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Abstract

Epidemiologic and experimental studies suggest that environmental exposures to air 
pollutants can increase prevalence of metabolic and cardiorespiratory diseases. Among 
the risk factors, many studies have shown that air pollution, especially by fine particulate 
matter (PM

2.5
), can lead to the development of type 2 diabetes mellitus (T2DM) or make 

diabetics more susceptible to other health complications. This chapter aimed to discuss 
the pathophysiologic mechanisms evolved in susceptibility to cardiorespiratory PM

2.5
 

effects in T2DM subjects, as well as the enhancing effect of PM
2.5

 exposure on develop-
ment of T2DM. We discussed the pathophysiologic mechanisms of PM

2.5
 exposure and 

T2DM based on pro−/anti-inflammatory balance, metabolic regulation, redox status, and 
heat shock response, reinforcing the complex nature of T2DM etiology and highlighting 
the PM

2.5
 air pollution as a critical health problem.

Keywords: fine particulate matter, type 2 diabetes mellitus, inflammation, oxidative stress, 
HSP70

1. Introduction: Epidemiology of sum of environmental and metabolic 

risk

In the last century, many epidemiological data demonstrated that the urbanization phenome-

non corroborates to increasing prevalence of metabolic diseases and cardiorespiratory diseases. 

It is well known that high energy food offer and sedentarism are risk factors for  metabolic 
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diseases such as diabetes, while high levels of air pollutant emission represent a risk for cardio-

respiratory diseases. Thus, almost all people living in great cities are exposed simultaneously 
to these two risk factors: food consumption in quantities above the necessary for health mainte-

nance and exposure to environmental air pollution above the limits proposed by WHO.

Some numbers from WHO are really impressive. Data from Global report on diabetes (2016) 
show that at least 422 million people are diabetic in worldwide and that diabetes prevalence 

has been rising more rapidly in middle- and low-income countries [1]. In the same risk direc-

tion, Global Urban Ambient Air Pollution Database update 2016 [2] showed that 98% of these 

cities, with more than 100,000 inhabitants, do not meet WHO air quality guidelines. This data 
represents that 92% of the world population lives in places where air quality levels exceed 

WHO limits. Thus, we can hypothesize that probably a great amount of people are simultane-

ously exposed to urbanization risk factors to health.

Based on a biologically plausible hypothesis from 2004 [3], Brook et al. published data from 

respiratory clinics (n = 5228 patients) and conclude that traffic-related air pollutants were 
associated with type 2 diabetes mellitus (T2DM) prevalence among women [4]. Thus, in few 
years, at least eight studies corroborate with the first study and provide data from associa-

tion between exposure to fine particulate matter (<2.5 μm, PM
2.5

) and T2DM prevalence (for 
review, please see Rajagolapan and Brook, 2012).

Actually, the WHO air quality guidelines (WHO-AQG) [6] recommend that PM
2.5

 levels not 

exceed annual mean concentration of 10 μg/m3 and confirm that 92% of the world’s popula-

tion lives in places where air-quality levels exceed WHO limits. Interestingly, the information 
is presented via interactive maps, highlighting areas within countries that exceed WHO lim-

its. Data obtained from “Most searched cities” and others in http://breathelife2030.org/ [7] and 

WHO ambient (outdoor) air pollution database 2016 are shown in Figure 1.

Just for hypothesize the population under PM
2.5

 pollution risk, we listed in Table 1 an estimate of 

habitants in each city listed in Figure 1. We may conclude that at least 140 millions of people are 
breathing an inadequate level of PM

2.5.
 Additionally, according to WHO diabetes database, 1 per-

son in each 11 is diabetic; thus, we can hypnotize that, only in these cities, more than 12 million 
of people are simultaneously under exposure of these 2 risk factors to health: diabetes and PM

2.5.

As can be observed in the data listed above, air pollution in middle- and low-income coun-

tries, in majority in Asia, Latin America, and Africa, is a significant public health burden. 
Here, we highlighted places that often present high concentrations of PM

2.5
 and simultane-

ously a high population density suggesting an industrialized and modernized life style that 

corroborates to T2DM development. Accordingly, as was demonstrated more than 10 years 
ago, the sum of these conditions is critical for health. Diabetic patients are more susceptible to 
air pollution-induced cardiovascular morbidity and mortality [8, 9], and this susceptibility to 

PM
2.5

 cardiovascular effects was associated with vasoconstrictive effects observed in episodes 
of high levels of pollution in T2DM [10].

In terms of “hard cardiovascular events,” the recent review of Brook, et al. resume several 
meta-analyses assessing the impact of short-term exposures to PM

2.5
. Accordingly, data 

extracted from 34 studies, each 10 μg/m3 increase in PM
2.5

 concentration (during few hours to 
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Figure 1. Fine particulate matter annual mean concentration in cities worldwide. Data obtained from WHO 2016 
database [2] and published by breathlife2030.Org [7]. Data presented in terms of concentration of particles per air 
volume in μg/m3.

City, Country Population City, Country Population

Zurich, Switzerland 401,144 Shanghai, China 24,152,700

London, UK 8,787,892 Mumbai, India 12,442,373

Paris, France 2,229,621 Cairo, Egypt 9,500,000

Visalia, US 131,074 Beijing, China 21,700,000

São Paulo, Brazil 12,038,175 Kampala, Uganda 1,507,080

Santiago, Chile 7,314,176 Delhi, India 16,349,832

Milan, Italy 1,368,590 Bamenda, Cameroon 2,000,000

Cubatão, Brazil 127,006 Riyadh, Saudi Arabia 6,506,700

Monterrey, Mexico 1,130,960 Gwalior, India 1,953,505

Yasuj, Iran 108,505 Zabol, Iran 130,642

Lima, Peru 10,852,210 Total 140,732,185

Data extracted from wikipedia.com

Table 1. Estimate of population of cities listed in Figure 1.
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days), increased the risk for acute myocardial infarction (by 2.5%), hospitalization or death 
from heart failure (2.1%), stroke (1.1%), and arrhythmia (1.5%). The risk increases for long-
term exposure when people live in unhealthy urban area that exceeds PM

2.5
 levels, reaching 

more than 10% increase in cardiovascular mortality. Also, if people live in polluted area, a 
peak of PM

2.5
 levels increases 10–50 fold the risk for cardiovascular events [11]. Furthermore, 

elderly people and women are high susceptible profile to PM
2.5

 effects and for T2DM develop-

ment, mainly in menopause [11].

The pathophysiologic mechanisms evolved in susceptibility to cardiorespiratory PM
2.5

 

effects in T2DM subjects, as well as the enhancing effect of PM
2.5

 exposure on development of 

T2DM, are discussed below. The number and the complexity of these mechanisms are posi-
tive correlated to the importance for life maintenance. In this chapter, we presented patho-

physiologic mechanisms based on oxidative stress, inflammation, and heat shock response, 
with major contribution from experimental studies. These issues were selected considering 
as representative of the ability of an organism to respond physiologically (by adequate and 
quick ways) to the environmental challenges or internal changes in the metabolism as an 

essential characteristic that permits the life. As background of this discussion, there is the 

comprehension of the concept that homeostasis regulation of one variable is dependent on 

many cooperative or synergic mechanisms, that may be activated simultaneity or by steps, 

in terms of redox response, cell by cell signaling, and/or by molecular stress response. Since 
T2DM and PM

2.5
 may be considered as stress situations that can promote damage to organ-

ism, and also are conditions that require adaptation/protection responses in the stressed 
cells, the comprehension of multi-integrative physiologic response can provide mechanis-

tic explanation of epidemiological data listed above. Whereas high-intensity challenges to 
organism can overload the defensive response mechanisms, chronic and moderate intensity 

challenges can induce internal “recalibration” of many systems to survive [12]. Then, in 
the light of this “integrative” and “evolutionary” perspective is important to consider the 
expressive and complex effects of PM

2.5
 exposure and T2DM on these variables discussed 

below: (a) the pro/anti-inflammatory balance; (b) the metabolic regulation (flux and con-

sumption of energy sources); (c) the redox status (pro/antioxidant balance); and (d) heat 
shock response.

2. Pathophysiology of T2DM development: Role of inflammation, 
oxidative stress, and heat shock proteins

The plasma glucose level at any given time is determined by the balance between the amount 
of glucose entering the bloodstream and the amount leaving it. The principal determinants 
are therefore the dietary intake; the rate of entry into the cells of muscle, adipose tissue, and 
other organs; and the glucostatic activity of the liver. Thus, there are biochemical abnormali-
ties as fundamental defects to T2DM development as reduced entry of glucose into various 
peripheral tissues and increased release of glucose into the circulation from the liver. The 
extracellular glucose excess (hyperglycemia) represents for many cells challenge to mainte-

nance of intracellular glucose level [13, 14].
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In animals, hyperglycemia state can be produced by pancreatectomy, by toxins administra-

tion that in appropriate doses cause selective destruction of the β cells of the pancreatic islets 
(as streptozocin or alloxan), by administration of drugs that inhibit insulin secretion, or by 
administration of anti-insulin antibodies. Also, strains of mice, rats, hamsters, guinea pigs, 

miniature swine, and monkeys that have a high incidence of spontaneous diabetes mellitus 

have also been described. However, due to high prevalence of T2DM related to lifestyle, sev-

eral experimental data obtained from high fat diet (HFD) animal models have been used with 
success to induce the disruption of insulin signaling in liver, skeletal muscle, or adipose tissue 

causing hyperinsulinemia and thus, the development of T2DM [15, 16].

The HFD models help us to comprehension of the mechanisms described up to now for 
T2DM. As reviewed recently, it was proposed that the activation of transcription factor fork-

head box protein O1 (FOXO1) in the liver and disruption of glucose-transporter translocation 
(GLUT4) to the surface membrane in skeletal muscle as the first steps of insulin resistance 
[17]. The resultant hyperglycemia and chronic hyperinsulinemia are hypothesized to disrupt 
insulin suppression of adipocyte lipolysis [17]. Additionaly, the active metabolism of adipose 

tissue may contribute to hyperinsulinemia since in HFD feeding, it occurs in the deregula-

tion of hepatocyte gluconeogenesis (such as FOXO1), which causes increased hepatic glucose 
output, and deregulate the glucose transporter GLUT4 response to insulin in muscle, which 
results in decreased glucose uptake by muscle. In this case, the hypertrophy of adipose tissue 

can be interpreted as the first step of insulin resistance development that results in hypergly-

cemia and T2DM.

Persistent hyperglycemia causes tissue damage by different mechanism that involves oxi-
dative stress. Increased uptake of glucose results in increased intracellular glucose con-

centration, that in turns, increased polyol pathway flux. This metabolic pathway uses 
dihydronicotinamide adenine dinucleotide phosphate (NADPH) that is required for main-

taining the levels of the major intracellular nonenzymatic antioxidant defense, the glutathi-
one. Nonenzymatic reaction of glucose and other glycation compounds formed advanced 

glycation products (AGEs) that modify intracellular proteins functions. Also, AGEs binding 
to specific receptors (RAGES) can induces reactive oxygen species (ROS) production. Finally, 
increased levels of AGEs and glucose (intracellularly and extracellularly) increased protein 
kinase C activation and hexosamine pathway flux. All these mechanisms listed above are 
involved in decrease nitric oxide (NO) production (vascular impaired function) and activa-

tion of factor nuclear kappa B (NF-kB), major pro-inflammatory transcript factor (for details, 
please see Giacco and Borwnlee, 2010).

Chronic hyperglycemia is strongly associated with enhanced oxidative stress with over-

production of ROS and nitrosative species (RNS), a reduction of the activity of antioxidant 
enzymes is known to cause endothelial dysfunction and insulin resistance [19]. Thus, oxida-

tive stress constitutes as an important factor implicated not only in the T2DM development 
itself but also in the development of diabetic complications [18, 20]. T2DM is well known 
a cause of microangiopathies, observed at least by the three major diabetic complications, 
namely, diabetic retinopathy, nephropathy, and neuropathy. Also, T2DM constitutes a major 
risk factor for macroangiopathy, such as coronary artery disease and cerebrovascular disease. 
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Thus, oxidative stress in T2DM is associated with a wide array of complications associated 
with decreased quality of life of affected patients, thus contributing to the staggering increase 
in health-care expenditure.

Overweight and obesity is a risk factor for development of T2DM and is strongly related 
to chronic low grade inflammatory state. Adipose tissue metabolism is responsible for sys-

temic oxidative stress and increase pro-inflammatory signaling, observed by increased 
plasma/serum cytokine levels. The development and the severity of the disease are related 
to immuno-inflammatory responses and thus, biomarkers. Inflammatory cells (monocytes/
macrophage and Th1 lymphocytes) are stimulated to express high amounts of the inducible 
form of nitric oxide synthase (iNOS, that is, encode by NOS-2 gene) by activation of transcrip-

tors factor of inflammation, as NF-kB [21]. Studies in human obesity and insulin resistance (as 
well as in animal models) have revealed a clear association between the chronic activation of 

pro-inflammatory signaling pathways and decreased insulin sensitivity.

Elevated levels of TNF-α, IL-6, and IL-8 have all been reported in various diabetic and insu-

lin-resistant states. As part of the chronic inflammatory process, locally secreted chemokines 
attract pro-inflammatory macrophages to the adipose tissue, where they form crown-like 
structures around large dead or dying adipocytes. These “infiltrated” macrophages release 
cytokines that further activate the inflammatory response in neighboring adipocytes, exacer-

bating inflammation and insulin resistance. In addition, overnutrition and obesity are often 
accompanied by elevations in tissue and circulating free fat acids (FFA) concentrations, and 
saturated FFAs can directly activate pro-inflammatory responses in vascular endothelial cells, 
adipocytes, and myeloid-derived cells. Excess of free fatty acids accumulate (FFA), resulting 
in lipotoxicity and an increase in potentially harmful intracellular lipid products activating 

the NF-κB pathway and inflammation. Adipose tissue macrophages (ATMs) infiltrate adipose 
tissue to clear these excess lipids and produce pro-inflammatory cytokines, such as IL-1β, 
TNF-α and IL-6, which further propagate inflammation [22].

According Fontana et al., obesity is strongly associated with plasma IL-6 levels so that has 
been calculated that one third of total circulating concentrations of IL-6 originate from adipose 
tissue. A feed-forward paracrine inflammatory cycle involves co-cultured adipocyte release 
of FFA and macrophage FFA-induced TNF-α production, which blocks insulin-stimulated 
glucose uptake in adipocytes, and leads to increased release of FFA. TNF-α induces insulin 
resistance through several mechanisms including inhibition of insulin receptor signaling and 

increases in FFA. In addition, macrophages secrete a chemotactic pro-inflammatory lectin 
Galectin-3 that directly decreases insulin signaling and promotes adipose tissue inflamma-

tion. Thus, the overexpressed pro-inflammatory cytokines in obesity are considered the link 
between obesity and inflammation [23–25] and also, obesity and the concomitant develop-

ment of inflammation are major components of insulin resistance [26].

Additionally with pro-inflammatory signaling and oxidative stress, hyperglycemia in T2DM 
is also associated with modifications in the cell stress response ability, with markedly unde-

sirable effects in the metabolism. Cell stress response may be studied observing heat shock 
proteins (HSP) amount, synthesis, and release from cells and tissues. Since HSP are classified 
by their molecular weight, in this chapter, we use the term “HSP70” to describe all proteins 
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from 70 kDa HSP family, including inducible 72 kDa and constitutive 73 kDa forms. Also we 
use the prefix “e” or “i” to identify protein location, as extracellular (eHSP70) or intracellular 
(iHSP70) located.

Pro-inflammatory signaling, oxidative stress, and hyperglycemia in T2DM is related to 
decreased iHSP70 levels. In obesity, it observed a reduction in iHSP70 levels and an increase 
in JNK activation in skeletal muscle. This effect may be a result of heat shock factor (HSF-1) 
inhibition. The levels of iHSP70 are correlated with the level of insulin resistance and nega-

tively correlated with fast glucose levels [27]. Heat therapy, that increases iHSP70 levels and 
decreases JNK activation in muscle, protects against hyperglycemia, hyperinsulinemia, glu-

cose intolerance, and insulin resistance [28].

Studies about cell stress response and oxidative stress using biopsies from T2DM patients 
showed that mRNA expression of HSP70 and heme-oxygenase-1 is reduced in this subjects. 
Furthermore, mRNA HSP70 levels were correlated with β-hidroxiacil-CoA dehydrogenase 
and citrate synthase enzymes activities, suggesting that insulin resistance is associated with 

poor heat shock and antioxidant defense of muscle [29]. In this way, mitochondrial dysfunc-

tion plays an essential role in T2DM development [30]. This organelle dysfunction may be 
a result of hyperglycemic state and/or oxidative state. The activation of key pathways that 
increases lipid oxidation and decreases lipid esterification reduces insulin resistance levels.

In a study with wild type and HSP70-knockout mice (HSP70-KO), it was demonstrated that 
HSP70 level is critical to maintenance of mitochondrial morphology and is a biomarker/sen-

sor of mitochondrial stress levels and insulin signaling function in skeletal muscle. HSP70-KO 
mice showed impaired glucose homeostasis, insulin resistance, and increased adiposity lev-

els. Also, muscles of HSP70 mice accumulated lipids probably as a result of reduction in fat 
acids oxidation, which in turns, promotes muscle inflammation. Moreover, muscle cells with-

out HSP70 showed low levels of basal oxygen consumption and high levels of ROS mito-

chondrial production [31], whereas HSP72 overexpression mice are protected against insulin 
resistance by positive regulation of oxidative metabolism. Induction of HSP70 expression in 
skeletal muscle of these mice promoted an increase in mitochondrial number and oxidative 

capacity decreasing insulin resistance [32].

Intracellular HSP70 expression is associated with antiapoptotic and anti-inflammatory 
actions. Inhibition of NF-KB activation and translocation is a marked anti-inflammatory func-

tion of iHSP70 with great implications in immune system, inflammatory process and cell 
survival regulation [33]. Thus, HSP70 is well known by its molecular chaperon cytoprotective 
roles. However, this protein is also found in blood of health subjects [34] and a crescent num-

ber of studies have been demonstrated higher levels of HSP70 in blood in T2DM, T1DM, and 
gestational diabetes [35, 36]. The role of HSP70 in the extracellular space (eHSP70) involves 
immune regulatory actions, pro-inflammatory signaling, and alert/danger signal of cell dam-

age [37].

In T2DM patients, it observed an increase in eHSP70 levels, and this increase is associated 
with diabetes duration, a biomarker of chronicity of the disease [36]. Also, chronic exposure 

of pancreatic β-cell in vitro to high levels of eHSP70 induces cell death and modifies cellular 

Fine Particulate Matter (PM2.5) Air Pollution and Type 2 Diabetes Mellitus (T2DM): When...
http://dx.doi.org/10.5772/intechopen.70668

77



bioenergetics profile. Since T2DM and T1DM patients exhibit higher eHSP70 levels, the per-

petuation of this pro-inflammatory signal may induce loss of cell integrity and consequently 
β-cell dysfunction [38].

In obese T2DM subjects, the eHSP70 level is higher than nonobese T2DM suggesting that adi-
posity, mainly visceral adiposity and its complications, may contribute to increasing eHSP70 
levels. Actually, iHSP70 may be considered a cytoprotective proteins by anti-inflammatory 
functions associated with normal insulin sensitivity. On the other hand, increased levels 
of eHSP70 chronically may be a result of chronic low-grade inflammatory state of visceral 
obesity [39]. Therefore, the unbalance between eHSP70 and iHSP70 levels (eHSP70/iHSP70 
ratio), known as H-index, can reveal the full context of inflammatory process and insulin 
resistance state [16, 40].

3. T2DM and PM
2.5

: The mechanism of enhanced risk

Epidemiologic evidences have shown many effects of exposure to air pollution in the increase 
of hospital admissions in more susceptible individuals, as well as the increase of incidence 

of some diseases, from respiratory to cardiovascular diseases (Cote et al., 2008). In the last 
decade, the association between diabetes and air pollution was highlighted by some studies 

[10, 41–43].

Meo et al. reviewed studies that discuss insulin resistance, diabetes mellitus, and air pol-
lution and conclude that in 10 studies, among 11 analyzed, the PM

2.5
 exposure to is associ-

ated with abnormalities in glucose homeostasis and this effect is related with inflammation, 
insulin resistance mitochondrial alteration, cardio-metabolic disorders, and thus, related to 

T2DM development. The same work confirms a clear and strong association between T2DM 
and exposure to particulate material especially, the exposure to small particulate matter of 10 
microns (PM10) or less in diameter, such as PM

2.5
 [15, 45].

The polluted air, mainly by PM
2,5

, is related to inflammation, vascular dysfunction, and ath-

erosclerosis by the toxicology mechanisms invocated by the PM
2,5

 invasion into the blood-

stream [42]. Beyond this, PM
2,5

 is related to induction of insulin resistance and adiposity in 

high fat diet mice models [16, 43]. Chronic PM
2,5

 exposure can induce glucose intolerance, 

oxidative stress, and mitochondrial alteration in Langerhans islet and adipose tissue. Thus, 
PM

2,5
 inhalation represents a novel additional risk factor to T2DM [16, 43, 46].

Experimental studies attempt to explain the pathophysiological mechanisms that lead to 
metabolic outcomes described above. Xu et al. showed that PM

2.5
 exposure for 12 weeks pro-

moted significant liver damage, evidenced by elevated levels of hepatic stress biomarkers, 
such as transaminases (ALT and AST) and reduced glycogen levels, alterations involved in 
impaired glucose tolerance and insulin resistance in mice. Also, this work demonstrated that 

PM
2.5

 exposure triggered Nrf2-mediated oxidative responses and activated the JNK-mediated 
inhibitory signaling pathway, resulting in hepatic dysfunction. Wherefore, hepatic insulin 
resistance can also be a potential mechanism of diabetes pathogenesis due to pollutants [45].
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Oxidative stress is a common factor in both conditions, T2DM and PM
2,5

. Furthermore, the 

oxidative stress induced by PM
2,5

 also represents a pathogenic stimulus for pancreatic β-cell 
dysfunction [47], since it is responsible for debility on the antioxidant defenses [48].

The redox unbalance promoted by exposure to air pollution can stimulates an inflammatory 
processes, contributing to installation of a metabolic disorder. The role of inflammation in the 
toxicity mediated by PM

2,5
 is associated to the increase in alveolar immunological response 

(increased phagocytic cell count) and to pro-inflammatory cytokines production by these cells 
in the alveolar surface [49], accompanied by increased lung oxidative damage [50–52], which 

generally evolute to systemic oxidative stress, a risk for diabetes complications.

Postulated mechanisms of action include oxidative stress and low-grade inflammation, endo-

thelial dysfunction, visceral adipose tissue inflammation, endoplasmic reticulum stress, and 
mitochondrial dysfunction [5, 53]. Thus, both acute and chronic PM

2,5
 exposures are associ-

ated to inflammatory and oxidative markers, as well as in T1DM and T2DM, but it is not clear 
the real effects of diabetes plus air pollution combination. However, the pathophysiology 
involved in this case increases the global risk of death by increasing the susceptibility to air 

pollution damage [10].

Cell stress response, observed by alteration in HSPs levels in different organs, is a defensive 
and cytoprotective response in both conditions, exposure to pollutants and metabolic dis-

eases. However, there are few pieces of evidence about PM
2,5

 exposure concomitant to T2DM 
development that explores heat shock response [16].

The HSPs naturally are very sensitive elements to any chemical attack to the cells and are 
extensive used as biomarker of environmental exposures. In this sense, the iHSP70 expression 
during cellular challenges indicates that these proteins can be candidate to monitoring air 

pollution aggression to the health organism [54]. One study showed increase in the iHSP70 in 
the lung and heart one day after course particle exposure [55], and the authors discussed 

the plausibility of oxidative stress and/or cytokines in HSPs-induced expression as cellular 
defense at molecular levels, inhibiting pro-inflammatory pathways. In this way, low doses 
(12.5 μg/ml) of PM

2,5
 can increase eHSP70 in human bronquial epithelial culture [56]. Thus, 

the strong correlation among oxidative stress and inflammation induced by PM
2,5

 inhalation 

promotes both increase in the iHSP70 and eHSP70 content, reinforcing the purpose of use 
these proteins as an important biomarker of homeostatic equilibrium in environmental chal-

lenges [16, 57, 58].

Simulating urbanized conditions (consumption of high fat diet and exposure to PM
2.5

) [16] 

showed that subchronic exposure to PM
2.5

, even at low doses (5 μg-day, intranasal adminis-

tration), potentiates metabolic dysfunction in HFD-fed mice, which are T2DM-susceptible. 
The effects of PM

2.5
 in T2DM mice presented a positive correlation between adiposity, 

increased body weight and glucose intolerance, and increased glucose and triacylglycerol 

plasma levels. Also, in this study, pancreas exhibited lower iHSP70 expression, accompanied 
by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio (H-index). This study 
represents an experimental evidence that the combination of two relevant challenges to the 

organism, from different origins (environmental and dietary factors), promotes alterations in 
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cell stress response (measurable by plasma/tissue H-index), reinforcing the chaperone bal-
ance [([eHSP72]/[iHSP70]) status] as a biomarker of T2DM risk.

If a short-term PM
2.5

 exposure promotes innumerous damages, long-term exposure may evi-

dence chronic effects on human health. Xu et al. showed in experimental mice model that 
long-term PM

2.5
 exposure induces alterations on adipose tissue and leads to mitochondrial 

dysfunction. If PM
2.5

 exposure is associated with other risk factors for T2DM, such as inad-

equate eating behavior, it observed an increase in adiposity, body weight, and glucose intoler-

ance [16], as well as increase in glucose and triacylglycerol plasma levels. Exposure to PM
2.5

 

can markedly potentiate metabolic dysfunction in an already compromised organism, pro-

moting relevant alteration in cell stress response.

The implications to health of a link between PM
2.5

 pollutants exposure and T2DM are criti-
cal problems to public health since air pollution is a pervasive risk factor that affects many 
people worldwide. In this way, it is important to highlight that modest reduction of pollution 

exposure may provide substantial public health benefits [45]. The underlying mechanisms 
responsible for this adverse effect in response to ambient PM

2.5
 air pollution need to be further 

investigated [43]. Both experimental and epidemiologic studies suggest that environmental 

exposures to air pollutants can increase the risk of insulin resistance, which lead to a link 

between air pollution and T2DM.

4. Conclusion

This chapter aimed to describe pathophysiological mechanisms of the association between 
exposure to atmospheric pollution by PM

2.5
 and T2DM development, which are being high-

lighted in experimental studies connected to epidemiological data. The highlighted mecha-

nisms involve inflammation, oxidative stress, and a clear participation of impaired cell stress 
response observed by alterations on HSP70 levels. Finally, epidemiological together with 
experimental studies reinforce the complex nature of T2DM etiology and highlights the PM

2.5
 

air pollution as a critical health problem.

It is known that type 2 diabetes results from the interaction between genetic susceptibility, 

environmental factors, and lifestyle choices, commonly accepted causes for the development 

of T2DM. However, it is argued that these factors alone cannot fully explain the rapid rise in 
the prevalence of diabetes [45]. If the high prevalence of T2DM is a result of an association 
between several risk factors, and air pollution is one, environmental protection represented 

by prioritization of steps to minimize the air pollution levels may be considered as health 

strategy to avoid T2DM [44]. Given the enormous number of people exposed to air pollution 
as shown in Figure 1, even conservative reduction of PM

2.5
 emission would translate into a 

substantial decrease in the population attributable fraction of T2DM related to environmental 
factors [45]. In perspective, it is expected that future studies will describe molecular mecha-

nisms involved, highlight the responsible pollutants and the role of combined exposures to 

mixtures, and susceptibility factors. These discoveries of metabolic effects of air pollution 
may help relevant public health guidelines discussion and government decision in this cur-

rent context of global urbanization [59].
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Appendices and nomenclatures (Optional)

AGEs:  advanced glycation products.

ALT:  alanine aminotransferase.

AST:  aspartate aminotransferase.

ATMs:  Adipose tissue macrophages.

eHSP70:  70 kDa extracellular heat shock proteins.

FFA:  free fat acid.

FOXO1:  forkhead box protein O1.

GLUT4:  glucose-transporter type 4.

HFD:  high fat diet.

HSF-1:  heat shock factor.

HSP:  heat shock proteins.

HSP70:  70 kDa heat shock proteins.

HSP70-KO: 70 kDa heat shock proteins knockout mice.

iHSP70:  70 kDa intracellular heat shock proteins.

IL-1β:  interleukin-1beta.

IL-6:  interleukin-6.

IL-8:  interleukin-8.

iNOS:  inducible nitric oxide synthase.

kDa:  kilodalton.

mRNA:  messenger RNA.

NADPH: dihydronicotinamide adenine dinucleotide phosphate;

NF-kB:  factor nuclear kappa B.

NO:  nitric oxide.

NOS-2:  nitric oxide synthase-2.

PM
2,5

:  Fine Particulate Matter.

RAGES:  advanced glycation products binding to specific receptors.

RNS:  nitrosative species.

ROS:  reactive oxygen species.

T2DM:  type 2 diabetes mellitus.

TNF-α:  tumor necrosis factor alpha.

WHO:  world health organization.
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