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Abstract

This chapter will review the utilization of breast ultrasound for screening and diagnos-
tic purposes. Currently, ultrasound is primarily used to investigate palpable lesions in 
women less than 30 years old, to provide further characterization of abnormal mammo-
graphic findings, and to guide invasive breast interventions. Innovations in ultrasound 
technology have improved the detection and diagnosis of breast cancer. Computer-aided 
detection (CAD), elastography, quantitative breast ultrasound technology, and ultra-
sound contrast agents (microbubbles) were developed to improve diagnostic accuracy. 
These advancements have the potential to impact overall survival by detecting cancers 
that are smaller and less aggressive.

Keywords: screening ultrasound, elastography, CAD, quantitative ultrasound, breast 
cancer, breast ultrasound, targeted breast ultrasound, automated whole breast 
ultrasound, breast density, ultrasound guided biopsy

1. Introduction

Breast ultrasound is an integral component of the diagnostic evaluation of breast lesions. It 
is the primary modality used to examine palpable abnormalities in young women (<30 years 

old), is routinely employed to further characterize mammographic abnormalities as solid or 

cystic, and provides direction for image-guided breast interventions [1].

For many years, the primary utility of breast ultrasound was differentiating cysts from solid 
masses. Cysts can occur at any age, but are most commonly found in pre- and perimenopausal 

women. To classify a lesion as a simple cyst, it must meet a strict set of criteria; it must be 

entirely anechoic, sharply marginated, round or oval in shape, and demonstrate posterior 

acoustic enhancement [2]. Lesions containing low-level echoes, which otherwise meet the cri-

teria for simple cysts, are referred to as complicated cysts. Complicated cysts may also have 
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fluid-fluid or fluid-debris levels that may shift with changes in a patient’s position. Complex 
cystic masses with discrete solid components are suspicious for malignancy and require fur-

ther evaluation with biopsy [2].

Today, there is a paradigm shift in the application of breast ultrasound. Its new role as a 
primary screening tool in women with dense breast tissue is growing. The limitation of mam-

mography in women with dense breast tissue has opened the door to supplemental screening 

with ultrasound and magnetic resonance imaging (MRI). Ultrasound has become the supple-

mental screening tool of choice for breast cancer detection in this select group of women 

given that it is low in cost, is widely available and has no ionizing radiation. Whether breast 

ultrasound is used for diagnosis or screening, evidence of its utilization over the last 50 years 

has deemed it an invaluable tool.

2. Background/historical perspective

In the mid to late 1960s, there was a significant amount of research involving breast ultrasound. 
Issues such as transducer design and manipulation of the ultrasonic beam became the focus of 
many researchers. Improvement in resolution and the advent of grayscale imaging segued to 
modern day imaging and an effort to shift from evaluating pathological breast findings toward 
screening healthy women.

Figure 1. Transverse ultrasound of the left breast demonstrates an irregular, antiparallel mass with posterior acoustic 

shadowing.
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It was not until 1970 that there was regular clinical use of breast ultrasound, mainly in 
the United States and Asia. During this time, Japanese authors Kobayashi et al. published 
several papers [3, 4] discussing the various characteristics that could differentiate benign 
and malignant breast disease. Published work from these authors linked the characteristic 

descriptor of acoustic shadowing with breast malignancy [5]. Further development in the 

late 1980s and early 1990s of Doppler ultrasound helped complement B-mode grayscale 
images, augmenting the ability to differentiate cancerous masses from benign findings 
(Figure 1). In 1995, Stavros and colleagues described a set of criteria to improve specificity 
in determining benign and malignant features of breast masses [6]. By the late 1990s and 
early 2000, advancement and application of tissue harmonics and spatial compounding 

further refined ultrasound images; helping to improve image resolution and reduce noise 
[7, 8].

Optimization of the ultrasound image is essential, but not the only component needed to 

properly classify masses as benign vs. malignant. The knowledge of normal breast anatomy, 

breast scanning technique (artifactual tissue shadowing will resolve with increase in trans-

ducer pressure), along with the understanding of common artifacts encountered can improve 

the overall effectiveness of the examination. Recent publication of the American College of 
Radiology’s (ACR’s) Breast Ultrasound Lexicon (++) has helped to standardize the descriptive 
language of breast lesions, thus improving the positive predictive value (PPV) and confidence 
in determining the likelihood of malignancy.

3. Basics of breast ultrasound

3.1. Anatomy

The female breast is made up of glandular tissue and fat, held together by a framework of 

fibers called Cooper’s ligaments. The female breast, representing a modified sweat gland, 
spans the distances between the second and sixth anterior ribs, sternum, and midaxillary 

line. Normal anatomical structures imaged during breast ultrasound include the skin, nip-

ple, fat, Cooper’s ligaments, ducts, breast parenchyma, pectoralis muscles, pleura, and ribs 
(Figure 2). These appear as six distinct layers on ultrasound images as follows (from anterior 

to posterior): skin, subcutaneous fat, breast parenchyma (including ducts and lobules), ret-

roglandular (retromammary) fat, pectoralis muscles, and chest wall (Figure 3). It is the sono-

graphic appearance of the breast fat which gives reference for comparing other structures 

within the breast [9]. Breast fat appears dark gray on ultrasound images. Ducts and cysts 

are anechoic. The nipple and blood vessels appear hypoechoic, while breast parenchyma, 

Cooper’s ligaments, and skin appear hyperechoic.

Ultrasound imaging of the skin and nipple can best be imaged using a stand off pad, which 
can help eliminate the acoustic shadowing commonly seen posterior to the nipple [1]. The 

skin is usually less than or equal to 2 mm in thickness, except over the areola where the skin 

is often thicker.
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3.1.1. Male vs. female

In contrast to the female breast in which ducts, stroma, and glandular tissue are found, the 
male breast contains mostly fatty tissue with a few ducts and stroma. The sparse ductal 

Figure 2. Breast anatomy. Transverse ultrasound shows normal breast anatomy. (A) Skin, (B) fat lobule, (C) Cooper 
ligament, (D) fibroglandular zone, and (E) muscle.

Figure 3. Breast anatomy. Transverse ultrasound shows normal breast anatomy. (A) Skin, (B) subcutaneous fat, (C) 
terminal duct lobular unit, and (D) muscle.
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and stromal elements within the male breast give rise to the most common disease seen 

within the male breast, gynecomastia. Gynecomastia is typically bilateral and appears on 

ultrasound images as subareolar glandular tissue, which may be hypoechoic to hyperechoic. 

There are no standard protocols for imaging the male breast with many institutions perform-

ing a mammogram prior to ultrasound. Male breast cancer is very rare, representing only 

about 1% of all breast cancers [10].

3.1.2. Maturation phases

Mastogenesis begins around the sixth week of development and by the eighth week, a mammary 

gland is formed from the thickening located at the epidermic “milk line” [11]. During puberty, 

both estrogen and progesterone stimulate breast development.

3.1.3. Lactation changes

During pregnancy and lactation, the breast undergoes many hormonal changes resulting 

in glandular proliferation, ductal distention, and stromal involution. Ultrasound is the 
modality of choice for evaluating palpable masses, bloody nipple discharge, and focal pain 

in the lactating breast. Masses unique to the lactating breast include lactating adenomas 

and galactoceles [12].

3.1.4. The postoperative breast

Patients who have undergone lumpectomy surgery often present with postoperative fluid 
collections such as seromas, hematomas, and lymphoceles with spontaneous resorption of 

these fluid collections occurring over time. It is important not to confuse scar formation for 
recurrent cancer in this patient population, as areas of scarring can appear as areas of acous-

tic shadowing [1]. In patients who have undergone radiation therapy, skin thickening, and 
breast edema are frequently identified and eventually decrease over time.

3.1.5. The postimplant breast

Breast implants include both silicone and saline implants which are surgically placed for 

either breast augmentation or reconstruction. While MRI is the imaging modality of choice 
to evaluate for silicone implant integrity, there are characteristic sonographic appearances 

associated with silicone implant rupture. The appearance of an intact breast implant on ultra-

sound is similar to a large cyst, with presence of an anechoic implant lumen surrounded by 

a hyperechoic linear shell [13]. The “stepladder sign,” which appears as horizontal, hyper-

echoic, straight, or curvilinear lines across the implant lumen, is characteristic of intracapsular 

silicone implant rupture (Figure 4) [13]. The “snowstorm sign” is reportedly the most signifi-

cant sonographic finding for extracapsular rupture and appears as hyperechoic nodules with 
defined anterior margin and posterior acoustic shadowing within the breast parenchyma 
or axillary lymph nodes [13]. The ability to diagnose extracapsular rupture on sonography 

approaches accuracy of MRI, with one study finding 100% diagnostic accuracy for extracap-

sular rupture with ultrasound (Figure 5) [13].
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3.2. B-mode and Doppler

B-mode or brightness mode, ultrasound images are the standard two-dimensional grayscale 

images routinely obtained during breast ultrasound. The higher the probe frequency, the bet-

ter the axial resolution, which is the ability to resolve objects within the imaging plane located 

at different depths [14]. For this reason, high frequency probes (12–18 mHz) are often utilized 
for breast ultrasound, which requires relatively steep time gain curve to compensate for rapid 

beam attenuation (Figure 6). If a large breast is being imaged, a lower frequency probe may 
be preferable to image deep lesions close to the pectoralis muscle given that high frequency 

Figure 4. “Stepladder sign.” Transverse ultrasound demonstrates an intracapsular silicone implant rupture. (A) Outer 

capsule, (B) shell of collapsed implant, and (C) “Linguine sign”.

Figure 5. Axial T2W MRI demonstrates bilateral intracapsular silicone implant ruptures.
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probes often do not penetrate as deeply as lower frequency probes. Alternatively, adjusting 

the patient’s position or compressing the breast can help bring the lesion into the focal zone 
[1]. Ensuring the focal zone is centered at the depth of interest within the breast is also essen-

tial to ensure optimization of lateral resolution (Figure 7). Lateral resolution is the ability to 

resolve objects located side by side at the same depth and is best at the focal zone, where the 

ultrasound beam is at its narrowest [14]. Doppler ultrasound utilizes the Doppler Effect to 
analyze the frequency of the returning echo allowing for color Doppler images to be obtained 

demonstrating both tissue morphologies in grayscale as well as blood flow in color [14]. While 

the use of color Doppler can help differentiate solid masses from complicated cysts [9], some 

propose that Doppler ultrasound will further improve ultrasound performance by aiding in 

the assessment of tumor vascularity and tumor blood flow [15].

Figure 6. Gain. Transverse ultrasound illustrates gain. Ultrasound waves are absorbed by tissue. The deeper the tissue, 
the greater the absorption. A gradual increase in the gain with deeper tissues is recommended.

Figure 7. Focal zone. Transverse ultrasound of the right breast illustrating focal zone settings. The focal zone should be 
set at the anterior to middle third of the region of interest. (A) Partial volume averaging—loss of detail and (B) image 

with appropriate focal zone setting.
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3.3. Artifacts

Ultrasound is a modality with many artifacts. Some artifacts most commonly encountered in 
breast ultrasound include acoustic shadowing, posterior acoustic enhancement, refraction, 

speckle, and reverberation. While some artifacts make detection or differentiation of lesions 
more difficult, other artifacts help identify and characterize lesions in the breast. Acoustic 
shadowing and posterior acoustic enhancement are both artifacts that routinely aid in char-

acterization of breast lesions. Acoustic shadowing is secondary to a decrease in the energy 

of transmitted sound either secondary to reflection and/or absorption and appears on ultra-

sound images as a dark or hypoechoic band beneath an object of high attenuation [14, 16]. 

Sound is gradually attenuated as it passes through solid structures. Alternatively, sound is 
less attenuated as it passes through fluid-filled structures, giving the appearance of a brighter 
signal deep to cystic structures [14, 16]. The presence of posterior acoustic enhancement helps 

distinguish cystic versus solid breast lesions, although it is important to note that some solid 

lesions also demonstrate posterior acoustic enhancement. Refraction is often encountered in 

breast ultrasound when the sound beam is refracted at a curved interface between the higher 

velocity soft tissues and a lower velocity cyst resulting in narrow refractive bands along the 

margins [17]. Refractive artifacts should not be confused with acoustic shadowing. Speckle 
refers to a granular appearance of an otherwise fat homogeneous region of breast tissue. It can 
affect image contrast and reduce visibility of lesions by masking small differences in the level 
of gray (Figure 8). Reverberation artifact occurs when sound is reflected off strong acoustic 
interfaces creating a ping-pong of echoes resulting in an image of parallel, linear bright bands 

or diffuse low-level echoes in the superficial most aspect of a cyst [14, 16, 17]. Decreasing the 

gain can help reduce reverberation artifact [14].

3.4. Spatial compound imaging

Compound imaging refers to the technique by which images are acquired from multiple 

angles of isonation and then added together while maintaining a static transducer position. 

Each image has its own artifact profile and when multiple images are averaged together, 
the artifacts become less apparent and true structures are better visualized [18]. One benefit 
of spatial compound imaging is reduced speckle artifact (Figure 9). Reduced image speckle 

has been shown to improve the conspicuity of low contrast lesions, enhance the delineation 

of tumor margins, and improve the depiction of the internal architecture of solid lesions and 

microcalcifications. One limitation of spatial compound imaging is the reduced visibility of 
the posterior echo pattern (acoustic shadowing or enhancement), artifacts often used to aid 
in characterization of lesions as cystic or solid [19]. Additionally, spatial compound imaging 

requires frame averaging during compounding, producing motion blurring if the ultrasound 

probe is moved too quickly [15].

3.5. Clutter

Clutter is a noise artifact caused by either aberration or reverberation of echoes, which causes 
filling in and loss of contrast [20, 21]. On ultrasound images, clutter appears as a diffuse haze 
thereby reducing image contrast and is most easily visualized in anechoic or hypoechoic 
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Figure 8. (A) Long axis view of transverse ultrasound demonstrating speckle artifact. Increased noise noted throughout 
the image and (B) long axis view of transverse ultrasound demonstrating speckle reduction.

Figure 9. Compound imaging. Transverse ultrasound of the right breast illustrates compound imaging. (A) Utilization 
of compound imaging and (B) without compound imaging.

Breast Ultrasound Past, Present, and Future
http://dx.doi.org/10.5772/intechopen.69790

29



structures [21]. Clutter is of particular concern when imaging small, low-contrast lesions [21]. 

Methods to reduce clutter include second-order ultrasound field imaging, short-lag spatial 
coherence imaging, filtering techniques, and tissue harmonic imaging [20].

3.6. Tissue harmonic imaging

Tissue harmonic imaging is an ultrasonographic technique that can potentially provide 

images of higher quality than those obtained with conventional ultrasound techniques. Tissue 

harmonic imaging involves the use of harmonic frequencies that originate within the tissue 

Figure 11. Harmonics reduce artefactual echoes. Transverse ultrasound of the right breast shows harmonics reducing 

artefactual echoes. (A) With harmonics and (B) without harmonics.

Figure 10. Harmonics increase real echoes. Transverse ultrasound of the right breast shows harmonics increasing real 

echoes. (A) With harmonics and (B) without harmonics.
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as a result of nonlinear wave front propagation and are not present in the incident beam 

(Figure 10). These harmonic signals are generated differently at anatomic sites with similar 
impedances and thus lead to a higher contrast resolution. In addition, use of tissue harmonic 
imaging helps reduce many of the artifacts that occur with conventional ultrasound, such as 

side-lobe, near-field, reverberation, and clutter artifacts, and improves the signal to noise ratio 
(Figure 11) [22, 23, 20].

4. Lesion characterization with BI-RADS Lexicon

4.1. Correlative BI-RADS classifications and positive predictive value (PPV)

Similar to the BI-RADS system used to standardize the language of mammography report-
ing, the American College of Radiology (ACR) also developed a BI-RADS lexicon for breast 
sonography for the characterization of the sonographic lesions. This lexicon includes 

descriptors of masses such as shape, orientation, margin, echo pattern, and posterior fea-

tures as well as associated features such as architectural distortion, duct changes, breast 

edema, skin changes, vascularity, and elastography. Special cases delineated by BI-RADS 
lexicon include simple cyst, clustered microcysts, complicated cyst, skin masses, foreign 

bodies (including implants), intramammary and axillary lymph nodes, vascular abnormali-

ties, and postsurgical fluid collections. BI-RADS lexicon defines a simple cyst as oval or 
round in shape, anechoic, circumscribed margin, and with posterior acoustic enhancement 

(BI-RADS) (Figures 12–14). BI-RADS descriptors showing a high predictive value for malig-

nancy include spiculated margin, irregular shape, and nonparallel orientation (Figure 15). 

Circumscribed margin, oval shape, and parallel orientation are characteristics predictive of 

a benign lesion [24, 25].

Figure 12. Homogenous background echotexture—fat. Transverse ultrasound demonstrates fat lobules, with uniform 

echogenic bands of supporting structures making up the bulk of the breast tissue.
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Figure 14. Heterogeneous background echotexture. Transverse ultrasound depicts multiple areas of increased and 

decreased echogenicity. Heterogeneity can be either focal or diffuse.

Figure 15. Margin assessment. Transverse ultrasound of the right breast demonstrates an irregular mass with angular 

margins. Some or all of the margins has sharp corners, often forming acute angles.

Figure 13. Homogenous background echotexture—fibroglandular. Transverse ultrasound shows a thick zone of 

homogenously echogenic fibroglandular tissue present beneath a thin hypoechoic layer of fat lobules.
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5. Indications for targeted breast ultrasound

5.1. Characterization of a mammographic mass

Ultrasound is an adjunct to mammography for mass characterization and is the next exami-
nation to perform for characterization of a mammographic mass, per ACR appropriateness 

criteria [26]. It is critical to establish the location and depth of the mass identified on mam-

mography to ensure that the same area is imaged during breast ultrasound. If a mass is 
identified on breast ultrasound and is thought to correlate with the mammographic mass, 
the size, shape, location, and surrounding tissue composition should correlate between the 

two modalities [27]. If no sonographic correlate is found for a mass identified on mammo-

gram, then revaluation of the mammogram should be performed. If mammographic findings 
remain suspicious for a sonographically occult mass, then further evaluation with a different 
imaging modality and/or biopsy can be pursued (Figure 16).

5.2. Evaluation of a palpable mass in a patient with negative mammogram

Fifty years ago, women who presented with a palpable mass eventually underwent surgical 

excision to exclude malignancy [28]. With advances in ultrasound imaging, many women 

now who present with a palpable mass and no mammographic correlate undergo diag-

nostic targeted ultrasound, often on the same day as diagnostic mammogram, to evaluate 

the region of palpable concern. If no mammographic or sonographic abnormality is identi-
fied, women can be safely reassured that there is no abnormality instead of undergoing 

Figure 16. Lesion visibility. (A) CC mammogram of the left breast and (B) transverse ultrasound of the left breast.
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unnecessary surgery or biopsy [29]. However, if a patient presents with a palpable mass 
with negative mammogram, ultrasound has been shown to be effective in identifying an 
abnormality in about 50% of cases, with the majority of these abnormalities characterized 

as benign (mostly cysts) or likely benign [30]. Recent studies also question whether a repeat 

mammogram is even necessary when a woman presents with a new palpable mass within 12 

months of prior negative mammogram, given that ultrasound has been shown to yield the 

most diagnostic information [30].

5.3. Evaluation of a palpable mass in young patients (<30 years old)

Ultrasound is the initial imaging modality used to evaluate a palpable mass in a patient 
less than 30 years old [26]. After an abnormality is detected with ultrasound, it is debat-

able as to whether the next examination to perform is a unilateral mammogram imaging 

the breast with the sonographic abnormality, a bilateral mammogram, or an ultrasound 

guided biopsy of the abnormality. Per ACR appropriateness criteria, either mammography 

or a biopsy is appropriate and the determination of the next examination is likely patient 

dependent [26]. Masses often found in this patient population include cysts, fibroadenomas, 
and very infrequently breast cancer.

5.4. Ultrasound guided interventional breast procedures

Historically, the most important role of breast ultrasound was differentiating a solid from 
a cystic mass [1], for which ultrasound has a reported accuracy of 96–100% [27]. However, 
as ultrasound imaging has improved, the indications for utilization of ultrasound have 

expanded from lesion characterization to real-time sampling of the lesion using ultrasound 

guidance. Some are now also using ultrasound guidance for treatment of breast lesions with 
percutaneous ablation. The real-time nature of ultrasound imaging, lack of radiation, cost 

effectiveness, and relative patient comfort make ultrasound an ideal modality with which to 
perform biopsies and treat breast lesions.

Ultrasound guided interventional breast procedures include fine needle aspiration, ultrasound 
guided core biopsy, ultrasound guided vacuum assisted biopsy, and ultrasound guided pre-

surgical localization. Indications for ultrasound guided fine needle aspiration include symp-

tomatic relief of a painful cyst and confirmation of cystic nature of an indeterminate mass 
[1]. Varying needle sizes are used for ultrasound guided fine needle aspirations ranging from 
25 up to 18 gauge. Percutaneous image guided core-needle biopsies have almost completely 
replaced surgical needle-localization biopsy of breast lesions as they are faster, less invasive, 

less expensive, safe, and accurate, with specificity and positive predictive value for detection of 
malignancy nearing 100% [31]. Not only does a negative core needle biopsy prevent a patient 

from undergoing unnecessary surgery, but ultrasound guided core needle biopsy for malig-

nancy reduces the incidence of positive margins after local excision and decreases the number 

of surgeries for definitive breast cancer treatment [31]. Ultrasound guided 14-gauge automated 
core biopsy was described almost 25 years ago with 100% concordance between ultrasound 

guided core biopsy results and surgery [32]. While many practices still perform ultrasound 

guided core biopsies with an automated 14-gauge biopsy needle, there are now a wide array 
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of gauges and needles available for breast biopsy. Automated biopsy needles range from 20 to 

14 gauge and vacuum assisted biopsy needles range from 13 to 9 gauge. The needle chosen to 
perform an ultrasound guided core biopsy is physician and patient dependent. While the risks 

of severe complications from ultrasound guided breast biopsy are very rare, occurring in less 

than 1% of procedures, there has been slightly more severe bleeding events associated with 

vacuum-assisted biopsies than with automated gun biopsies [33]. Perhaps this can be attrib-

uted in part to the needle size as most vacuum-assisted biopsy needles are larger in size than 

automated biopsy guns and other studies also support increased risk of hematoma formation 

after biopsy with a larger gauge needle (9-gauge) compared to a smaller gauge needle (12- or 
14-gauge) [34]. Historically, percutaneous breast biopsies performed on patients on antithrom-

botic therapies, including clopidogrel, daily non-steroidal anti-inflammatory drugs, aspirin, 
and warfarin, have been performed with caution given concern for increased risk of bleeding 

and hematoma formation with many breast imagers requiring patients to cease antithrom-

botic therapy prior to biopsy. Recent data suggest that patients may be able to safely undergo 

percutaneous breast biopsy without stopping antithrombotic therapy, with one prospective 

studying showing no clinically significant hematomas in women taking antithrombotics [34].

Ultrasound-guided percutaneous ablation procedures, including cryoablation, irreversible 
electroporation, laser therapy, microwave ablation, radiofrequency ablation, and high-intensity 

focused ultrasound, of benign and malignant breast lesions that are 2 cm or less in size are also 

being performed [35]. These ultrasound-guided ablation techniques are particularly appealing 

for patients who are not surgical candidates; however, identifying the group of patients best 

suited for percutaneous ablation procedures is evolving [35]. While many of these percutane-

ous ablation techniques can be performed with local anesthesia alone, both radiofrequency 

ablation and high-intensity focused ultrasound must be performed with sedation and may be 

performed with MRI guidance instead of ultrasound guidance [35].

5.5. Targeted breast ultrasound secondary to abnormal MRI or molecular breast imaging

The use of breast magnetic resonance imaging (MRI) and molecular breast imaging (MBI) 
has increased over the past several years, with breast MRI offering the highest sensitivity 
of all modalities. A “second-look ultrasound” is a targeted reevaluation of the breast with 

ultrasound after an abnormality, which is not characteristically benign, is identified on either 
MRI or MBI [36]. Similar to mammographic-sonographic correlation of masses, it is critical 
to establish the location and depth of the abnormality identified on MRI or MBI to ensure 
that the same area is imaged during breast ultrasound. Studies suggest identification of MRI-
detected abnormalities on ultrasound imaging range between 23 and 89%, with lesion type 
being the most important predictor [37]. If a sonographic correlate for the MRI or MBI detected 
abnormality is discovered, then most breast imagers will proceed with an ultrasound guided 

biopsy of the abnormality. This is advantageous to the patient who can undergo biopsy with-

out breast compression in a relatively comfortable reclined position and the ability to often 

use a smaller gauge needle for biopsy. In contrast, MRI guided biopsies are performed with 
the breast in compression with the patient in a prone position and utilize large gauge vacuum 

assisted needles. Additionally, ultrasound guided biopsies are less expensive and less time 

consuming. However, if there is concern that the abnormality biopsied under ultrasound did 
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not correspond to the MRI detected abnormality, then confirmatory MRI images could be 
obtained with attention to susceptibility artifact from the metallic clip placed at the time of 
ultrasound guided core biopsy [38]. Some recommend a T1-weighted, axial, noncontrast, gra-

dient-echo sequence MRI to verify metallic marker placement [36]. If no ultrasound correlate 
is identified for the MRI or MBI abnormality, revaluation of the MRI or MBI is required with 
possible recommendations for MRI or MBI guided biopsy of the abnormality.

6. Screening breast ultrasound

Although mammography is the only screening modality proven to reduce mortality [39, 40], its 

performance is diminished in women with dense breast tissue. Dense tissue refers to the mam-

mographic appearance and the amount of stromal, epithelial, and connective tissue elements 

of the breast – all of which are radiodense on the mammographic image [41]. All of which are 

radiodense on the mammographic image. Breast density can change based on hormonal activ-

ity, BMI, and age. Mammographic sensitivity may be as low as 30–48% in women with dense 
breasts [42]. The association of breast density identified on mammography, using the American 
College of Radiology BI-RADS classification [43], C and D (heterogeneous or extremely dense) 

is coupled with a reduction in the effectiveness of the examination. This is in large part due 
to the masking effect observed when dense fibroglandular tissue is superimposed over breast 
cancer, limiting visualization of the known cancer. In a recent study, 78% of tumors were found 
to be mammographically occult secondary to overlapping tissue [44]. Furthermore, the inher-

ent four- to sixfold increased risk of developing breast cancer in women with dense tissue com-

pared to women with predominantly fatty breast composition [45] is associated with a higher 

occurrence rate of interval breast cancers [5, 46–48]. For these reasons, supplemental screening 

with other modalities is considered.

Breast ultrasound is not limited by breast density, and its use as an adjunct screening tool can 

improve the diagnostic accuracy of the screening examination. The use of ultrasound can detect 

early, node negative invasive cancers and interval breast cancers, thus improving the prognosis 

and morbidity in women diagnosed with the disease [48]. Based on earlier studies published 

by Kolb et al. 42% more invasive cancers were identified using adjunct screening with ultra-

sound [49]. Results from other single institutional studies validate these findings, demonstrat-
ing a range between 0.4 and 5.7 additional cancers detected per 1000 women screened (see 
tables). The ACRIN 6666 trial, a multi-center observational study, confirmed that cancer detec-

tion could improve with the addition of ultrasound, by approximately 4.2 additional cancers 

per 1,000 women screened [42]. In both Kolb’s analysis and the ACRIN study, nearly 1/3 to 1/2 
of all women undergoing supplemental screening with breast ultrasound were considered at 

increased risk for developing breast cancer.

Thus, the incremental increase in cancer detection may in part be due to the higher preva-

lence of disease detected in the cohort of women [49]. Subsequent studies focusing on evalu-

ating women at average risk with mammographically dense breast tissue, demonstrate an 

additional 3.2 cancers detected per 1000 women screened with breast ultrasound [50, 51]. 

The advantage of supplemental screening ultrasound, regardless of the population screened 
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or the variation in study design, demonstrates an incremental increase in cancer detection. 

Whether this translates to a decrease in breast cancer mortality is unknown, as there are no 

randomized control trials assessing this outcome.

While optimizing breast cancer screening is of utmost importance, establishing a balance between 

improving sensitivity while maintaining specificity proves to be difficult. Of main concern, is the 
possibility of increasing the number of false positive findings which can lead to unnecessary 
tests and biopsies. Many studies have demonstrated that screening breast ultrasound does have 

a higher false positive rate than mammography alone [52]. This includes the Japan Strategic 
Anti-cancer randomized Trial (J-START), where the sensitivity was significantly higher in the 
intervention group (mammography plus ultrasound screening) than in the control group but the 

specificity was significantly lower (87.7% decreased from 91.4%) [53]. Alternatively, in another 

multiinstitutional trial including 12,519 Chinese women, the authors found comparable PPVs 
between mammography and ultrasound screening (72.7 vs. 70.0%), which did not reach sta-

tistical significance [54]. The lack of decline in the PPV from one modality to the next in this 

study may be secondary to emphasis on consistency. Radiologists participating in the study had 

to undergo additional training in interpretation in order to keep consistency among all study 

centers.

Another major concern is the time needed to perform the screening ultrasound examination. 

Depending on the number of pathological findings and the patient’s breast size, the time to 
perform screening with handheld ultrasound can range from 3 minutes and 59 seconds [55] 

to 4 minutes and 39 seconds [49]. In both studies, the screening ultrasound was performed by 
an experienced radiologist, alleviating operator variability. Ultrasound, which relies on the 
examiner’s experience and acquisition and interpretation of the exam, is operator dependent. 
In the ACRIN 6666 trial, in order to keep consistency among all study centers, ultrasound 
scans were performed by the physician per strict protocol. The time it took to perform a bilat-

eral handheld screening ultrasound was on average 19 minutes. Given the long acquisition 
times and the limited number of trained personnel, real world implementation would be 

impractical. Thus in recent years, there have been a number of manufacturers that have devel-

oped automated whole breast ultrasound systems that may minimizing the aforementioned 

time constraints and improving the through-put of the patient.

Automated whole breast ultrasound systems were approved on the premise that they could 

improve efficiency in the diagnostic and screening setting. Some manufacturers have attached 
a computer-guided articulating arm to the existing 4 cm transducer, while others have distin-

guished themselves with a larger 15 cm transducer (Invenia, GE healthcare; Acuson S2000, 
Siemens healthcare) that can methodically map and image the breast in a reproducible way. 
The use of automation allows for images to be obtained of the entire breast in under 5 minutes. 

Images obtained with the larger transducer can be reconstructed in multiple planes with the 
potential to decrease false positive findings and improve diagnostic accuracy. All systems have 
software to generate a cine loop of the images to be reviewed by the radiologist which can be 

read at time of completion or at a later time and date. Authors of the Somo-Insight multicenter 
study, assessed outcome measures using automated whole breast ultrasound and found an 

overall improvement in cancer detection rate of 1.9 per 1000 women screened, similar to prior 
single institution studies yet PPV was significantly reduced [56] (Figure 17, Tables 1 and 2).
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Figure 17. Handheld (left) vs. automated whole breast ultrasound (right).

Study

No. of 

Cancers

No. of 

Women

Incremental 

Cancer 

Detection 

Rate (per 

1000)

PPV
3
 

(%) Comments

Country 

and Year

Single Institution

Girardi et al [70] 41 22131 1.9 – Women were at average risk. 

CDR for dense breasts  

– 2.2, nondense breasts – 1.6, AVG 
RISK

Italy, 2013

Parris et al [71] 10 5519 1.8 5.5 Women were at average risk. US, 2013

Hooley et al [50] 3 935 3.2 6.5 Women were at average risk. US, 2012

Leong et al [72] 2 141 1.4% 14.3 Reported CDR. Included women 
at increased risk.

Singapore, 
2012

De Felice et al [73] 12 1754 6.8 6.4 Women were at average risk. Italy, 2007

Brancato et al [74] 2 5227 0.4 3.2 Women were at average risk. Italy, 2007

Leconte et al [75] 16 4236 3.8 – Included nondense breasts, 
palpable lesions, diagnostic 

exams, and women at increased 

risk.

Belgium, 

2003
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Study

No. of 

Cancers

No. of 

Women

Incremental 

Cancer 

Detection 

Rate (per 

1000)

PPV
3
 

(%) Comments

Country 

and Year

Crystal et al [76] 7 1517 4.6 18.4 Included women at increased 
risk.

Israel, 
2003

Kolb et al [49] 33 4897; 
12193 
exams

2.7 10.3 CDR based on patients with 

normal mammogram and dense 

breasts. Included scattered 
fibroglandular tissue and women 
at increased risk.

US, 2002

Kaplan [77] 6 1862 3.2 11.8 Included women with focal 
abnormal mammographic 

findings or palpable lesions

US, 2001

Buchberger et al [78] 32 8103 3.9 8.8 Included scattered fibroglandular 
tissue, CDR based on patients 

with normal mammogram and 

nonpalpable lesions

Austria, 

2000

Maestro et al [79] 2 350 5.7 13.3 Included women at increased 
risk. Solid mass incidentally 
detected in 14% of patients.

France, 

1999

Multi-Institution

Ohuchi et al [53] 67 36752 1.8 – Women were at average risk. Japan, 
2016

Weigert and 

Steenbergen [51] 28 8647 3.2 6.7 Women were at average risk. US, 2012

Berg et al [42] 32 7473 4.3 5.9 1st year US screen – 2659 women, 
2nd year US screen – 2493 
women, 3rd year US screen – 
2321 women, 612 women had 
MR screen after 3rd US screen. 
Included women at increased 
risk.

US, 2012

Corsetti et al [48] 21 8865; 
19728 
exams

1.1 – CDR based on negative screening 

exams. Women were at average 

risk.

Italy, 2011

37 9157 4.0 5.9 Women were at average risk.

13/50 cancers found were 
excluded due to symptoms/
palpable lesion

Italy, 2008

Schaefer et al [80] 116 59514; 
62006 
exams

1.9 5.2 Included nondense 
breasts and women 

at increased risk.

Germany, 

2010

Table 1. Incremental cancer detection rate of handheld ultrasound.
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7. Future directions in breast ultrasound

Innovations in ultrasound technology have improved our ability to detect and diagnose breast 
cancer. Computer-aided detection (CAD), elastography, quantitative breast ultrasound tech-

nology, and ultrasound contrast agents (microbubbles) were developed to improve diagnos-

tic accuracy. These advancements have the potential to impact overall survival by detecting 

cancers that are smaller and less aggressive.

7.1. Computer-aided detection

To date, there are a limited number of computer-aided detection (CAD) systems approved by 

the Food and Drug Administration (FDA) for ultrasound. CAD for ultrasound is analogous 

to CAD for mammography in that it can improve the overall diagnostic performance of the 

interpreting radiologist. The software will interpret regions of interests marked by the radiol-

ogist for further characterization—providing anatomical shape and potential for malignancy 

based on the ACR BI-RADS Lexicon. Similar to other modalities, the radiologist can accept 
or reject the analysis based on his or her interpretation. Interpreting automated whole breast 
ultrasound images has also demonstrated an improvement in overall specificity and differen-

tiation of true and false positive findings with the use of computer-aided detection [57].

Study

No. of 

Cancers

No. of 

Women

Incremental Cancer 

Detection Rate 

(per 1000)

PPV
3
 

(%) Comments

Country and 

Year

Single 

Institution

Wilczek 

et al [81]
4 1668 2.4 33.3 Decreased PPV3 for 

mammography + ultrasound. 
Included women at
increased risk.

Sweden, 
2016

Giuliano 

et al [82]

42 3418 12.3 (Mammography + 
ABUS)

– CDR for mammography alone – 

4.6. Women were at average risk 
in the test group.

US, 2012

Multi-

Institution

Brem et al 

[56]

30 15318 1.9 – SomoInsight Study – Increased 
sensitivity and recall rate 

associated with a

decreased specificity and PPV3. 
Included women at increased risk.

US, 2015

Kelly et al 
[83]

23 4419; 
6425 
exams

3.6 38.4 Included women at increased risk US, 2010

Table 2. Incremental cancer detection rate of automated breast ultrasound.
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7.2. Elastography

Elastography can help differentiate normal tissue from adjacent tumors improving specificity 
and diagnostic performance, and is routinely incorporated into the ultrasound equipment. 

The two most frequently used elastography techniques in the breast are strain elastography 

and shear-wave elastography [58]. Shear-wave technology is reported to be highly reproduc-

ible [59] unlike strain elastography which can have a significant amount of interobserver vari-
ability [60]. Both techniques are used in conjunction with B-mode ultrasound, but differ in 
how they measure tissue stiffness. Shear-wave technology uses an impulse produced by a 
focused ultrasound beam to measure propagation of speed within the tumor and surrounding 

tissue, quantifying the stiffness in kilopascals. The quantitative estimates in stiffness are inde-

pendent of the morphologic features of a mass. In contrast, strain elastography determines the 

underlying elasticity of the lesion by repeated manual compression of the transducer (strain) 

over a lesion. Both techniques can improve specificity of ultrasonography (US) breast masses 
without a reduction in sensitivity. However, the sensitivity and specificity of strain and shear-
wave elastography can differ based on the underlying pathology and grade of a tumor [58, 61].

7.3. Quantitative breast ultrasound

Quantitative breast ultrasound measures the transmission and speed of sound through the breast. 

Images are obtained using a ring transducer that emits acoustic transmissions through the breast, 
receiving information on the attenuation and transmission of sound through the breast. In addi-
tion, the reflective (analogous to b-mode images) properties of the fibrous stroma of the breast 
is evaluated. The transmission data that is acquired is used to construct a cross-sectional tomo-

graphic image. Dense tissue tends to have high transmission and attenuation of sound (charac-

terized as white on the tomographic image), while fatty tissue demonstrates low-sound speed 
and low attenuation (appears as dark on the tomographic image). Given these parameters some 
authors have suggested that it can provide a surrogate measure of breast density [62]. Others 

suggest that it can improve specificity by determining solid masses from complicated cysts [63].

7.4. Contrast enhanced ultrasound of the breast

Early published work documents the improved visibility and visual intensity of Doppler sig-

nals with the use of ultrasound contrast agents (microbubbles) at the size of 100 um or less 

[64]. This work has led to more recent developments that can quantify tumor neovascularity 

using contrast agents (microbubbles) at the size of 1–8 um. Contrast-enhanced ultrasound 
imaging is based on the principle of acoustic excitation of the microbubbles which produces 

nonlinear frequency components that can be received at the transducer. The differences in 
the received signal relative to the transmitted signal produces what is called harmonic imag-

ing. Signals identified below transmission are called subharmonic emissions which can be 
differentiated from the inherent tissue signals allowing for improved visualization of tumor 
angiogenesis [65]. Additional studies have investigated the use of certain algorithms using 

ultrasound contrast agents to quantify breast vasculature, density, and perfusion patterns 
[66–68]. This novel approaches to differentiating between benign and malignant lesions and 
promises to improve overall diagnostic accuracy.
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8. Summary

The role of breast ultrasound has evolved over the last 50 years, progressively gaining rec-

ognition as a diagnostic tool. Current and future applications of this modality can assist the 

radiologist in improving sensitivity, specificity, and differentiation between benign and 
malignant findings. The prospect of ultrasound-guided minimally invasive therapy to target 
breast cancer tumor angiogenesis with therapy-bound microbubbles is an exciting prospect, 

and one that may be on the horizon for future clinical implementation [69]. Ultrasound pro-

vides a significant contribution in the management of breast cancer and will continue to be 
considered as an indispensable diagnostic and screening tool.
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