares) temporal evolution of the ion density (a) and electronic temperature (b), and individ-

ual fits (continuous line) using the relationships extracted from the compact fractal hydrodynamic model [76].
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N0 = 4.25� 1019 cm�3, ξ � 11.8, μ � 2.95, where N0 is a normalization constant. Moreover, the

right term of Eq. (4a) is the space derivative of a fractal potential,

Q ¼ 2λ2 dtð Þ
4
DF

� �

�2
ρ

�1
2 ∂xxρ

�1
2 (17)

Then, using Eq. (17) and the normalizations (13a)–(13c), the fractal potential takes the normal-

ized form:

q ξ; τ;μ
� �

¼ μ
ξ� τð Þ2

1þ μτ2

" #2

(18)

In the “classical” LTE model, the plasma temperature (T) is a measure of the thermal

movement (described by the random movement of the plasma ions, electrons and neutrals),

property which is reflected here by the plasma particles motion curves non-differentiability. In

our model, since the fractal potential (q) is a measure of non-differentiability, this leads to a

relation of proportionality between the two dynamic variables (q � T). In such context, we

observed that the dependence (18) fits well the time evolution of the electronic temperature

(Figure 11b), with the parameters T0 = 0.68 eV, ξ � 11.5, μ � 2.8, where T0 is a normalization

constant.

The normalization of the plasma dynamic variables led us to a more compact and simple form

of the fractal theoretical model, by allowing the use of a single control parameter that

embodies the contributions of several external parameters on the dynamics of the ejected

particles. In its compact form, we were able for the first time [76] to define some clear

associations between fractal model variables and specific plasma parameters (electron temper-

ature, thermal velocity, particle density). Moreover, when compared with experimental data

depicting the temporal evolution of the plasma parameters determined though the Langmuir

probe method, the model satisfactorily reproduces the experimental traces. From the theoret-

ical fit, we determined a range of values for the fractalization degree which describes the laser-

produced plasmas in the ns ablation regime. The success of this non-differential approach is

also seen from the fact that the model is able to “recognize” the probe—target distance at

which the experimental data was recorded. Further studies are required in order to test the

generality of the model, by comparing it against other “classical” theoretical models and also

against data extracted from ps and fs laser-produced plasmas in various experimental condi-

tions (target-probe distance, laser fluence, background pressure).

In the classical concepts, the theoretical models (hydrodynamic, kinetic, etc.) are built

assuming that the dynamics of individual elements are characterized by continuous and

differentiable motion variables (energy, momentum, density, etc.). These variables are exclu-

sively dependent on the spatial coordinates and time. In the real situation, the complex system

dynamics is much more complicated and the classical theoretical models failed in the attempt

to explain all the concerned aspects. These difficulties can be overcome in a complementary

approach, using fractal concepts, describing “exotic” shapes that did not fit the patterns of
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Euclidean geometry. Moreover, the depth analysis of different complex systems evolution

showed that most of the phenomena are nonlinear and, therefore, new mathematical tools

were required. These have been provided by the Scale Relativity Theory (SRT) and by

Extended Scale Relativity Theory (ESRT) [98], that is, the SRTwith an arbitrary constant fractal

dimension. These theories consider that the motions of the complex systems structural units

take place on continuous but non-differentiable curves (fractal curves). In this situation,

Euclidean dynamics of a complex system subjected to external constraints is replaced by a

fractal dynamics characterizing the same system free of any external constraints. More pre-

cisely, Euclidian constraints dependent motions, that is, on continuous but differentiable

curves, are substituted by constraints independent motion in a fractal space, that is, on contin-

uous but non-differentiable (fractal) curves (a free motion).

5. Conclusions

The dynamics of the transient laser-produced plasma in vacuum was investigated using

electrical (Langmuir probe, target current) and optical (fast gate intensified CCD camera

imaging) measurements for various ablation regimes and simple target materials. The typical

time-evolution of the ion current recorded by the probe placed at various distances (axial,

radial) with respect to the center of the laser irradiation spot shows that it extends in the μs

range, and it generally consists in a fast part having an oscillatory behavior, and a slower tail

which arrives at longer times. For the expansion velocities, values in the range of 104 m/s for

the first (fast) structure and of 103 m/s for the second (slow) one were found, both from

electrical and optical methods, which are in agreement with experimental results given in the

literature and rough calculations performed in simple thermodynamic framework.

Measurements of the current induced in the target by the ablation process showed that it is

correlated with the probe signal, as the positive charging arises through the electrons escaping

from the expanding plasma to the grounded chamber, while the negative charging is given by

the ions escaping from the target. Biasing the target by an external voltage source, the negative

part of the target current, which is given by the ion contribution, acquires an oscillatory

behavior of the same frequency as previously recorded for the Langmuir probe current.

Consequently, such periodic fluctuations are assumed to be induced by the probe/target

electric field, with a target bias threshold for their occurrence.

Extracting the oscillatory part from the original temporal trace of Langmuir probe, the resulted

time-dependence revealed a good fitting with a usual damped oscillator, while its frequency is

connected with the plasma ion frequency. Moreover, we observed that biasing the target can

influence the oscillation frequency, two regimes being inferred, corresponding to the fast and

slow components, respectively.

Electrical measurements can be successfully used to calculate the global temperature and aver-

age charge state for the fast plasma structure, through time-integration of probe current intensity

to obtain the total collected charge dependence vs. probe potential. We observed a high positive
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correlation between these two parameters, the result being in agreement with plasma standard

theoretical models (e.g. local thermodynamic equilibrium or collisional radiative).

Another approach used by us to study the dynamics of the plume at relatively long delays is

based on the treatment of the current-voltage characteristics (I-V plots), that are derived from

the time-of-flight current profiles recorded at various probe biases and sampled at specific

delays after the laser pulse. Space-time evolution of electronic temperature, thermal velocity,

plasma potential and particle density were computed, all of them having a significant

decrease, due to the cooling process and rarefaction during expansion. The technique has

been implemented for the study of transient plasmas generated by laser ablation in three

different temporal regimes (ns, ps, fs) on a series of six metallic targets (Al, Ti, Mn, Ni, Cu,

Zn). A decrease of the ionic density with the increase of the melting point (or cohesive

energy) is observed, and it appears to be a general characteristic of the laser-produced

plasmas, as it is confirmed by our current systematic study on the ns, fs and ps ablation for

a wide range of metallic targets. The evolution of the electronic temperature with the target

electrical conductivity for the three ablation regimes presents a steep increase for low con-

ductivity elements, reaching a quasi-saturation regime after 10 MS/m. However, the obtained

values characterize only a particular plasma volume investigated at a specific moment in

time, and further investigations are required to establish the universality of the proposed

dependence.

Theoretically, a compact version using normalized variables of our previous fractal hydrody-

namic model was proposed for the analysis of the spatial and temporal evolution of some

plasma dynamic variables. In this context, a new parameter named fractalization degree was

introduced to account for the contribution of all external factors, that is, the fractal-non-fractal

transition coefficient, the scale resolution, and the fractal dimension of the movement curves.

When compared with experimental data depicting the temporal evolution of the plasma

parameters determined through the Langmuir probe method, the model satisfactorily repro-

duces the experimental traces. In the compact form of the model, we were able to define some

clear associations between fractal model variables and specific plasma parameters. From the

theoretical fit, we determined a range of values for the fractalization degree which describes

the laser-produced plasmas in the ns ablation regime, while more efforts are required to

elucidate some features associated with femtosecond laser ablation (e.g. evolution of the

oscillation period with the target atomic mass).
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