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Abstract

Vanadium dioxide is a promising thermochromic material, seemed as the great can-
didate for smart window applications. The real application of VO

2
 requires high vis-

ible transmission (T
lum

) as well as large solar modulating abilities (∆T
sol

), which could 
not be achieved by pristine VO

2
 materials due to the trade-off between T

lum
 and ∆T

sol
. 

Here in, the porosity design is thoroughly reviewed from the effect on modulating the 
thermochromic performance to the porous control and preparation. To begin with, the 
history, advantages, challenges and approaches to tackle the issues comprised of anti-
reflection multilayer structure, nanothermochromism, patterning and porous design is 
introduced in detail. Then, the effect of porosity on improving the thermochromic per-
formance of VO

2
 thin films is demonstrated using the newest experimental and simu-

lation results. In the following, the porous control and structural synthesis, including 
the polymer-assisted deposition (PAD), freeze-drying, colloidal lithography as well as 
the dual phase transformation is summarized. Fourthly, the characterization methods, 
composed of scanning electron microscopy (SEM), transmission electron microscopy 
(TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectros-
copy as well as UV-Vis-NIR spectroscopy are demonstrated. Finally, the challenges 
that the porous design faces and possible approaches to optimize the performance are 
presented.

Keywords: porosity, vanadium dioxide, thermochromism, smart window, energy saving

1. Introduction

In recent decades, the usage of traditional energy materials, including the oil and the coal 

meets more and more challenges due to the increase of air pollution, energy shortage and the 

global warming. Therefore, the concepts of sustainable and environment-friendly production 

were raised by scientists for energy-saving, and various clean energy technologies have been 

proposed for industries, for example, fuel cell [1–4], solar cell [5–7] and wind turbines [8–11]. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



On the other hand, the alternative energy-saving approach is to develop green-energy build-

ings equipped with state-of-the-art smart windows, for example, electrochromic/thermochro-

mic smart windows [12–17].

Vanadium dioxide (VO
2
), as a promising coating material for thermochromic smart win-

dows have been investigated for half a century, since Morin found the intrinsic metal-to-

insulator transition (MIT) of VO
2
 in 1959 [18]. Below a critical temperature (τ

c
) ~ 68°C, VO

2
 

shows the monoclinic insulating phase (VO
2
(M)) with zig-zag V-V chains along the c-axis 

(P2
1
/c, V-V separation is 0.262, 0.316 nm) [19]. Above the τ

c
, VO

2
 is transformed to rutile 

metallic phase (VO
2
(R)) with linear V-V chains along the c-axis (P4

2
/mnnm, V-V separation 

is 0.288 nm) [19]. The increase of the electrical resistance across the MIT is always in 3–5 

orders of magnitude, and the first-order transition could occur simultaneously with the time 
less than 500 fs [20]. Along with the MIT, the IR transmittance of VO

2
 could also be modu-

lated by a large magnitude owing to the change of the optical parameters (refractive ‘n’ and 

extinction coefficient ‘k’) [21]. As a coating material, VO
2
 shows the high IR transmittance at 

the cold state while exhibits the large absorption as well as the strong reflection at the hot 
state, which gives rise to large IR modulating ability [22–25]. Due to the little difference of 
optical parameters in the visible region, VO

2
 shows the little transmittance difference in the 

visible region [26–28]. The solar modulating ability especially in the IR region makes VO
2
 a 

promising coating material for thermochromic smart windows.

The VO
2
 thermochromic smart windows have various advantages in energy saving. To begin 

with, the phase transition temperature (τ
c
) of VO

2
 is close to the room temperature, which 

cannot be found in other phase transition materials (τ
c
(V

2
O

3
) = −123°C, τ

c
(V

2
O

5
) = 257°C, 

τ
c
(V

6
O

13
) = −123°C, τ

c
(Ti

n
O

2n+1
) = 127–377°C) [27]. Secondly, the τ

c
 of VO

2
 could be further 

reduced to ambient temperature through doping with other high valence metal cations, 

for example, W6+ [22, 29–33], Mo6+ [34–36]. Finally, several synthetic methods, for example, 

atmospheric pressure CVD [36–40], magnetron sputtering [41–45], sol-gel [35, 46, 47] and 

hydrothermal assembly [48–50], have been developed to fabricate VO
2
 nanostructures for 

applications. However, for thermochromic applications, VO
2
 still meets several challenges. 

Firstly, it is hard to achieve the high visible transmittance (T
lum

) and the large solar modu-

lating abilities (∆T
sol

) simultaneously, since there is always a tradeoff between the T
lum

 and 

∆T
sol

 [51]. Secondly, the thermochromic property is hard to maintain when reducing the τ
c
 

to room temperatures via doping [31]. Finally, the VO
2
 coating is not stable in the air [52].

In order to improve the thermochromic performance of VO
2
 coating, several interesting strat-

egies, including nanoporosity, nanothermochromism, patterning as well as multilayer struc-

tures have been investigated by the scientists. Gao’s group reported the enhanced luminous 

transmittance (T
lum

 = ~40%) and improved thermochromic properties (∆T
sol

 = ~14%) of nano-

porous VO
2
 thin films with low optical constants, and the optical calculations suggested that 

the further improved performance could be expected by increasing the thin film porosity 
[53]. Li et al. [54] calculated the nanothermochromics of VO

2
 nanocomposite by dispersing 

VO
2
 nanoparticles in the dielectric host, which revealed that the thermochromic performance 

could be largely enhanced (T
lum

 = ~65%, ∆T
sol

 = ~20%) with spherical morphologies of the VO
2
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nanoparticles in the nanocomposite. Long’s group investigated the micropatterning [55] and 

nanopatterning [51] of VO
2
 thin films, which both benefited the VO

2
 thin films with improved 

T
lum

 and ∆T
sol

. Mlyuka et al. reported the five-layer TiO
2
/VO

2
/TiO

2
/VO

2
/TiO

2
 structure, which 

showed the high T
lum

 (~43%) and the large ∆T
sol

 (~12%). Across the strategies, the nanoporous 

design showed the advantages in easy-to-handling, low usage of VO
2
 materials as well as the 

thickness control.

2. Enhanced thermochromic properties of VO
2
 with porous structure

As is well known, the porous structure could effectively increase the specific area of materials 
and thus supply large active areas under low loading. On the other hand, the porous design 

could also reduce the optical constants (refractive index ‘n’ and the extinction coefficient ‘k’), 
which could benefit the materials with enhanced visible transmittance. The optical calcula-

tions of nanoporous VO
2
 thin films could be performed with an optical-admittance recursive 

method, based on the assumption that the optical constants should be linearly dependent 

on the volume fraction or the ‘n’ and ‘k’ is linearly decreased with the porosity. As shown in 

Figure 1, as for the random distributed nanoporous VO
2
 thin films (Figure 1a), the porous 

structure gave rise to an obvious decrease of optical constants (n, k) compared with the nor-

mal thin film, and the optical calculations revealed the largely enhanced T
lum

 and ∆T
sol

 with 

increasing the porosity of the thin films.

With respect to the porous structure of VO
2
 thin films, there are normally the random dis-

tributed and the periodic porous structures. In the random case, as reported by Gao’s group 

[53] and Long’s group [57], the thermochromic properties could be enhanced to T
lum

 > 40% 

and ∆T
sol

 > 14%. In contrast, for the periodic porous structure, as reported by Xie’s group [58] 

and further developed by Long’s group [59, 60], the visible transmittance could be above 46% 
while maintaining the ∆T

sol
 above 13%. Actually, the periodic nanoporous design is more 

Figure 1. (a) Nanoporous VO
2
 thin film. (b) Experimental (solid) and reference (dash) n, k (versus wavelength) and 

experimental/reference T
lum

 (versus film thickness). Reference data is from Jin et al. [56]. (c) Optical calculations of 

the nanoporous VO
2
 thin films based on an optical-admittance recursive method, where dotted lines and solid lines 

represent the T
lum

 at insulating state and the ∆T
sol

, respectively [53].
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efficient in controlling the porosity and optimizing the thermochromic properties than the 
random counterpart, since the porosity could be easily estimated from the structure design.

3. Porous control and synthetic methods

In the nanoporous design for thermochromic VO
2
 thin films, there are mainly four different 

approaches to synthesize and control the porosity, including the polymer assistant deposition 

(PAD) [53], freeze-drying preparation [57], colloidal lithography assembly [58] as well as the 

dual-phase transformation [61].

To begin with the PAD, it is a powerful technique to get the continuous nanoporous VO
2
 thin 

films. The polymer used in the PAD process could be cetyltrimethyl ammonium bromide 
(CTAB) [62], cetyltrimethylammonium vanadate (CTAV) [63], polyvinylpyrrolidone (PVP) 

[53, 64, 65] or polyethylenimine (PEI) [66, 67]. Take CTAB as an example, when the vanadium 

precursor was modified by the amphiphilic polymer, the nuclear could be effectively isolated 
and the nanopores could be formed during the annealing process (Figure 2) [62]. It should 

be noted that the control of the polymer addition is critical to optimize the shape and size of 

the nanopores.

Freeze-drying is also an efficient way to prepare the nanoporous VO
2
 thin films. For a normal 

sol-gel process, it is hard to get a film with high porosity. When the precursor is frozen and 
then dried in vacuum, the solvents could sublime and be removed quickly from the struc-

ture, which therefore gives rise to the in-situ formation of nanoporous structure (Figure 3d). 

In a typical process for fabricating nanoporous VO
2
 thin films with freeze-drying, the V

2
O

5
-

H
2
O

2
-ox (oxalic acid) precursor was firstly dip coated onto fused silica substrates for gelation, 

and then a pre-freezing process was performed with a following freeze-drying at −80°C and 
0.01 mbar [57]. After a post-annealing process under Ar atmosphere at 550°C for 2 h, the nano-

porous VO
2
 thin films were subsequently obtained (Figure 3a–c).

Colloidal lithography assembly is an alternative approach to get the nanoporous VO
2
 thin 

films, especially for the periodic porous design. The close packed monolayer colloidal crystal 
(MCC) template has been the usual sacrificing template for colloidal lithography assembly, 
which make it a facile way to prepare the periodic nanoporous structure. In a typical colloidal 

lithography assembly for nanoporous VO
2
 thin films, the polystyrene (PS) MCC template 

was firstly infiltrated by VOSO
4
 solution, then the infiltration with NH

4
HCO

3
 solution as pre-

cipitator was performed to confirm the coating of vanadium source on the template. Finally, 
the template was picked up by a clean substrate, and then the periodic nanoporous VO

2
 thin 

films were attained though annealing in nitrogen gas [58]. The nanoporous structure could be 

further modulated by changing the layer number and/or the concentration of the precursor, 

which could help to optimize the thermochromic properties of the thin films.

More systematically, colloidal lithography was explored to prepare the two-dimensional pat-

terned VO
2
 films with tunable periodicity and diverse nanostructures including nanoparticle, 

nanonet and nanodome arrays [59]. The fabrication process is more flexible via introducing of 
the plasma etching (PE) technology and controlling the precursor viscosity. They concluded  
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the synthesis routes in Figure 4. When short PE duration applied, nanoparticle and nanodome 

arrays are produced using low (Route 1) and high (Route 2) viscosity precursors, respectively. 
Nanonet arrays are fabricated via prolonging PE duration and using low viscosity precursor 

(Route 3). Produced two-dimensional patterned VO
2
 arrays are highly uniform (Figure 5).  

For the first time, hexagonally patterned VO
2
 nanoparticle array with the average diameter 

down to 60 nm and the periodicity of 160 nm has been fabricated (Figure 5a). It is of great 

interest that such structure gives rise to tunable peak positon and intensity of the localized 

surface plasmon resonance (LSPR) at different temperature. The LSPR was also found a red-
shift with increase of the particle size and the media reflective index, respectively, and these 
results fit well with the tendency calculated using 3D finite-difference time-domain (FDTD). 

Besides decent thermochromic performance (up to ΔT
sol

 = 13.2% and T
lum

 = 46%) achieved, 

Figure 2. Modification of vanadium precursor by the CTAB. (a) Initial step for adding the CTAB into the vanadium 
precursor. (b) and (c) Two forms of separation for the nuclear functionalized by the CTAB after strong stirring [62].
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Figure 4. Effect of synthesis conditions on the morphology evolution. Route 1: nanoparticle arrays are prepared via short 
PE duration and low viscosity precursor; Route 2: nanodome arrays are produced, using high viscosity precursor that 
can stick on the tops of PS spheres; Route 3, nanonets are fabricated by controlling the interval space between adjacent 
spheres via long PE duration [59].

Figure 3. Field-emission scanning electron microscopy (FESEM) image for the freeze-dried nanoporous VO
2
 films with 

7.5 mL of H
2
O

2
 (a) and 17.5 mL of H

2
O

2
 (b) in the precursor. (c) TEM image of (b) and the corresponding SAED (inset). 

(d) Schematic illustration of the freeze-drying process for the nanoporous design [57].
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the 2D patterned VO
2
 films have been demonstrated as an efficient smart thermal radia-

tion filter to remote control the lower critical solution temperature (LCST) behavior of poly 
N-isopropylacrylamine (PNIPAm) hydrogel. Comparing with template-free method, periodic 

films produced by nanosphere lithography technique offer more uniform periodicity (less 
periodic defect) as well as smaller individual nanostructure that is able down to sub-100 nm.

An interesting study using colloidal lithography was to develop photonic structures, consisted 

of two-dimensional SiO
2
-VO

2
 core-shell monolayer (Figure 6a and b) [60]. The structures 

with periodicity in visible range are demonstrated with the ability to modulate the visible 

transmittance by selectively reflecting the light with certain color (Figure 6c). Benefiting from 

Figure 5. FESEM images of periodic VO
2
 films. (a–c) Nanoparticle, (d–f) nanonet, and (g–i) tilted-views of nanodome 

arrays with periodicity of 160, 490 and 830 nm from left to right, respectively. The insert of (h) is high magnitude tilted-

view image of 490 nm periodic nanodome on edge. Yellow hexagons in (a–c) are illustrations for hexagons patterning 
[59].
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this ability, smart windows based on such structures display controllable appearances as well 

as good thermochromic performance, which is up to T
lum

 = 49.6% and ΔT
sol

 = 11.0% calculated 

by 3D FDTD. This statically visible and dynamically near-infrared modulation is further 

proved by experiments. However, the optimized thermochromic performance is much lower 

than that in simulation, which is attributed to the sol-gel method where the perfect core-shell 
structure cannot be produced in experiment as in simulation. Thus, other more controllable 

methods, such as physical vapor deposition or chemical vapor deposition, could be proposed 

as a better way for the fabrication of such two-dimensional core-shell structures.

The dual-phase transformation is a newly developed template-free method to prepare the 

nanoporous VO
2
 thin films with ultrahigh visible transmittance. As depicted in Figure 7, 

this method is based on the transformation between the colloids and ionic states stimulated 

by the moisture. Firstly, the precursor (VOCl
2
 + HCl + H

2
O + N

2
H

4
) was spin coated onto 

fused silica substrates, and then the hydrous colloids were formed through water evapora-

tion. After a quick annealing at 300°C to solidify the film, and an additional annealing at 

Figure 6. (a) Illustration of how color-changed thermochromic smart window works. (b) Illustration of designed 

structures for simulation. (c) Calculated transmittance spectrum. The colorful background in (c) denotes the visible 
spectrum from 370 to 770 nm [60].
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500°C in N
2
, the honeycomb-like nanoporous VO

2
 structures were finally obtained with 

high visible transmittance (~700 nm) above 90% as well as a decent solar modulating ability 
(∆T

sol
 = ~5.5%). The critical factor for forming the initial hydrous spheres (colloids) is the 

ratio control between the HCl and the N
2
H

4
 [61].

Apart from the above methods, the approaches including, but not limited to the chemical 

etching [68] and reactive ion etching [69] could also be utilized to produce the VO
2
 nanopo-

rous thin films.

Figure 7. Formation of nanoporous VO
2
 thin films through dual phase transformation [61]. (a) Homogeneous, fully solution-

based precursor film was deposited at room condition (25 °C, 50% RH). (b) Precursor was spontaneously self-templated and 
assembled (SSTA) into hydrous sphere arrays after water evaporation in dry nitrogen (25 °C, ∼0 RH). (c) Hydrous spheres 
became hollow VO(OH)

2
 spheres after instant heating to 300 °C and (d) finally collapsed to honeycomb structures after 

being heated at a rate of 2 °C and maintained at 500 °C for 1 h. Microscopic photos of (e) the precursor film and (f) the film 
after SSTA process. SEM images of (g) captured hollow VO(OH)

2
 spheres and (h) final honeycomb structures.
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4. Characterization

In order to fully characterize the structure and the thermochromic properties of VO
2
 nano-

porous thin films, the advanced techniques including scanning electron microscopy (SEM), 
transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffrac-

tion (XRD), Raman spectroscopy as well as UV-Vis-NIR spectroscopy could be utilized in 
the investigation.

With respect to the nanoporous morphology, SEM is a powerful technique to observe the 

size, shape and the distributions of the nanopores on the surface in a large scale vision, while 

the details within the pore could be determined using the TEM in a cross-section view. Due 

to the non-destructive advantage, AFM is also an efficient way to scan the pore distribution 
on the surface although some artifacts always appear in the AFM images.

Regarding to the thermochromic properties, the VO
2
 phase could be firstly confirmed though 

the XRD and Raman scan, and then the solar modulation ability could be determined with tem-

perature dependent UV-Vis-NIR characterization. As for the XRD, VO
2
 (M, P2

1
/c) will show 

the crystalline planes (011)/(−211)/(220)/(022)/(202) at the 2θ positions 28°/37°/55.5°/57.5°/65°, 

while the VO
2
 (R, P4

2
/mnm) will show the crystalline planes (110)/(101)/(211)/(220)/(002) at 

the 2θ positions 28°/37°/55.5°/57.5°/65° [22, 70]. For the Raman scan [58, 71], the VO
2
 (M) 

phase will show the A
g
 peaks at the Raman shift positions 192/222/302/392/611 cm−1 and the 

B
g
 peak at 258 cm−1. In the measurement of thermochromic performance, the transmittance 

of the normal incidence is recorded at the wavelength range 250–2500 nm at the temperature 

below and above the τ
c
, and the integrated luminous transmission (T

lum
, 380 nm < λ < 780 nm) 

and the integrated solar modulating abilities (∆T
sol

, 250 nm < λ < 2500 nm) could be calculated 
from the expression

    T  
lum /  sol

   = ∫  φ  
lum /  sol

   (λ) T (λ) dλ /  ∫  φ  
lum /  sol

   (λ) dλ   (1)

where φ
lum

 is the standard luminous efficiency function for the photopic vision of human eyes 
[72], and the φ

sol
 is the solar irradiance spectrum for air mass 1.5 (corresponding to the sun 

standing 37° above the horizon) [73]. ∆T
sol

 is calculated from T
sol

(τ < τ
c
) − T

sol
(τ > τ

c
).

5. Concluding remarks and outlook

In this chapter, we have elaborated the fabrication of nanoporous VO
2
 nanomaterials and 

the effect of porosity on enhancing the thermochromic properties. Compared with the 
other property enhancement methods, such as ARC multilayers, biomimetic patterning, 
nanothermochromism and periodic patterning (Figure 8), the porous design shows the 

advantages in easy-to-handling, low usage of VO
2
 materials as well as the thickness con-

trol, which could reduce the cost in the real applications. In the fabrication of nanoporous 

VO
2
 thin films, the PAD, freeze-drying as well as the dual-phase transformation are the 

three main methods for random nanoporous structures, while the colloidal lithography 
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with the MCC template is an effective approach for periodic nanoporous structures. The 
calculations reveal that the nanoporous structure could result in the decrease of optical 

constants and thus lead to the enhancement of visible transmission while maintain the 

decent solar modulating abilities.

Although many efforts have been dedicated to optimize the effect of nanoporous structure 
on enhancing the thermochromic performance of VO

2
 thin films, the low visible transmission 

(<~80%) and the low solar modulating ability (<~30%) restrict the real applications in thermo-

chromic smart windows. From the viewpoint of materials design, the periodic nanoporous 

VO
2
 thin films with the periodicity below 100 nm should give rise to the largely enhanced 

visible transmission as well as the highly reduced scattering, which could greatly improve the 
thermochromic performance for smart window applications.
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