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Abstract

Genome integrity is under constant threat from cellular reactive oxygen species generated 
by endogenous and exogenous mutagens. The base excision repair (BER) pathway conse-
quently plays a crucial role in the repair of DNA base damage, sites of base loss and DNA 
single strand breaks that can cause genome instability and ultimately the development of 
human diseases, including premature ageing, neurodegenerative disorders and cancer. 
Proteins within the base excision repair pathway are increasingly being found to be regu-
lated and controlled by post-translational modifications, and indeed ubiquitination per-
forms a key role in the maintenance of repair protein levels but may also impact on protein 
activity and cellular localisation. This process is therefore important in maintaining an effi-
cient cellular DNA damage response, and if not accurately controlled, can cause DNA dam-
age accumulation and promote mutagenesis and genomic instability. In this chapter, we 
will present up-to-date information on the evidence of ubiquitination of base excision repair 
proteins, the enzymes involved and the molecular and cellular consequences of this process.

Keywords: DNA repair, base excision repair, DNA damage, ubiquitin, ubiquitination

1. Introduction

Every human cell per day is thought to generate greater than 10,000 DNA base lesions and 

single strand breaks (SSBs) due to the instability of the DNA molecule [1]. These are largely 

created by cellular reactive oxygen species that are generated by hydrolysis, oxidative metab-

olism and environmental factors, including ionising radiation (IR). Typical sites of damage 

include sites of base loss (abasic sites), oxidised DNA bases (e.g. 8-oxoguanine and thy-

mine glycol) and SSBs. If this DNA damage is left unrepaired, it can cause mutagenesis and 

genome instability which are contributors to the development of human diseases, including 
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premature ageing, neurodegenerative disorders and cancer. The base excision repair (BER) 

pathway was first identified in the 1970s by Tomas Lindahl (co-recipient of the 2015 Nobel 
Prize in Chemistry), who discovered the existence of a uracil DNA N-glycosylase that is able 

to excise uracil residues from DNA [2]. Lindahl then suggested that in order for repair to be 
completed, an endonuclease, a DNA polymerase and a DNA ligase would be required. This 

marked the establishment that a specific repair pathway exists in human cells to repair DNA 
base damage, and now nearly a half a century later, the major enzymes and mechanisms 

involved in BER are well known.

As Lindahl had shown, the first step of BER is recognition of the specific damaged DNA base 
by a DNA glycosylase. In fact 11 DNA glycosylases are now known to exist with each remov-

ing particular types of DNA base damage [3, 4]. Indeed there are three uracil DNA glycosylase 

enzymes that recognise uracil lesions (namely uracil DNA glycosylase, UNG; single-strand-

selective monofunctional uracil DNA glycosylase, SMUG1; and thymine DNA glycosylase, 

TDG), one enzyme that recognises alkylated bases (N-methylpurine DNA glycosylase, MPG), 

two mismatch-specific glycosylases (methyl-CpG binding domain protein 4, MBD4 and MutY 
homologue, MUTYH) and five glycosylases that recognise oxidised bases (8-oxoguanine DNA 
glycosylase 1, OGG1; endonuclease III-like protein 1, NTH1; endonuclease VIII-like proteins 1, 
2 and 3; NEIL1, NEIL2 and NEIL3). In general, DNA glycosylases utilise a base-flipping mecha-

nism whereby the base is flipped 180° from the sugar phosphate backbone breaking the hydro-

gen bonds between the bases in the process, and placing the damaged base into the active site 

of the DNA glycosylase. However, there are two types of glycosylase enzyme as one type will 
only remove the damaged base (monofunctional enzyme) whereas another type will remove 

the base but also cleave the DNA backbone (bifunctional enzyme). The monofunctional DNA 

glycosylases (UNG, SMUG1, TDG, MPG, MUTYH and MBD4) that remove the damaged base 
will create an abasic site by cleaving the N-glycosidic bond linking the base to the phosphodi-

ester backbone. The abasic site is then recognised by AP endonuclease 1 (APE1) that cleaves 

5′- to the lesion, creating a one nucleotide gap containing a 3′-hydroxyl group on one end, and a 
5′-deoxyribose phosphate (5′-dRP) group on the other [5, 6]. The 5′-dRP group is subsequently 
removed by the lyase activity of DNA polymerase β (Pol β) that also simultaneously inserts the 
correct, undamaged nucleotide [7, 8]. The remaining nick in the DNA backbone is then sealed 

by DNA ligase IIIα (Lig IIIα) that is in a stable complex with X-ray cross-complementing pro-

tein 1 (XRCC1), to restore the original DNA sequence (Figure 1) [9, 10]. In contrast, bifunctional 

DNA glycosylases create a single nucleotide gap that is flanked by different ends, depending 
on the glycosylase employed. OGG1 and NTH1 are known to catalyse β-elimination which cre-

ates a 5′-phosphate and a 3′-α,β-unsaturated aldehyde, however, these are thought to be low 
efficiency activities and therefore with the high cellular abundance of APE1, it is thought that 
APE1 can actually circumvent this product and cleave the abasic site itself [11]. The bifunctional 

DNA glycosylases NEIL1, NEIL2 and NEIL3 catalyse β,δ-elimination which create a phosphate 
moiety on both the 5′- and 3′-end of the single nucleotide gap. Since the 3′-phosphate is not the 
required end for Pol β activity, this requires removal by polynucleotide kinase phosphatase 
(PNKP) (Figure 1) [12]. Despite the dependence on either APE1 or PNKP, following bifunc-

tional DNA glycosylase activity the end product is the same as monofunctional DNA glycosyl-

ase activity in that both Pol β and XRCC1-Lig IIIα are required to complete the repair process. 
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The pathway described above is commonly referred to as the short patch BER pathway, through 

which the majority of DNA repair events proceed [13]. However under certain conditions, par-

ticularly when the DNA ends are resistant to processing (e.g. if the 5′-dRP becomes reduced and 
thus cannot be cleaved by Pol β), then long-patch BER is employed (Figure 1). Following the 

addition of the first nucleotide by Pol β [14], there is a polymerase switch to DNA polymerases 

δ/ε (Pol δ/ε), which are principally involved in DNA replication. These polymerases typically 
add two to eight more nucleotides into the repair gap thus generating a 5′-flap structure. This 
structure is a substrate for flap endonuclease-1 (FEN-1), which acts in a proliferating cell nuclear 
antigen (PCNA)-dependent manner and then finally DNA ligase I (Lig I) completes the repair 

Figure 1. The mechanism of repair of DNA base damage by the BER pathway. The damaged DNA base is recognised 

and excised by damage-specific DNA glycosylases that catalyse cleavage of the N-glycosidic bond, creating an abasic 
site. APE1 recognises the abasic site and cleaves the DNA backbone, generating a single strand break containing a 

5′-dRP moiety. The 5′-dRP is subsequently removed by the dRP lyase activity of Pol β that furthermore inserts a new 
undamaged nucleotide into the repair gap (central branch). If BER is initiated by the NEIL DNA glycosylases (NEIL1, 
NEIL2 and NEIL3), these enzymes generate a single nucleotide gap containing 3′- and 5′-phosphate ends through β,δ-
elimination activity. The 3′-phosphate is subsequently removed by PNKP prior to the activity of Pol β that fills in the 
repair gap (left branch). Finally, the Lig IIIa-XRCC1 complex completes short patch BER by sealing the remaining nick in 
the phosphodiester backbone. If the 5′-dRP moiety is resistant to Pol β dRP lyase activity, a polymerase switch to Pol δ/ε 
occurs, which then stimulate the addition of two to eight more nucleotides into the single nucleotide gap. This generates 

a 5′-flap structure which is recognised and excised by FEN-1, in a PCNA-dependent manner (right branch). To complete 
long patch BER DNA ligase I, also in association with PCNA, seals the remaining nick in the DNA backbone.
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process by sealing the remaining nick. It is important to note that with the constant, significant 
amount of DNA base damage and SSBs being induced in cells, that BER is a constitutively active 

process.

2. Regulation of BER proteins through ubiquitination

Since BER is the major cellular mechanism for the repair of DNA base damage and SSBs, and 

thus for the maintenance of genome stability, it is important that this process is maintained and 

controlled. The most efficient way of achieving this, particularly in responding to fluctuations in 
the cellular DNA damage environment, is via controlling cellular protein activity, localisation 

and overall protein levels. Indeed there is a growing list of the various protein post-translational 

modifications (PTMs) of BER proteins that have been reported to achieve this [15]. However a 
role for ubiquitination in controlling BER protein levels, and thus cellular BER activity, has been 

highlighted particularly in the last decade. Polyubiquitination of BER proteins catalysed by 

specific E3 ubiquitin ligases has been shown to largely control cellular protein levels via degra-

dation by the 26S proteasome, but additionally monoubiquitination has been observed in some 
instances that can act by compartmentalising BER proteins or controlling BER protein activity. 

There are also instances of crosstalk between ubiquitination and other PTMs in controlling cel-

lular BER. Below we aim to summarise all of the available evidence highlighting the enzymes 

and mechanisms involved in the control of BER proteins through ubiquitination.

2.1. Ubiquitination of DNA glycosylases

2.1.1. Uracil DNA glycosylases: UNG, SMUG1, MBD4, TDG

Of the four members of the uracil DNA glycosylases, only UNG, SMUG1 and TDG have been 

shown to be ubiquitinated by specific E3 ubiquitin ligases. Binding of the human immunode-

ficiency virus type 1 (HIV-1) accessory protein Vpr to UNG and SMUG1 was shown to induce 
their ubiquitination-dependent proteasomal degradation following expression in 293T cells. 
This was thought to be promoted through the E3 ubiquitin ligase scaffold proteins, Cullin 1 
(Cul1) and Cullin 4 (Cul4), as Vpr interacts with these ligases along with UNG and SMUG1 fol-
lowing overexpression and immunoprecipitation from 293T cells [16]. Vpr was subsequently 
shown to bind to damage-specific DNA-binding protein 1 (DDB1), which is another compo-

nent of Cul4A E3 ubiquitin ligases, that mediates the degradation of UNG in 293T cells [17]. 

This is thought to be a specific mechanism that allows the HIV virus to regulate the levels of 
abasic sites in viral reverse transcripts and thus promotes viral replication. Therefore whether 

UNG and SMUG1 are targeted for ubiquitination during normal cellular processing and for 

BER is not yet known. The third member of the uracil DNA glycosylase family, TDG, is largely 

known for being regulated by the small ubiquitin-like modifier (SUMO). TDG was shown to 
be modified by SUMO-1 and SUMO-2/3 on lysine 330 following immunoprecipitation from 
HeLa cells, and this reduces the abasic site affinity of TDG [18]. TDG SUMOylation induces 

a conformational change in the protein which overcomes product inhibition and is thus a 

mechanism for increasing enzymatic turnover [19, 20]. More recently, and similar to UNG and 
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SMUG1, TDG has been shown to be a target for ubiquitination-dependent degradation by a 

Cul4-DDB1 associated E3 ubiquitin ligase complex [21, 22]. Specifically, TDG degradation was 
catalysed by Cul4A-DDB1 in association with the RING finger protein ROC1/RBX1 and Cdt2 
(collectively called CRL4Cdt2), in a PCNA-dependent manner. This was discovered both in a 

Xenopus extract system during DNA repair but also in HeLa cells during S phase of the cell 
cycle where TDG interacts with PCNA, and is thought to provide a mechanism for the regu-

lated control of TDG protein levels. The fourth uracil DNA glycosylase member, MBD4 which 

actually removes mismatches opposite guanine, has not been reported to be ubiquitinated. 

However MBD4 has been shown to interact with both the E3 ubiquitin ligase, ubiquitin-like 
with PHD and RING finger domains 1 (UHRF1) and with the deubiquitinating enzyme, ubiq-

uitin specific protease 7 (USP7) following overexpression of the protein in HEK293T cells [23]. 

Given these interactions, MBD4 could potentially be a target for regulation by ubiquitination.

2.1.2. Helix-hairpin-helix (HhH) DNA glycosylases: OGG1, NTH1, MUTYH

The HhH DNA glycosylases are named after the DNA-binding motif which is present in all 
three members of the family and are OGG1, NTH1 and MUTYH. OGG1 is the major DNA 
glycosylase targeting 8-oxoguanine DNA base damage and only one report has suggested that 

it is a target for ubiquitination. Specifically OGG1 was found to be degraded following mild 
hyperthermia by the E3 ubiquitin ligase C-terminus of Hsc70-interacting protein (CHIP) [24]. 

CHIP is well known to be involved in protein quality control, by targeting damaged or mis-

folded proteins for ubiquitination-dependent degradation via interaction with the molecular 

chaperones Hsc70 and Hsp90 [25], and as will become clear later in this chapter, can target mul-

tiple BER proteins for degradation via the proteasome. Degradation of OGG1 by CHIP through 
heat inactivation in HeLa cells was shown to cause a reduction in the efficiency of repair of oxi-
dised DNA base damage and cell growth inhibition following treatment with a photosensitiser. 

NTH1 is the second member of the HhH DNA glycosylases that excises oxidised pyrimidines 
from DNA, including 5-hydroxycytosine and thymine glycol, although there are no current 
reports that it is directly targeted for ubiquitination. However there is evidence that MUTYH, 
the third member of the family that specifically removes adenine residues incorrectly incorpo-

rated opposite 8-oxoguanine residues during DNA transcription or replication, is ubiquitinated 

both in vitro and in vivo. Ubiquitination between residues 475 and 500 within the MUTYH pro-

tein was shown to be catalysed by the Mcl1 ubiquitin ligase E3/ARF binding protein 1 (Mule/
ARF-BP1) that subsequently stimulates proteasomal degradation [26]. This was evidenced 

in vitro using recombinant proteins, and also in vivo ubiquitination of MUTYH decreased in 
HEK293T cells following Mule siRNA and led to increased protein stability. A ubiquitination-
deficient mutant of MUTYH lacking five critical lysine residues (477, 478, 495, 506 and 507) that 
were mutated to arginines, was found to be more stable in HEK293T cells than the wild type 
protein and preferentially bound to chromatin [26]. Mule overexpression in A2780 cells led to 
an increased mutation frequency following potassium bromate treatment that was predicted to 

be a consequence of the lack of MUTYH through Mule-dependent degradation. Mule has also 
been demonstrated to regulate the protein levels of Pol β and Pol λ (see below), and therefore 
appears to be a critical regulator of BER at both the base excision and gap filling stages. How the 
activity of Mule is co-ordinated towards these specific proteins and stages is not currently clear.
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2.1.3. Endonuclease VIII-like glycosylases: NEIL1, NEIL2, NEIL3

NEIL1 and NEIL2 both have a broad range substrate specificity that largely covers those of 
the HhH enzymes OGG1 and NTH1. However, these DNA glycosylases appear more active 
on single stranded DNA and bubble structures and so may be more important during rep-

lication and transcription where these structures are formed [27, 28]. There is also evidence 

that NEIL1 is active at complex DNA damage sites, where two or more DNA base lesions 
are formed in close proximity [29, 30], and on telomeric DNA [31]. NEIL3 substrate activ-

ity has also proven to be elusive but can similarly act on telomeric DNA [31, 32] and more 

recent data has described a role for NEIL3 in unhooking of DNA interstrand crosslinks [33]. 

The only evidence of ubiquitination-dependent regulation of the NEIL DNA glycosylases is 
through very recent data involving NEIL1. Using an in vitro ubiquitination system in combi-

nation with fractionated HeLa cell extracts, NEIL1 was demonstrated to be targeted by two E3 
ubiquitin ligases, namely Mule and tripartite motif 26 (TRIM26) [34]. Both enzymes appear to 

promote ubiquitination of NEIL1 on the same C-terminal lysine residues (319, 333, 356, 357, 
361, 374 and 376) within the protein, and an siRNA knockdown of either Mule or TRIM26 in 
U2OS cells caused an increase in cellular NEIL1 protein levels demonstrating that they both 
target the protein for ubiquitination-dependent degradation. Interestingly in response to 

IR-induced DNA damage, there was an accumulation of NEIL1 protein which occurred in 
a Mule-dependent, but not a TRIM26-dependent, manner. This demonstrated a requirement 
for both Mule and TRIM26 in controlling the cellular steady state levels of NEIL1, in addition 
to those required in response to DNA damage.

2.1.4. N-methyl purine glycosylase (MPG)

MPG is a DNA glycosylase that excises alkylated DNA base damage, including 3-methylade-

nine and 7-methylguanine. There is no current evidence that this enzyme is regulated directly 
by ubiquitination, although MPG has been reported to interact with the E3 ubiquitin ligases 

UHRF1 and UHRF2 following overexpression in HEK293 cells, and interacts with UHRF1 in 
a number of cancer cell lines, including MCF7, HeLa and H1299 [35].

2.2. Ubiquitination of DNA strand break binders/processors

2.2.1. Poly(ADP-ribose) polymerase 1 (PARP-1)

PARP-1 functions in binding to SSBs created during BER, where it mediates poly(ADP-ribo-

syl)ation of itself and other proteins involved in the repair process and thus promotes the 

assembly of repair protein complexes, chromatin remodelling and its own eventual disso-

ciation from the DNA. Inhibitors targeting PARP-1 activity have recently been approved for 

the treatment of BRCA-deficient cancers, through which they cause synthetic lethality. This 
therapeutic exploitation provides an added incentive to enhance our understanding of the 

regulation of cellular PARP-1, particularly through ubiquitination.

The first report to show that PARP-1 is ubiquitinated was in mouse embryonic fibroblasts 
following treatment with the proteasome inhibitor ALLN [36]. PARP-1 ubiquitination was  

Ubiquitination Governing DNA Repair - Implications in Health and Disease42



further examined in vitro and shown to involve specifically lysine 48-linked chains, suggest-
ing that this would likely target the enzyme for proteasomal degradation. PARP-1 modifica-

tion by SUMOylation, specifically SUMO-2 at lysine 203 and 486 induced by the PIASy SUMO 
E3 ligase, has been demonstrated following overexpression of the enzymes in HeLa cells in 
response to heat shock stress, which also rendered PARP-1 as a target for ubiquitination by 

the poly-SUMO-specific E3 ubiquitin ligase ring finger protein 4 (RNF4) [37]. PARP-1 ubiq-

uitination resulted in degradation of the protein, and provides evidence of crosstalk between 

two PTMs thought to be involved in regulating PARP-1 transcriptional activation, rather 

than playing a role during BER. Another incidence of crosstalk has been revealed between 

PARP-1 ubiquitination and poly(ADP-ribosyl)ation. The E3 ubiquitin ligase ring finger pro-

tein 146 (RNF146), also known as Iduna, ubiquitinates PARP-1 in vitro and in MCF7 cells 
overexpressing Iduna leading to its proteasomal degradation providing that PARP-1 itself is 

poly(ADP-ribosyl)ated [38]. This phenomenon was more pronounced following N-methyl-

N-nitro-N-nitrosoguanidine (MNNG)-induced alkylated base damage, suggesting a DNA 

damage inducible response. Furthermore, an shRNA-induced knockdown of Iduna caused 

an accumulation of abasic sites following MNNG treatment, and an accumulation of SSBs 

following IR in MCF7 cells. This is difficult to comprehend given the abundance of cellular 
APE1 and its ability to cleave any abasic sites following MNNG treatment, and that PARP-1 

should still be able to dissociate from IR-induced SSBs following poly(ADP-ribosyl)ation and 

allow for subsequent repair protein recruitment. However since Iduna has also been shown 

to polyubiquitinate other BER proteins, including XRCC1 and Lig III, the effects of Iduna on 
the celllular DNA damage response are not clear cut.

A third E3 ubiquitin ligase has been identified for PARP-1, namely the checkpoint with fork-

head-associated and RING finger domain protein (CHFR), which was shown to polyubiqui-
tinate PARP-1 in vitro and following overexpression of CHFR in HEK293T and HCT116 cells 
in vivo [39]. CHFR regulates the mitotic checkpoint and following mitotic stress PARP-1 was 
shown to undergo poly(ADP-ribosyl)ation, and similarly to the case for Iduna, this facilitated 

polyubiquitination-dependent degradation of the protein. CHFR-knockout mouse embryonic 
fibroblasts displayed elevated PARP-1 levels and did not undergo cell cycle arrest in response 
to mitotic stress. An additional report similarly described poly(ADP-ribosyl)ated PARP-1 as 

a CHFR target [40]. CHFR was recruited to laser-induced DNA damage sites in a poly(ADP-

ribosyl)ation-dependent manner in U2OS cells as revealed by PARP inhibition and PARP-1 
siRNA. Interestingly, lysine 48-linked ubiquitin chains were conjugated to poly(ADP-ribosyl)

ated, but not unmodified, PARP-1 by CHFR in vitro in the presence of the E2 conjugating 
enzyme UbcH5C, but lysine-63 linked chains were added in the presence of Ubc13/Uev1a. 
Both lysine 48 and 63-linked chains were then found attached to PARP-1 following irradiation 
of CHRF-overexpressing HCT116 cells. Potentially more important than its eventual degrada-

tion, CHFR-mediated ubiquitination prompted the displacement of PARP-1 from chromatin, 
and CHFR-knockout mouse embryonic fibroblasts were demonstrated to display delayed SSB 
repair kinetics and increased sensitivity to IR.

As multiple E3 ubiquitin ligases have been implicated as effectors of PARP-1 ubiquitination, 
more research is required to determine which of these are crucially involved in the regulation 

of steady state PARP-1 levels and which function specifically during BER. It is apparent that 
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PARP-1 regulation is multifaceted, with the added complexity of crosstalk between ubiquiti-

nation and other PTMs such as SUMOylation and poly(ADP-ribosyl)ation, therefore it may be 

some time before the intricacies of this regulation are elucidated.

2.2.2. AP endonuclease I (APE1)

APE1 is the major enzyme targeting abasic sites for incision in human cells, and both an over-

abundance and lack of this protein can cause genome instability, so the protein levels must be 

tightly regulated. APE1 was first shown to be monoubiquitinated within the N-terminus of 
the protein in HCT116 cells by overexpression of the E3 ubiquitin ligase mouse double minute 
homologue 2 (MDM2), the major enzyme regulating the p53 tumour suppressor protein [41]. 

Depletion of MDM2 consequently increased APE1 protein levels, thought to be as a result of 
reduced ubiquitination-dependent degradation. The same authors then reported that phos-

phorylation of APE1 at threonine 233 by cyclin-dependent kinase 5 (Cdk5)-enhanced MDM2-
dependent ubiquitination of APE1 [42]. Indeed, a phosphomimetic mutant (T233E) of APE1 
exhibited augmented ubiquitination following expression in HCT116, SW480 and A549 cells. 
However MDM2 knockout mouse embryonic fibroblasts expressing the phosphomimetic 
mutant of APE1 still displayed significant APE1 ubiquitination, demonstrating the existence 
of other E3 ubiquitin ligases for the protein. In fact utilising an in vitro ubiquitination assay 

incorporating APE1 as a substrate and fractionated proteins from HeLa whole cell lysates has 

revealed that the major E3 ubiquitin ligase targeting APE1 for ubiquitination was ubiquitin 

protein ligase E3 component N-recognin 3 (UBR3) [43]. In vitro ubiquitination of APE1 by 

UBR3 was localised within the N-terminus on multiple lysine residues (6, 7, 24, 25, 27, 31, 32 
and 35). UBR3 knockout mouse embryonic fibroblasts displayed significantly higher APE1 
protein levels, suggesting that ubiquitination targeted APE1 for proteasomal degradation, 

and consequently led to an increase in endogenously formed DNA double strand breaks and 

genomic instability. A third E3 ubiquitin ligase has recently been identified for APE1, namely 
the Parkinson’s disease-associated protein, Parkin [44]. Overexpression of Parkin was found 

to ubiquitinate APE1 in A549 cells, and in an engineered mouse embryonic fibroblast cell 
line containing low APE1 protein overexpression of both Parkin and APE1 caused a decrease 

in protein stability. However, inducible expression of Parkin in 293-PaPi cells did not alter 
endogenous APE1 protein levels and a combination of Parkin and hydrogen peroxide treat-

ment only caused an ~30% reduction in the protein, suggesting that Parkin may only have a 

minor role in APE1 regulation.

2.2.3. Polynucleotide kinase phosphatase (PNKP)

PNKP acts to remove the 3′-phosphate group remaining from the actions of NEIL1–3 during 
BER, but also displays kinase activity for 5′-DNA ends and thus plays a role in the repair of 
SSBs and double strand breaks. A crosstalk between phosphorylation and ubiquitination has 

been revealed to be important in the regulation of PNKP protein levels. Phosphorylation cat-

alysed by the ataxia telangiectasia mutated (ATM) protein kinase on serines 114 and 126 of 
PNKP was shown to stabilise the protein in response to oxidative stress in HCT116 cells, which 
was mediated through inhibition of ubiquitination, and which was required for efficient SSB 
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repair [45]. An in vitro ubiquitination assay, using PNKP as a substrate in combination with 

fractionated proteins from HeLa whole cell lysates, revealed that Cul4A-DDB1 in association 
with the WD-40 repeat protein serine-threonine kinase receptor-associated protein (STRAP) 
was the major E3 ubiquitin ligase complex that was targeting PNKP for ubiquitination, specifi-

cally on lysines 414, 417 and 484. A phosphomimetic mutant (serine 114 and 126 to glutamic 
acid) was more stable than the wild type protein following expression in HCT116 cells, and the 
protein itself was resistant to in vitro ubiquitination by Cul4A-DDB1-STRAP. Mouse embryonic 

fibroblasts from STRAP knockout cells also had significantly elevated PNKP protein levels due 
to reduced ubiquitination-dependent degradation, and displayed increased resistance to oxida-

tive stress. In addition, an interaction between PNKP and the deubiquitination enzyme ataxin-3 

has been demonstrated in vivo, and which promotes the 3′-phosphatase activity of PNKP in vitro 

[46]. However whether this enzyme contributes to regulating PNKP protein levels, particularly 
in opposition to Cul4A-DDB1-STRAP-mediated ubiquitination, has yet to be investigated.

2.2.4. Flap endonuclease-1 (FEN-1)

FEN-1 acts to remove the flap structures created by Pol δ/ε during long-patch BER.
Ubiquitinated FEN-1 has been observed at the end of a sequence of PTMs initiated in late 

S phase of the cell cycle [47]. It was observed in HeLa cells that phosphorylation of FEN-1 
at serine 187, promotes SUMOylation at lysine 168 with SUMO-3, which in turn stimulates 
polyubiquitination at lysine 354 by the E3 ligase pre-mRNA processing factor 19 (PRP19) to 
stimulate proteasomal degradation. This was largely discovered through overexpression of 

individual components within the pathway in HeLa cells, rather than examining endogenous 
proteins. Furthermore, PRP19 was only characterised in ubiquitinating FEN-1 in vitro using 

partially purified HeLa cell extracts and a complete suppression of ubiquitination was not 
observed following immunodepletion of PRP19, suggesting the existence of alternative E3 
ubiquitin ligases for FEN-1. Nevertheless, this sequence of events beginning in late S phase 

is thought to regulate FEN-1 protein levels at the end of DNA replication, rather than being 

required for long-patch BER. Therefore further work is required to determine whether this, or 

an alternate mechanism for FEN-1 ubiquitination, plays a role in the regulation of this protein 

during BER.

2.3. Ubiquitination of DNA polymerases

2.3.1. DNA polymerase β (Pol β)

Pol β is the principal polymerase employed within the BER pathway, and primarily acts to 
insert the correct nucleotide into the repair gap, but also acts as a dRP lyase activity. The 

stability of Pol β was found to be significantly reduced in XRCC1 deficient EM-C11 cells 
and in HeLa cells following XRCC1 siRNA treatment, suggesting that Pol β and XRCC1-Lig 
IIIα form a stable complex that protects Pol β from degradation [48]. The major E3 ubiquitin 

ligase for Pol β was then revealed through the utilisation of in vitro ubiquitination assays in 

combination with fractionated HeLa cell extracts to be CHIP. Ubiquitination was localised to 
the 8 kDa N-terminal domain, which contains the dRP lyase activity, and CHIP depletion by 
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siRNA in HeLa cells led to increased protein levels of Pol β whereas overexpression of CHIP 
reduced cellular Pol β. Interestingly, this investigation highlighted that CHIP also appeared 
to be involved in the ubiquitination-dependent degradation of XRCC1 and Lig IIIα, in addi-
tion to Pol β. This study was followed by the identification of a second E3 ubiquitin ligase 
that specifically catalysed monoubiquitination of Pol β [49]. Monoubiquitination was shown 

to occur in the same 8 kDa N-terminal region as that targeted by CHIP, but was catalysed 
by Mule. The precise ubiquitinated residues were identified as lysine 41, 61 and 81, and a 
lysine to arginine mutant Pol β protein was more stable than the wild type protein following 
expression in HeLa cells. Monoubiquitinated Pol β was observed exclusively within the cyto-

plasm in HeLa cells and was therefore deemed a specific target for ubiquitination-dependent 
degradation mediated by CHIP. Indeed, an siRNA knockdown of Mule decreased the levels 
of monoubiquitinated Pol β, increased total cellular Pol β levels and caused an increase in 
the rate of repair of SSBs and alkali-labile sites induced by hydrogen peroxide. Conversely 

a knockdown of ARF, which inhibits the activity of Mule, caused an increase in monoubiq-

uitinated Pol β and a decrease in the rate of repair of hydrogen peroxide-induced SSBs and 
alkali-labile sites. A later study agreed that Pol β stability was dependent on XRCC1 and 
was regulated by ubiquitination-dependent degradation, but reported that this ubiquitina-

tion occurred on lysines 206 and 244 and was not reliant on Mule or CHIP [50]. However, 
the experimental system employed was very artificial, utilising an unusual cell line contain-

ing deletions of, amongst others, the ARF protein and modified to stably overexpress Pol β 
rather than examining endogenous protein levels. The identification of the deubiquitination 
enzyme that is able to reverse Mule- and CHIP-dependent ubiquitination of Pol β, and in 
fact the only such enzyme characterised in regulating BER, has been identified as ubiquitin 
specific protease 47 (USP47). USP47 was purified and identified from fractionated HeLa cell 
extracts in combination with an in vitro deubiquitination assay using ubiquitinated Pol β as 
a substrate, and was demonstrated to be capable of removing both CHIP-dependent polyu-

biquitin chains and Mule-dependent monoubiquitin moieties from Pol β [51]. An siRNA 

knockdown of USP47 in HeLa cells resulted in an increase in Mule-dependent monoubiq-

uitinated Pol β, a reduction in cytoplasmic and therefore overall Pol β protein levels, and 
ultimately led to reduced efficiency of repair of SSBs and alkali-labile sites created through 
oxidative and alkylated DNA base damage. This study led to a complete picture of how Pol 

β protein levels are regulated in the cellular response to DNA damage, which involves an 
interplay between Mule, CHIP, ARF and USP47 activities that control a specific cytoplasmic 
pool of Pol β that acts as a source of protein that can be utilised in the nucleus in the event of 
any increase in DNA damage. The above studies together establish that Pol β protein levels 
are tightly regulated by the promotion or reversal of ubiquitination-dependent proteasomal 

degradation.

2.3.2. DNA polymerase λ (Pol λ)

Although Pol β is the chief polymerase in the BER pathway, Pol λ is thought to have a back-
up role, specifically in the bypass of 8-oxoguanine lesions and thus avoiding the tendency 
for the misincorporation of the wrong adenine base opposite the lesion. Initial evidence that 

Pol λ is regulated by ubiquitination was demonstrated by the observation that a Cdk2/cyclin 
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A phosphorylation defective mutant of Pol λ at threonine 553, was less stable than the wild 
type protein following expression in either 293T or U2OS cells, and that this was mediated 
via increased ubiquitination [52]. Phosphorylation of Pol λ was observed most notably in 
late S and G2 phases of the cell cycle and was thought to stabilise the protein via inhibi-
tion of ubiquitination and to allow Pol λ to repair any DNA damage incurred at this stage. 
The major E3 ubiquitin ligase responsible for Pol λ ubiquitination was subsequently identi-
fied using the protein as a substrate in in vitro ubiquitination assays containing fractionated 

HeLa whole cell lysates and shown to be Mule [53]. Mule was found to ubiquitinate Pol λ on 
lysines 27 and 273 in vitro, and an siRNA-mediated depletion of Mule in HEK293T cells sig-

nificantly increased Pol λ protein levels. Cdk2/cyclin A-dependent phosphorylation of Pol λ 
was found to inhibit Mule-dependent ubiquitination, and promote binding of the protein to 

chromatin via interaction with MutYH. The E3 ubiquitin ligase CHIP has also been shown 
to ubiquitinate Pol λ in vitro, although there is no evidence that CHIP plays a role in the 
regulation of cellular Pol λ in vivo [54]. Since Pol λ and Pol β are both regulated by Mule, this 
suggests that Mule plays a vital role in controlling the polymerase stage of BER, in addition 

to the base excision stage described above, and thus is a central player in coordinating the 

cellular DNA damage response.

2.3.3. DNA polymerase δ/ε (Pol δ/ε)

Pol δ and ε participate in long-patch BER by adding multiple complimentary nucleotides into 
the repair gap vacated by Pol β, thus creating a 5′-flap structure which is a substrate for FEN-
1. Pol δ is synthesised in human cells as a heterotetramer of subunits p125, p68, p50 and p12. 
Using an in vitro ubiquitination assay with fractionated HeLa cell lysates, the p12 subunit has 
been shown to be a target for ubiquitination by the E3 ubiquitin ligase RNF8 [55]. An siRNA 

knockdown of RNF8 in A549 cells led to an increased stability of p12, particularly following 
UVC irradiation but also following MNNG treatment. However the precise contribution of 
this mechanism to BER efficiency is currently unknown. Additionally there is no evidence 
suggesting that Pol ε is regulated by ubiquitination.

2.4. Ubiquitination of DNA ligases

2.4.1. X-ray cross-complementing protein 1 and DNA ligase IIIα (XRCC1-Lig IIIα)

Lig IIIα functions in a stable complex with the scaffold protein XRCC1 to seal the nick in the 
DNA backbone to complete the BER process. Lig IIIα itself been shown to undergo ubiq-

uitination in two separate reports. In the first, CHIP was demonstrated as an E3 ubiquitin 
ligase for Lig IIIα in vitro, but also an siRNA knockdown of CHIP in HeLa cells caused an 
accumulation of Lig IIIα protein in vivo as a consequence of a lack of ubiquitination-depen-

dent degradation [48]. A second E3 ubiquitin ligase for Lig IIIα in vitro has been identified 
as Iduna/RNF146, which ubiquitinates the protein but only when modified by poly(ADP-
ribosyl)ation [38]. However in this study, Iduna was shown to interact with and ubiquitinate 
a number of DNA repair proteins, including both Lig IIIα and XRCC1 but also PARP1 (as dis-

cussed previously) which was dependent on protein poly(ADP-ribosyl)ation. Therefore the 
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particular significance of Iduna-mediated ubiquitination of Lig IIIα and XRCC1 specifically 
on BER regulation remains unclear. XRCC1 has been shown to be phosphorylated in vitro 

and in vivo by casein kinase 2 (CK2) and this prevents the ubiquitination-dependent degra-

dation of the protein. This was demonstrated by reduced stability of XRCC1 following CK2 
siRNA in HeLa cells and that a CK2 phosphorylation deficient mutant of XRCC1 expressed 
in EM9 cells was less stable than the wild type protein as a direct consequence of increased 
ubiquitination [56]. A separate study also demonstrated ubiquitination of XRCC1, although 
conversely a phosphorylation deficient mutant of XRCC1 expressed in U2OS cells appeared 
not to be stabilised following proteasomal inhibition [57]. Similar to Lig IIIα, XRCC1 has been 
found to be ubiquitinated in vitro by the E3 ubiquitin ligase CHIP, and an siRNA-mediated 
depletion of CHIP in HeLa cells resulted in an increase in XRCC1 protein levels owing to a 
reduction in ubiquitin-dependent protein degradation [48]. Overexpression of CHIP in HeLa 
cells was also found to cause a reduced stability of XRCC1 protein. These findings were sup-

ported by a separate study that demonstrated that CHIP-dependent ubiquitination of XRCC1 
occurs, but only when the protein is not bound to Pol β or heat shock protein 90 (HSP90) 
[50]. Regarding the site of ubiquitination within XRCC1, this has been identified within the 
BRCA1 C-terminus (BRCT II) motif after it was demonstrated that truncated XRCC1 lacking 
this domain was considerably more stable than the full length protein when expressed in 

either HeLa or EM-C11 cells [48]. This ubiquitination site within the BRCT II motif of XRCC1 
was also verified in an independent study [57].

2.4.2. DNA ligase I (Lig I)

Lig I is employed during long-patch BER, but is also involved in DNA replication. The only 
reported evidence of Lig I ubiquitination is through the Cul4A-DDB1 E3 ubiquitin ligase 
complex [58]. Overexpression and immunoprecipitation of Lig I from 293T cells revealed 
that lysine 376, and possibly lysine 79 and 192, were potential ubiquitination sites and that a 
lysine to arginine mutant of Lig I at four sites (79, 192, 226 and 376) was more stable than the 
wild type protein to degradation through serum starvation. Lig I was then demonstrated to 
interact with and to be ubiquitinated in vitro by a Cul4A-DDB1 complex with the associated 

factor DCAF7. An siRNA knockdown of DCAF7 in GM00847 cells was shown to supress the 
degradation of Lig I following serum starvation. This study would suggest that Lig I protein 
levels are controlled during DNA replication, however the impact of this mechanism for the 

efficiency of long-patch BER, is still unknown.

2.5. Summary and future outlook

An increasing amount of evidence is strengthening the fact that BER is carefully regulated and 

controlled by ubiquitination. This largely appears to be a mechanism for controlling cellular 

BER protein levels via the 26S proteasome and therefore plays an important role in supressing 
DNA damage accumulation and coordinating an efficient cellular DNA damage response. In 
this Chapter we have presented evidence that the majority of BER proteins have been shown 

in vitro and in vivo to be targeted for ubiquitination by specific E3 ubiquitin ligases. However 
there are other proteins (e.g. the DNA glycosylases MBD4, MTH1, NEIL2 and NEIL3) which 
have not yet been demonstrated to be ubiquitinated directly (Table 1). It is interesting to note 
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that some of the identified E3 ubiquitin ligases appear to target more than one BER protein 
for ubiquitination. For example, Mule can ubiquitinate both the DNA glycosylases NEIL1 and 
MUYTH, and the DNA polymerases Pol β and Pol λ for ubiquitination-dependent degrada-

tion which would suggest that this E3 ubiquitin ligase, and others targeting multiple BER pro-

teins, can control BER at several different points in the repair pathway. The Cullins, Cul1 and 

E3 ubiquitin ligase BER protein Reference

CHIP Lig III [48]

OGG1 [24]

Pol β [48]

Pol λ [54]

XRCC1 [48]

Cul1 SMUG1 [16]

UNG [16]

Cul4 Lig I [58]

PNKP [45]

SMUG1 [16]

TDG [21, 22]

UNG [16]

Iduna/RNF146 Lig III [38]

PARP-1 [38]

XRCC1 [38]

MDM2 APE1 [41]

Mule MUTYH [26]

NEIL1 [34]

Pol β [49]

Pol λ [53]

RNF8 Pol δ [55]

TRIM26 NEIL1 [34]

UBR3 APE1 [43]

Unknown MBD4

NEIL2

NEIL3

NTH1

Pol ε

Table 1. Summary of the known E3 ubiquitin ligases targeting BER proteins for ubiquitination.

Regulation of the Base Excision Repair Pathway by Ubiquitination
http://dx.doi.org/10.5772/intechopen.70733

49



Cul4, also appear to regulate several BER members although this is unsurprising given that 

they represent the largest family of E3 ubiquitin ligases with several hundred members. In 

fact the most important element of these complexes is the adaptor proteins that provide speci-

ficity of ubiquitination to their target protein. Indeed Cdt2, DCAF7 and STRAP have already 
been identified as adaptors of the Cul4A-DDB1 complexes that target TDG, Lig I and PNKP, 
respectively for ubiquitination. Nevertheless, we currently do not have a clear understanding 

of how these ubiquitination events are controlled and co-ordinated to ensure an efficient BER 
response to DNA damage. In particular there is insufficient knowledge on how the identified 
E3 ubiquitin ligase enzymes are activated and directed to their specific enzyme targets. This 
could be achieved by either compartmentalisation of the enzymes or targets within the cell, 

or by activation of ubiquitination enzymatic activity by PTMs. Secondly, with ubiquitination 

being a reversible process, the identities of deubiquitination enzymes that work in concert 

with E3 ubiquitin ligases in the regulated control of BER proteins have not yet been fully 

elucidated. In fact the only evidence for this is by USP47, which has been demonstrated to 
be actively involved in the deubiquitination of Pol β. Thirdly, in addition to ubiquitination, 
it is clear that BER proteins are also regulated by other PTMs, including acetylation, meth-

ylation, phosphorylation and SUMOylation. There is some evidence of crosstalk between 

these modifications and ubiquitination in regulating BER protein levels and activities, par-

ticularly for PARP-1, FEN-1 and PNKP, although this is not yet fully understood. However 
these regulatory “switches” are undoubtedly an efficient way of controlling the cellular BER 
response to DNA damage. Ultimately further research is necessary in order to fully identify 

and understand the specific E3 ubiquitin ligase and deubiquitination enzymes for individual 
BER proteins, and the precise mechanisms that are co-ordinated in association with other 

PTMs, which act to ensure an efficient repair process.

In addition to discovering the molecular details for regulating cellular BER, research into the 

associations of these and the development of human diseases, including premature ageing, neu-

rodegenerative diseases and cancer is essential. It is understood that BER protein levels are fre-

quently misregulated in these diseases although whether defective ubiquitination is contributory 

to this effect is largely unknown and understudied. This information may also uncover novel 
therapeutic strategies for the treatment of specific diseases. Indeed the BER pathway is known to 
be an attractive therapeutic target, which is exemplified by the success of PARP inhibitors in the 
treatment of BRCA-deficient breast cancers which block BER and cause synthetic lethality due to 
the inability of these cells to process DNA double strand breaks. It is therefore entirely possible 

that the discovery of E3 ubiquitin ligases or deubiquitination enzymes targeting BER proteins 

may provide novel cellular targets for drugs or small molecule inhibitors which can be used in 

combination with radiotherapy and/or chemotherapy for treatment of diseases, such as cancer.
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