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1. Introduction 
 

In the past few years, the topic of localization has received considerable attention in the 
research community and especially in mobile robotics area (Borenstein, 1996). It consists of 
estimating the robot’s pose (position, orientation) with respect to its environment from 
sensor data. Therefore, better sensory data exploitation is required to increase robot’s 
autonomy. The simplest way to estimate the pose parameters is integration of odometric 
data which, however, is associated with unbounded errors, resulting from uneven floors, 
wheel slippage, limited resolution of encoders, etc. However, such a technique is not reliable 
due to cumulative errors occurring over the long run. Therefore, a mobile robot must also be 
able to localize or estimate its parameters with respect to the internal world model by using 
the information obtained with its external sensors. In system localization, the use of sensory 
data from a range of disparate multiple sensors, is to automatically extract the maximum 
amount of information possible about the sensed environment under all operating 
conditions. 
Usually, for many problems like obstacle detection, localization or Simultaneous 
Localization and Map Building (SLAM) (Montemerlo et al., 2002), the perception system of a 
mobile robot relies on the fusion of several kinds of sensors like video cameras, radars, 
dead-reckoning sensors, etc. The multi-sensor fusion problem is popularly described by 
state space equations defining the interesting state, the evolution and observation models. 
Based on this state space description, the state estimation problem can be formulated as a 
state tracking problem. To deal with this state observation problem, when uncertainty 
occurs, the probabilistic Bayesian approaches are the most used in robotics, even if new 
approaches like the set-membership one (Gning & Bonnifait, 2005) or Belief theory (Ristic 
and Smets, 2004) have proved themselves in some applications. 
SLAM is technique used by mobile robots to build up a map within an unknown 
environment while at the same time keeping track of their current position. Several works 
implementing SLAM algorithms have been studied extensively over the last years in this 
direction, leading to approaches that can be classified into three well differentiated 
paradigms depending on the underlying map structure: metric (Sim et al., 2006) (Tardos et 
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al., 2002), topological (Ranganathan et al., 2006) (Savelli & Kuipers, 2004), or hybrid 
representations (Estrada et al., 2005) (Kuipers & Byun, 2001) (Dissanayake et al., 2001) 
(Thrun et al., 2004). These techniques deal mainly with the localization problem using 
mainly visual features and exteroceptive sensors, such as camera, GPS unit or laser scanner. 
Localization algorithms have also been developed in sensors networks and applied in a 
myriad of applications such as intrusion detection, road traffic monitoring, health 
monitoring, reconnaissance and surveillance. Their main objectives is to estimate the 
location of sensors with initially unknown location information by using knowledge for 
absolute positions of a few sensors and their inter-sensor measurements such as distance 
and bearing measurements (Chong & Kumar, 2003) (Mao et al., 2007).  
Ubiquitous computing technology is gradually being used to analyze people’s activities. In 
this case, several research efforts on localization function have been conducted into 
recognizing human position and trajectories (Letchner et al., 2005) (Madhavapeddy & Tse, 
2005) (Kanda et al., 2007). For example, Liao et al. used locations obtained via GPS with 
relational Markov model to discriminate location-based activities (Liao et al., 2005). Wen et 
al. developed an approach for inhabitant location and tracking system in a cluttered home 
environment via floor load sensors (Liau et al., 2008). In this approach, a probabilistic data 
association technique is applied to analyze the cluttered pressure readings collected by the 
load sensors so as to track their movements. 
The main idea of data fusion methods is to provide a reliable estimation of robot’s pose, 
taking into account the advantages of the different sensors (Harris, 1998). The main data 
fusion applied methods are very often based on probabilistic methods, and indeed 
probabilistic methods are now considered the standard approach to data fusion in all 
robotics applications. Probabilistic data fusion methods are generally based on Bayes’ rule 
for combining prior and observation information. Practically, this may be implemented in a 
number of ways: through the use of the Kalman and extended Kalman filters, through 
sequential Monte Carlo methods, or through the use of functional density estimates. 
There are a number of alternatives to probabilistic methods. These include the theory of 
evidence and interval methods. Such alternative techniques are not as widely used as they 
once were, however they have some special features that can be advantageous in specific 
problems. 
The rest of the presented work is organized as follows. Section 2 discusses the problem 
statement and related works in the field of multi-sensor data fusion for the localization of a 
mobile robot. Section 3 describes the global localization system which is considered. We 
develop the proposed robust pose estimation algorithm in section 4 and its application is 
demonstrated in section 5. Simulation results and a comparative analysis with standard 
existing approaches are also presented in this section. 

 
2. Background & related works 
 

The Kalman Filter (KF) is the best known and most widely applied parameter and state 
estimation algorithm in data fusion methods (Gao, 2002). Such a technique can be 
implemented from the kinematic model of the robot and the observation (or measurement) 
model, associated to external sensors (gyroscope, camera, telemeter, etc.). The Kalman filter 
has a number of features which make it ideally suited to dealing with complex multi-sensor 
estimation and data fusion problems. In particular, the explicit description of process and 
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observations allows a wide variety of different sensor models to be incorporated within the 
basic algorithm. In addition, the consistent use of statistical measures of uncertainty makes 
it possible to quantitatively evaluate the role each sensor plays in overall system 
performance. Further, the linear recursive nature of the algorithm ensures that its 
application is simple and efficient. For these reasons, the Kalman filter has found wide-
spread application in many different data fusion problems (Bar-Shalom, 1990) (Bar-Shalom 
& Fortmann, 1988) (Maybeck, 1979). In robotics, the KF is most suited to problems in 
tracking, localisation and navigation; and less so to problems in mapping. This is because 
the algorithm works best with well defined state descriptions  (positions, velocities, for 
example), and for states where observation and time-propagation models are also well 
understood. 
The Kalman Filtering process can be considered as a prediction-update formulation. The 
algorithm uses a predefined linear model of the system to predict the state at the next time 
step. The prediction and updates are combined using the Kalman gain which is computed to 
minimize the Mean Square Error (MSE) of the state estimate. Figure 1 illustrates the block 
diagram of KF cycle (Bar-Shalom & Fortmann, 1988), and for further details, refer to 
(Siciliano & Khatib, 2008). 
 

 
Fig. 1. Block diagram of the Kalman filter cycle (Bar-Shalom & Fortmann, 1988; Siciliano & 
Khatib, 2008) 

 
The Extended Kalman Filter (EKF) is a version of the Kalman filter that can handle non-
linear dynamics or non-linear measurement equations. Like the KF, it is assumed that the 
noises are all Gaussian, temporally uncorrelated and zero-mean with known variance. The 
EKF aims to minimise mean-squared error and therefore compute an approximation to the 
conditional mean. It is assumed therefore that an estimate of the state at time k−1 is available 
which is approximately equal to the conditional mean. The main stages in the derivation of 
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the EKF follow directly from those of the linear Kalman filter with the additional step that 
the process and observation models are linearised as a Taylor series about the estimate and 
prediction, respectively. The algorithm iterates in two update stages, measurement and 
time, see figure 2. Each positioning operation is generated once a new observation is 
assumed. Localization can be done from odometry or visual input changes. The complete 
algorithm is implemented for each landmark perception. In this sense, the processing time is 
saved by reducing covariance matrix function size per landmark. Detailed computations 
may be found in any number of books on the subject (Samperio & Hu, 2006). 
 

 
Fig. 2. Flowchart of Extended Kalman filter Algorithm (after Samperio & Hu, 2006) 

 
Various approaches based on EKF have been developed. These approaches work well as 
long as the used information can be described by simple statistics well enough. The lack of 
relevant information is compensated by using models of various processes. However, such 
model-based approaches require assumptions about parameters which might be very 
difficult to determine (white Gaussian noise and initial uncertainty over Gaussian 
distribution). Assumptions that guarantee optimum convergence are often violated and, 
therefore, the process is not optimal or it can even converge. In fact, many approaches are 
based on fixed values of the measurement and state noise covariance matrices. However, 
such an information is not a priori available, especially if the trajectory of the robot is not 
elementary and if changes occur in the environment. Moreover, it has been demonstrated in 
the literature that how poor knowledge of noise statistics (noise covariance on state and 
measurement vectors) may seriously degrade the Kalman filter performance (Jetto, 1999). In 
the same manner, the filter initialization, the signal-to-noise ratio, the state and observation 
processes constitute critical parameters, which may affect the filtering quality. The stochastic 
Kalman filtering techniques were widely used in localization (Gao, 2002) (Chui, 1987) 
(Arras, 2001)(Borthwick, 1993) (Jensfelt, 2001) (Neira, 1999) (Perez, 1999) (Borges, 2003). Such 
approaches rely on approximative filtering, which requires ad doc tuning of stochastic 
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modelling parameters, such as covariance matrices, in order to deal with the model 
approximation errors and bias on the predicted pose. In order to compensate such error 
sources, local iterations (Kleeman, 1992), adaptive models (Jetto, 1999) and covariance 
intersection filtering (Julier, 1997) (Xu, 2001) have been proposed. An interesting approach 
solution was proposed in (Jetto, 1999), where observation of the pose corrections is used for 
updating of the covariance matrices.  However, this approach seems to be vulnerable to 
significant geometric inconsistencies of the world models, since inconsistent information can 
influence the estimated covariance matrices.  
In the literature, the localization problem is often formulated by using a single model, from 
both state and observation processes point of view. Such an approach, introduces inevitably 
modelling errors which degrade filtering performances, particularly, when signal-to-noise 
ratio is low and noise variances have been estimated poorly.  Moreover, to optimize the 
observation process, it is important to characterize each external sensor not only from 
statistic parameters estimation perspective but also from robustness of observation process 
perspective. It is then interesting to introduce an adequate model for each observation area 
in order to reject unreliable readings. In the same manner, a wrong observation leads to a 
wrong estimation of the state vector and consequently degrades the performance of 
localization algorithm. Multiple-Model estimation has received a great deal of attention in 
recent years due to its distinctive power and great recent success in handling problems with 
both structural and parametric uncertainties and/or changes, and in decomposing a 
complex problem into simpler sub-problems, ranging from target tracking to process control 
(Blom, 1988) (Li, 2000) (Li, 1993) (Mazor, 1996). 
This paper focuses on robust pose estimation for mobile robot localization. The main idea of 
the approach proposed here is to consider the localization process as a hybrid process which 
evolves according to a model among a set of models with jumps between these models 
according to a Markov chain (Djamaa & Amirat, 1999) (Djamaa, 2001). A close approach for 
multiple model filtering is proposed in (Oussalah, 2001). In our approach, models refer here 
to both state and observation processes. The data fusion algorithm which is proposed is 
inspired by the approach proposed in (Dufour, 1994). We generalized the latter for multi 
mode processes by introducing multi mode observations. We also introduced iterative and 
adaptive EKFs for estimating noise statistics. Compared to a single model-based approach, 
such an approach allows the reduction of modelling errors and variables, an optimal 
management of sensors and a better control of observations in adequacy with the 
probabilistic hypotheses associated to these observations. For this purpose and in order to 
improve the robustness of the localization process, an on line adaptive estimation approach 
of noise statistics (state and observation) proposed in (Jetto, 1999), is applied for each mode. 
The data fusion is performed by using Adaptive Linear Kalman Filters for linear processes 
and Adaptive EKF for nonlinear processes. 

 
3. Localization system description 
 

This paper deals with the problem of multi sensor filtering and data fusion for the robust 
localization of a mobile robot. In our present study, we consider an autonomous robot 
equipped with two telemeters placed perpendicularly, for absolute position measurements 
of the robot with respect to its environment, a gyroscope for measuring robot’s orientation, 
two drive wheels and two separate encoder wheels attached with optical shaft encoders for 

www.intechopen.com



Frontiers in Robotics, Automation and Control 

 

298 

odometry measurements. The environment where the mobile robot moves is a rectangular 
room without obstacles, see figure 3. 

 
 

 

 
Fig. 3. Mobile robot description and its evolution in the environment with Nominal 
trajectory 

 
The aim is not to develop a new method for environment reconstruction or modelling from 
data sensors; rather, the goal is to propose a new approach to improve existing data fusion 
and filtering techniques for robust localization of a mobile robot. 
For an environment with a more complex shape, the observation model which has to be 
employed at a given time, will depend on the robot’s situation (robot’s trajectory, robot’s 
pose with respect to its environment) and on the geometric or symbolic model of 
environment. 
Initially, all significant information for localization is contained in a state space vector. The 
usefulness of an observer in a localization system evokes the modelling of variables that 
affect the entire behaviour system. The observer design problem relies on the estimation of 
all possible internal states in a linear system. 
 

3.1 Odometric model 

Let ( ) [ ]Te kkykxkX )()()( θ=  be the state vector at time k , describing the robot’s pose with 

respect to the fixed coordinate system. 
 
The kinematic model of the robot is described by the following equations: 
 

( )2cos1 kkkkk lxx θθ Δ+⋅+=+  (1) 
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( )2sin1 kkkkk lyy θθ Δ++=+  (2) 

kkk θθθ Δ+=+1  (3) 

 
with: 2/)( l

k
r
kk lll += and dll l

k
r
kk /)( −=Δθ . r

kl  and l
kl  are the elementary displacements 

of the right and the left wheels; d  the distance between the two encoder wheels. 

 
3.2 observation model of telemeters 

As the environment is a rectangular room, the telemeters measurements correspond to the 
distances from the robot location to walls (Fig. 3.). 
 
Then, the observation model of telemeters is described as follows: 

for ( ) lk θθ <≤0 , according to X-axis: 

 

( ) ( )( ) ( )( )kkxdkd x θcos−=  (4) 

 
for ( ) ml k θθθ ≤≤ , according to Y-axis: 

 

( )( ) ( )( )kkydkd y θsin)( −=  (5) 

 
With xd  and yd , respectively the length and the width of the experimental site; lθ  and 

mθ , respectively the angular bounds of observation domain with respect to X and Y axes; 

( )kd  is the distance between the robot and the observed wall with respect to X or Y axes at 

time k . 

 
3.3 observation model of gyroscope 

By integrating the rotational velocity, the gyroscope model can be expressed by the 
following equation: 
 

( ) ( )kkl θθ =  (6) 

 
Each sensor described above is subject to random noise. For instance, the encoders introduce 
incremental errors (slippage), which particularly affect the estimation of the orientation. For 
a telemeter, let’s note various sources of errors: geometric shape and surface roughness of 
the target, beam width. For a gyroscope, the sources of errors are: the bias drift, the 
nonlinearity in the scale factor and the gyro’s susceptibility to changes in ambient 
temperature. 
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So, both odometric and observation models must integrate additional terms representing 
these noises. Models inaccuracies induce also noises which must be taken into account. It is 
well known that odometric model is subject to inaccuracies caused by factors such as: 
measured wheel diameters, unequal wheel-diameters, trajectory approximation of robot 
between two consecutive samples. These noises are usually assumed to be Zero-mean white 
Gaussian with known covariance. This hypothesis is discussed and reconsidered in the 
proposed approach. 
Besides, an estimation error of orientation introduces an ambiguity in the telemeters 
measurements (one telemeter is assumed to measure along X axis while it is measuring 
along Y axis and vice-versa). This situation is particularly true when the orientation is near 

angular bounds lθ and mθ .  This justifies the use of multiple models to reduce measuring 

errors and efficiently manage robot’s sensors. For this purpose, we have introduced the 
concept of observation domain (boundary angles) as defined in equations (4) and (5). 

 
4. Proposed approach for mobile robot localisation 
 

As mentioned in (Touati et al., 2007), we present our data fusion and filtering approach for 
the localization of a mobile robot. In order to increase the robustness of the localization and 
as discussed in section 2, the localization process is decomposed into multiple models. Each 
model is associated with a mode and an interval of validity corresponding to the 
observation domain; the aim is to consider only reliable information by filtering erroneous 
information. The localization is then considered as a hybrid process.  A Markov chain is 
employed for the prediction of each model according to the robot mode.  The multiple 
model approach is best understandable in terms of stochastic hybrid systems. The state of a 
hybrid system consists of two parts: a continuously varying base-state component and a 
modal state component, also known as system mode, which may only jump among points, 
rather than vary continuously, in a (usually discrete) set. The base state components are the 
usual state variables in a conventional system. The system mode is a mathematical 
description of a certain behavior pattern or structure of the system. In our study, the mode 
corresponds to robot’s orientation. In fact, the latter parameter governs the observation 
model of telemeters along with observation domain.   Other parameters, like velocity or 
acceleration, could also be taken into account for mode’s definition. Updating of mode’s 
probability is carried out either from a given criterion or from given laws (probability or 
process). In this study, we assume that each Markovian jump (mode) is observable (Djamaa 
2001) (Dufour, 1994). The mode is observable and measurable from the gyroscope. 
 

4.1 Proposed filtering models 

Let us consider a stochastic hybrid system. For a linear process, the state and observation 
processes are given by: 
 

( ) ( ) ( )
( ) ( ) ( )kkk

kekke

kWkUkB

kkXAkkX

ααα
ααα

,,1,

,1/1,1/

+−⋅+
−−⋅=−

 
(7) 

( ) ( ) ( ) ( )kkekke kVkkXCkY αααα ,,1/, +−⋅=  (8) 
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 For a nonlinear process, the state and observation processes are described by: 
 

( ) ( ) ( )( )
( )k

keke

kW

kUkkXFkkX

α
αα

,

1,,1/1,1/

+
−−−=−

 
(9) 

( ) ( )( ) ( )kkeeke kVkkXGkY ααα ,,1/, +−=  (10) 

 
where eX , eY  and U are the base state vector, noisy observation vector and input vector; 

kα   is the modal state or system mode at time k, which denotes the mode during the kth 

sampling period; W and V are the mode-dependent state and measurement noise 

sequences, respectively. 
 

The system mode sequence kα is assumed for simplicity to be a first-order homogeneous 

Markov chain with the transition probabilities, so for Sji ∈∀ αα , : 

 

{ } ij
i
k

j
kP παα =+ |1  (11) 

 
Where j

kα denotes that mode jα is in effect at time k and S  is the set of all possible system 

modes, called mode space. 
 
The state and measurement noises are of Gaussian white type. In our approach, the state 
and measurement processes are assumed to be governed by the same Markov chain. 
However, it’s possible to define differently a Markov chain for each process. The Markov 
chain transition matrix is stationary and well defined. 

 
4.2 Statistics parameters estimation 

It is well known that how poor estimates of noise statistics may lead to the divergence of 
Kalman filter and degrade its performance. To prevent this divergence, we propose an 
adaptive algorithm for the adjustment of the state and measurement noise covariance 
matrices. 
 
a. Measurement noise variance  

Let ( )( )kR i
2
,νσ= ( )0:1 ni = , be the measurement noise variance at time k  for each 

component of the observation vector. Parameter 0n  denotes the number of observers 

(sensors number).  
 

Let ( )kβ̂  the squared mean error for stable measurement noise variance, and ( )kγ the 

innovation, thus: 
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( ) ( )∑
=

−=
n

j

i k
n

k

0

2 1
1ˆ γβ  (12) 

 
For 1+n  samples, the variance of ( )kβ̂  can be written as: 

 

( )( ) ( ) ( )
( )∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−

⋅−−−⋅−

+
=

n

j i
T

i

i

jkC

jkjkPjkC

n
kE

0

2
,

1,

1

1ˆ

νσ
β  (13) 

 
Then, we obtain the estimation of the measurement noise variance: 
 

( ) ( )

( ) ( ) ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−⋅−−−

⋅−⋅
+

−−
= ∑

=

n

j T
i

ii

i

jkCjkjkP

jkC
n

n
jk

n
0

2

2
, 0,

1,

1
1

maxˆ
γ

σν  (14) 

 
The restriction with respect to zero is related to the notion of variance. A recursive 
formulation of the previous estimation can be written: 
 

( ) ( )
( )

( )( )

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ψ⋅
+

−

+−−⋅+−= 0,

1

1
1

1ˆmaxˆ 2

2

2
,

2
,

n

n

nk

k

n
kk i

i

ii γ

γ

σσ νν
 (15) 

 
where: 
 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )Ti

i
T

ii

nkCnknkP

nkCkCkkPkC

111,1

11,

+−⋅−+−+−

⋅+−−⋅−⋅=Ψ
 (16) 

 
b. State noise variance  

To estimate the state noise variance, we employ the same principle as in subsection a. One 
can write: 
 

( ) ( ) dine QkkQ ⋅= 2
,ˆˆ σ  (17) 

 
By assuming that noises on the two encoder wheels measurements obey to the same law 
and have the same variance, the estimation of state noise variance can be written: 
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( )

( ) ( ) ( )
( ) ( )

( ) ( )
⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+⋅⋅+

+−+

⋅+⋅+−−

=

0

,
11

1ˆ1

,111

maxˆ
2
,

2

2
,

T
idi

i
T

i

ii

in

kCQkC

kkC

kkPkCk

k νσ

γ

σ  (18) 

 
with:   
 

( ) ( ) ( )Td kBkBkQ ⋅=ˆ  (19) 

 
By replacing the measurement noise variance by its estimate, we obtain a mean value given 
by the following equation: 
 

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⋅+

= ∑∑
= =

0,ˆ
1

1
maxˆ

1 1

2
,

0

2
0m

j

n

i

inn jk
nm

k σσ  (20) 

 
Where, the parameter m  represents the sample number. 

 
The algorithm proposed above carries out an on line estimation of state and measurement 
noise variances. Parameters n  and m  are chosen according to the number of samples used 

at time k . The noises variances are initialized from an “a priori” information and then 

updated on line. In our approach, variances are updated according the robot’s mode and the 
measurement models. 
For an efficient estimation of noise variances, an ad hoc technique consisting in a measure 
selection is employed. This technique consists of filtering unreliable readings by excluding 
readings with weak probability like the appearance of fast fluctuations. For instance, in the 
case of Gaussian distribution, we know that about 95% of the data are concentrated in the 

interval of confidence [ ]σσ 2,2 +− mm  where m   represents the mean value andσ the 

variance.    
The sequence in which the filtering of the state vector components is carried out is 
important. Once the step of filtering completed, the probabilities of each mode are updated 
from the observers (sensors). One can note that the proposed approach is close, on one 
hand, to the Bayesian filter by the extrapolation of the state probabilities, and on the other 
hand to the filter with specific observation of the mode. 

 
5. Implementation and results 
 

The proposed approach for robust localization was applied for the mobile robot described in 
section 2. The nominal trajectory of the mobile robot includes three sub trajectories T1, T2 
and T3, defining respectively a displacement along X axis, a curve and a displacement along 
Y axis, see figure 4. 
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T1 

T2 

T3 

θ 
l
 

θ 
m

 

 
 

  

 
Fig. 4. Mobile robot in moving in the environment with Nominal trajectory T1, T2 and T3. 

 
Note that the proposed approach remains valid for any type of trajectory (any trajectory can 
be approximated by a set of linear and circular sub trajectories). For our study, we have 
considered three models. This number can be modified according to the environment’s 
structure, the type of trajectory (robot rotating around itself, forward or backward 
displacement, etc.) and to the number of observers (sensors). Notice that the number of 
models (observation and state) has no impact on the validity of the proposed approach. 
To demonstrate the validity of our proposed Adaptive Multiple-Model approach and to 
show its effectiveness, we’ve compared it to the following standard approaches:  Single-
Model based EKF without estimation variance, single-model based IEKF. For sub 
trajectories T1 and T3, filtering and data fusion are carried out by iterative linear Kalman 
filters due to linearity of the models, and for sub trajectory T2, by iterative and extended 
Kalman filters. 
The observation selection technique is applied for each observer before the filtering step in 
order to control, on one side, the estimation errors of variances, and on the other side, after 
each iteration, to update the state noise variance. If an unreliable reading is rejected at a 
given filtering iteration, this has for origin either a bad estimation of the next component of 
the state vector and of the prediction of the corresponding observation, or a bad updating of 
the corresponding state noise variance. The iterative filtering is optimal when it is carried 
out for each observer and no reading is rejected. In the implementation of the proposed 
approach, the state noise variance is updated, for a given mode i , is carried out according to 

the following filtering sequence: x, y and thenθ . 
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Firstly, let’s consider the set of the following notations, table 1: 
 

( xε , yε , εθ ) Estimation errors corresponding to ( x , y ,θ ) 

( Ndx , Ndy , θNd ) 
Percentage of selected data for filtering corresponding to 

( x , y ,θ ) 

( Ndxe , Ndye , eNdθ ) 
Percentage of selected data for estimation of the variances of 

state and measurement noises, corresponding to ( x , y ,θ ) 

SM       ( -+ ) Single-Model based EKF 

SMI      ( ° ) single-model based IEKF 

AMM   ( - - ) Adaptive Multiple-Model 

Table 1. Set of notations 

 
Several scenarios have been studied according to the variation of statistics parameters, i.e., 
sensors signal-to-noise ratio, initial state variance, noise statistics (measurement and state 
variances). Simulations were carried out to analyze the performances of each approach in 
various scenarios. Thus, in scenarios 1 and 2, we show the influence of measurement and 
state noises variances estimation on the quality of localization. In scenario 3, it will concern 
the sensors signal-to-noise ratio. 
 
Scenario 1: 
-Noise-to-signal Ratio of odometric sensors: right encoder: 4%, left encoder: 4% 
-Noise-to-signal Ratio of Gyroscope: 1% 
-Noise-to-signal Ratio of telemeters: 2% of the odometric elementary step 
-“A priori” knowledge on the variance in initial state: Good 
-“A priori” knowledge on measurement noise variances: Good 
-State and measurement noise variances estimation:  10 times real average variances of 
encoders 
 
This scenario is characterized by weak state and measurement noises and by high initial 
value of state noise variance. One can note that although a bad initialization (10 times the 
average variance), the AMM approach presents better performances for estimation of the 3 
components of state vector (Tables 2-4, figures 5-11). On section T1, (figure 12), the 
estimated variance remains constant compared to the a priori average variance (10 times the 
average variance) corresponding to the initial state. Indeed, the algorithm of estimation of 
variances does not show any evolution because of the high value of variance in the initial 
state. However, for section T2 and T3, the variance decreases by half compared to the initial 
variance, and approaches the actual average variance. 
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 T1 T2 T3 

 SM SMI AMM SM SMI AMM SM SMI AMM 

xε (cm) 3.46 6.12 0.64 8.3 6.15 9.6 4.76 3.38 0.72 

yε (cm) 4.58 3.69 0.5 12.3 7.3 9.7 4.64 3.58 1.82 

εθ  (10-3  rad) 22.7 30.5 2.7 8.2 11.9 9.7 21.6 29.3 7.9 

Table 2. Average estimation errors 

 
Ndx  Ndy  θNd  Ndxe  Ndye  eNdθ  

98.75% 90% 97.5% 98.75% 98.75% 97.5% 

Table 3. Selected data percentage 

 

 
Fig. 5. Estimated trajectories by Encoders and, SM, SMI and AMM Filters 

 

 
Fig. 6. Estimated trajectories (sub trajectory T1) 
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Fig. 7. Estimated trajectories (sub trajectory T2) 

 

 
Fig. 8. Estimated trajectories (sub trajectory T3) 

 

 
Samples 

Fig. 9. Position error with respect to X axis  
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Samples 

Fig. 10. Position error with respect to Y axis 

 

 
Samples 

Fig. 11. Absolute error on orientation angle 

 

 
Samples 

Fig. 12. Ratio between the estimate of state noise variance and the average variance 
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Scenario 2:  
-Noise-to-signal Ratio of odometric sensors: right encoder: 10%, left encoder: 10% 
-Noise-to-signal Ratio of Gyroscope: 3% 
-Noise-to-signal Ratio of telemeters: 4% of the odometric elementary step (40% of the state 
noise) 
-“A priori” knowledge on the variance in initial state: Good  
-“A priori” knowledge on noise variances (i) telemeters and state: Good; (ii) gyroscope: Bad 
 
The results presented here (Tables 4-5 and figures 13-20) show the influence of signal-to-
noise ratio and estimation of noise variances on performances of SM and SMI filters. In this 
scenario, the initial variance of measurement noise of the gyroscope is incorrectly estimated. 
Unlike AMM approach, filters SM and SMI do not carry out any adaptation of this variance, 
leading to unsatisfactory performance. 
 

 T1 T2 T3 

 SM SMI AMM SM SMI AMM SM SMI AMM 

xε (cm) 11.7 11 1.8 19 75 13.6 17.3 40 1.3 

yε (cm) 16.7 21 1 39 179 17.4 15.7 117 1.93 

εθ  (10-3  rad) 99.3 129 1.5 42.9 175 35.4 97.5 167 37.8 

Table 4. Average estimation errors 

 
Ndx  Ndy  θNd  Ndxe  Ndye  eNdθ  

87.5% 66% 99.37% 87.5% 82.5% 99.37% 

Table 5. Selected data percentage 
 

Figure 20 illustrates the evolution of state noise variance estimate compared to the average 
variance. Note that the ratio between variances reaches 1.7 on sub trajectory T1, 3.0 on sub 
trajectory T2, and 3.3 on sub trajectory T3. It is important to mention that the algorithm 
proposed for estimation of variances estimates the actual value of state noise variance and 
not its average value. These results are related to the fact that the signal-to-noise ratio is 
weak both for the odometer and the telemeters. 
 

 
Fig. 13. Estimated trajectories by Encoders and, SM, SMI and AMM Filters 
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Fig. 14. Estimated trajectories (sub trajectory T1) 

 

 
Fig. 15. Estimated trajectories (sub trajectory T2) 

 

 
Fig. 16. Estimated trajectories (sub trajectory T3) 
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Samples 

Fig. 17. Position error with respect to X axis 

 

 
Samples 

Fig. 18. Position error with respect to Y axis 

 

 
Samples 

Fig. 19. Absolute error on orientation angle 
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Samples 

Fig. 20. Ratio between the estimate of state noise variance and the average variance 

 
Scenario 3: 
-Noise-to-signal Ratio of odometric sensors: right encoder: 8%, left encoder: 8% 
-Noise-to-signal Ratio of Gyroscope: 3% 
-Noise-to-signal Ratio of telemeter 1: 10% of the odometric elementary step 
-Noise-to-signal Ratio of telemeter 2: 10% the odometric elementary step 
-“A priori” knowledge on the variance in initial state: Good  
-“A priori” knowledge on noise statistics (measurement and state variances): Good 
 
In this scenario, the telemeters measurement noise is higher than state noise. We remark that 
performances of AMM filter are better that those of SM and SMI filters concerning x and y 
components (tables 6-7; figures 21-28). In sub trajectory T3, the orientation’s estimation error 
relating to AMM filter (Table 6) has no influence on filtering quality of the remaining 
components of state vector. Besides, one can note that this error decreases in this sub 
trajectory, see figure 27. In this case, only one gyroscope is used for the prediction and 
updating the Markov chain probabilities. In sub trajectory T2, we remark that the estimation 
error along x-Axis for AMM filter is lightly higher than those relating to other filters. This 
error is concentrated on first half of T2 sub trajectory (figure 25) and decreases then on 
second half of the trajectory. This can be explained by the fact that on one hand, the 
estimation variances algorithm rejected 0.7% of data, and on the other hand, the filtering 
step has rejected the same percentage of data. This justifies that neither the variances 
updating, nor the x-coordinate correction, were carried out (figure 28). 
Note that unlike filters SM and SMI, filter AMM has a robust behavior concerning pose 
estimation even when the signal-to-noise ratio is weak. By introducing the concept of 
observation domain for observation models, we obtain a better modeling of observation and 
a better management of robot’s sensors. The last remark is related to the bad performances 
of filters SM and SMI when the signal-to-noise ratio is weak. This ratio degrades the 
estimation of the orientation angle, observation matrices, Kalman filter gain along with the 
prediction of the observations. 
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Fig. 21. Estimated trajectories by Encoders and, SM, SMI and AMM Filters 

 

 
Fig. 22. Estimated trajectories (sub trajectory T1) 

 

 
Fig. 23. Estimated trajectories (sub trajectory T2) 
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Fig. 24. Estimated trajectories (sub trajectory T3) 

 
 T1 T2 T3 

 SM SMI AMM SM SMI AMM SM SMI AMM 

xε (cm) 6.25 3.23 2.5 13.2 10.8 15.3 31.9 31.2 1.2 

yε (cm) 13.6 16.7 2.3 23.9 11.9 8.25 19.2 5.75 3.23 

εθ (10-3  rad) 81.1 66.9 3.8 32.2 39.9 35.6 136 125 267.9 

Table 6. Average estimation errors (Scenario 1) 

 
Ndx  Ndy  θNd  Ndxe  Ndye  eNdθ  

99.37% 84.37% 99.37% 99.37% 97.5% 99.37% 

Table 7. Selected data percentage 

 

 
Samples 

Fig. 25. Position error with respect to X axis 

www.intechopen.com



Robust Position Estimation of an Autonomous Mobile Robot 

 

315 

 
  Samples 
Fig. 26. Position error with respect to Y axis 

 

 
Samples 

Fig. 27. Absolute error on orientation angle 

 

 
Samples 

Fig. 28. Ratio between the estimate of state noise variance and the average variance 

 
6. Conclusion 
 

This research work introduces a multiple model approach for the robust localization of a 
mobile robot. The localization method is considered as a hybrid process, which is 
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decomposed into multiple models. Each model is associated with a mode and an interval of 
validity corresponding to the observation domain.  A Markov chain is employed for the 
prediction of each model according to the robot mode. To prevent divergence of standard 
Kalman Filtering and to increase its robustness, we proposed an adaptive algorithm for the 
adjustment of the state and measurement noise covariance matrices. For an efficient 
estimation of noise variances, we introduced an ad hoc technique consisting in a measure 
selection for filtering unreliable readings. The simulation results we obtain in different 
scenarios show better performances of the proposed approach compared to standard 
existing filters. Some future research need to be conducted to complete the proposed 
approach and particularly in probabilistic data fusion through sequential Monte Carlo 
methods, or through the use of functional density estimates. These investigations into 
utilizing multiple model technique for robust localization show promise and demand 
continuing research. Fuzzy logic theory can also be considered to increase robustness of the 
proposed localization algorithm. 
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